
Mar 13, 2019 

 

Computational comparison of developmental cell lineage trees by alignments 

Meng Yuan1,2,#, Xujiang Yang1,2,#, Jinghua Lin3,#, Xiaolong Cao1,2,#, Feng Chen1,2, 

Xiaoyu Zhang1,2, Zizhang Li1,2, Guifeng Zheng3, Xueqin Wang4, Xiaoshu Chen5,*, 

Jian-Rong Yang1,2,6,* 

 

1Program in Cancer Research, The Fifth Affiliated Hospital, Zhongshan School of 

Medicine, Sun Yat-sen University, Guangzhou, China 510080 

2Department of Biology, Zhongshan School of Medicine, Sun Yat-sen University, 

Guangzhou, China 510080 

3School of informatics, Sun Yat-sen University, Guangzhou, China 510080 

4School of mathematics 

5Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen 

University, Guangzhou, China 510080 

6RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 

Guangzhou, China 510120 

 

#These authors contributed equally to this work. 

 

*Correspondence to:  

Jian-Rong Yang 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577809doi: bioRxiv preprint 

https://doi.org/10.1101/577809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Department of Biology, Zhongshan School of Medicine 

Sun Yat-sen University 

Suite 1227, Medical Research Building, Sun Yat-sen University North Campus,  

74 Zhongshan 2nd Rd, Guangzhou, Guangdong, 510080, China 

Phone: +86-020-87335423 

Email: jianrong.yang@outlook.com OR yangjr27@mail.sysu.edu.cn 

 

Xiaoshu Chen 

Department of Biology, Zhongshan School of Medicine 

Sun Yat-sen University 

Suite 1227, Medical Research Building, Sun Yat-sen University North Campus,  

74 Zhongshan 2nd Rd, Guangzhou, Guangdong, 510080, China 

Phone: +86-15202014045 

Fax: +86-020-87335423 

Email: chenxshu3@mail.sysu.edu.cn  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577809doi: bioRxiv preprint 

https://doi.org/10.1101/577809
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 

The developmental cell lineage tree, which records every cell division event and the 

terminal developmental state of each single cell, is one of the most important traits of 

multicellular organisms, as well as key to many significant unresolved questions in 

biology.  Recent technological breakthroughs are paving the way for direct 

determination of cell lineage trees, yet a general framework for the computational 

analysis of lineage trees, in particular an algorithm to compare two lineage trees, is 

still lacking. Based on previous findings that the same developmental program can be 

invoked by different cells on the lineage tree to produce highly similar subtrees, we 

designed Developmental Cell Lineage Tree Alignment (DELTA), an algorithm that 

exhaustively searches for lineage trees with phenotypic resemblance in lineal 

organization of terminal cells, meanwhile resolving detailed correspondence between 

individual cells.  Using simulated and nematode lineage trees, we demonstrated 

DELTA’s capability of revealing similarities of developmental programs by lineal 

resemblances.  Moreover, DELTA successfully identifies gene deletion-triggered 

homeotic cell fate transformations, reveals functional relationship between mutants by 

quantifying their lineal similarities, and finds the evolutionary correspondence 

between cell types defined non-uniformly for different species.  DELTA establishes 

novel foundation for comparative study of lineage trees, much like sequence 

alignment algorithm for biological sequences, and along with the increase of lineage 
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tree data, will likely bring unique insights for the myriads of important questions 

surrounding cell lineage trees. 

 

KEYWORDS: developmental cell lineage tree, comparative study, bioinformatics 

algorithm, cell types  
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INTRODUCTION 

Life of multicellular organisms typically starts from a zygote, which undergoes 

multiple rounds of cell divisions and simultaneous differentiation, and eventually 

develops into an individual organism with multiple types of cells.  The 

developmental cell lineage tree (CLT) is a record of both the differentiation states or 

types of every single cell at a specific developmental time point, and all the cell 

division events since the zygote that lead to these cells (Fig. 1A).  More generalized 

CLT does not necessarily root at the zygote, but may start from any dividable cell, 

which is a subtree of the CLT rooted at the zygote, or sub-CLT (Fig. 1A).  As one of 

the most important traits of multicellular organisms, CLT is the key to many 

significant unresolved problems in life sciences.  For example, developmental CLT 

records the details of developmental process1-6, and helps to explain the mechanism of 

developmental robustness at the cellular level7-9.  Other types of CLT reveal the 

origin of relapsed or metastatic tumor cell population 10,11, the risk of carcinogenesis 

attributable to the number of cell divisions since the zygote 12,13, as well as the origin 

and evolution of cell types and lineages 14,15. 

 More than 35 years ago, the seminal work of John Sulston and colleagues in the 

nematode Caenorhabditis elegans had revealed the first complete developmental CLT 

containing ~1000 terminal cells via painstaking observation through optical 

microscope 16.  Advancement of microscopic imaging techniques had since 

facilitated assessments of developmental CLT in other nematodes 17-20 and ascidian 21, 

but is of limited help in more complex species where the body is opaque and consists 
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of vastly more cells.  Recently, the application of genome editing in combination of 

single-cell high-throughput sequencing 1,2,4,22,23 has open a new path towards the CLT 

in more complex species, where the topology of the CLT is determined by 

phylogenetic analysis informed by the genomic editions, and the cell types by 

transcriptome profiles of single cells.  Although it has yet to achieve the resolution 

of individual division events and types for all terminal cells, this new technique will 

likely further improve and generate more and better CLT data in the near future due to 

the scientific significance of CLT. 

Unfortunately, a general computational framework for alignment between CLT is 

currently lacking.  Here alignment means finding fine-scale similarities between two 

structured entities.  As an analogy, comparison between two biological sequences, 

such as DNA or protein, can be accomplished by alignment.  Indeed, the 

development of sequence alignment algorithm in the 1970s 24,25, has built the 

foundation for the interpretation of biological sequences, way before the soar of 

sequencing data.  Similarly for CLTs, there are also common research needs that 

might be fulfilled by a proper alignment algorithm.  First, comparison of relevant 

data is required for quality assessment.  For example, sequence/CLT alignment can 

evaluate how replicable the results from two technical repeats are.  Second, 

comparison is required to relate new observations to the known data, increasing the 

interpretability of new observations, such as a newly determined sequence subjected 

to homology search for an initial guess of its function or source.  Third, comparison 

between individual observations is required to disentangle variations from the 
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consensus, and to ultimately find the underlying law constraining the consensus and 

generating variation.  Last but not least, comparative analysis, which by definition is 

comparison between sequences/CLTs from different species, is a major way of 

studying evolution, the ultimate causation of many biological patterns.  Currently, 

these obstacles are only partially addressed by comparing relative fraction of different 

types of cells generated by CLTs.  However, just as in sequence comparison, 

majority of information is loss when fraction of A/T/G/C is compared, relative to 

when sequence is aligned, finding the fine-scale alignment between CLTs will likely 

reveal much more biological information. 

 To address this critical demand, we designed DELTA (Developmental Cell 

Lineage Tree Alignment), an algorithm that aligns a pair of CLTs by identifying 

homeomorphic sub-CLTs, with the assumption that similar genetic (or developmental) 

programs should give rise to similar sub-CLTs 7,26.  Using simulated CLTs 27 and the 

real CLTs from C. elegans 28, we showed that homeomorphic sub-CLTs found by 

DELTA have highly similar expression profiles.  Comparison among CLTs of 

wildtype and single gene knock-out mutants of C. elegans 3 revealed both known 5 

and novel homeotic transformations of cell fates in the mutant strains, and suggested 

for the deleted genes functional relationship compatible with evolutionary and 

experimental evidence.  Finally, we compared developmental CLTs of two 

nematodes and pinpointed evolutionary changes of fates between cells on these two 

CLTs.  By maximizing the alignment score between real CLTs of the two species, 

we found biologically interpretable correspondence between their non-uniformly 
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defined cell types, highlighting a conceptually new way of finding the evolutionary 

relationship between cell types.  Just as sequence alignment algorithm had 

fundamentally transformed genetics, the possibility of CLT comparison/alignment 

opened by DELTA will likely lead to new opportunities for deeper understandings of 

biology of multicellular organisms, such as assessing the repeatability of 

differentiation, linking sub-CLTs to developmental programs, and distinguishing 

autonomous and regulatory components in development. 

 

RESULTS 

Overview of DELTA algorithm 

A typical developmental CLT as analyzed here is a binary tree (Fig. 1A), where 

each node represents a single cell and each branch represents a descendant 

relationship pointing from a mother cell to one of its daughter cells.  The cells in the 

tree can be divided into internal or terminal cells/nodes by whether they undergo 

further division as recorded by the CLT.  A subtree rooted at any of the cells is a 

sub-CLT.  The terminal cells of the CLT are all labeled by their cell types, which 

could be anatomically defined as, for example, muscle, neuron, or defined by the 

expression state of one or more genes such as CD4+ cells.  Note that unlike CLTs 

commonly discussed in nematodes such as C. elegans, we ignored the temporal 

duration of cell cycle and lineal order of sister cells to ensure compatibility to CLTs 

determined by genomic barcoding.  In other words, the length of branch hold no 
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information about how long each single cell exists, and swapping any pair of sister 

sub-CLTs (i.e. two sub-CLTs whose roots are a pair of sister cells divided from the 

same mother) will not change the CLT.  

We designed the Developmental Cell Lineage Tree Alignment (DELTA) 

algorithm with the purpose of identifying similarities in developmental programs 

using the phenotypic information represented by the CLT.  Here the developmental 

program means a succession of cell fate choices made at every division events 

recorded by the CLT.  We assumed the developmental state of a cell is reflected by 

those of its daughter cells, which is further defined by their daughter cells thereinafter 

until the terminal cells with known cell types (Fig. 1A, color of nodes).  In other 

words, a pair of cells is similar if the two sub-CLTs rooted at them resemble each 

other in topology and lineal organization of terminal cell types.  This assumption 

was deemed useful in demonstrating the simplicity 26 and robustness 7 of metazoan 

CLTs, as well as identifying homeotic transformation of cell fates 5.  DELTA 

compares every sub-CLTs from a query CLT with those from a subject CLT, and 

exhaustively search for their maximal resemblance in topology and lineal organization 

of terminal cell types via a dynamic programming strategy (Fig. S1A).  As an 

analogy, sequence alignment algorithms align residues in biological sequences with 

the constraint of their sequential order, whereas DELTA aligns terminal and internal 

cells in CLTs with the constraint of their lineal organization.  DELTA can align 

CLTs globally (DELTA-g), where all cells in respective CLTs are either pruned or 

aligned, or locally (DELTA-l), where only pairs of sub-CLTs with good enough 
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alignments were reported, much like global and local sequence alignment, 

respectively (Fig.1B).  DELTA also estimates statistical significance of each CLT 

alignment relative to random pairs of CLTs with same sizes and terminal cell type 

compositions as the aligned CLTs.  More algorithmic details of DELTA are given in 

Methods and Supplementary Text S1. 

To validate the correctness of our DELTA implementation, we aligned C. elegans 

CLT with an isomorphic version of itself, where 30% randomly chosen sister 

sub-CLT pairs were swapped.  DELTA-g successfully aligned the isomorphic CLT 

with the original by matching all terminal nodes, yielding a DELTA score same to 

that of the alignment between two identical C. elegans CLTs (Fig. 1C.  See also Fig. 

S1B).  We also developed an accompanying R package named ggVITA 

(ggtree-based visualization of tree alignments) for the visualization of DELTA 

alignments (Fig. 1C. See also Fig. S1C). 

 

CLT simulations suggest DELTA can identify developmental similarity 

To further demonstrate that DELTA alignment can indeed reveal developmental 

similarities, we simulated CLTs using a previously published model 27, in which the 

epigenetic on/off state of each gene in each cell and each discrete time point was 

calculated by a predefined regulatory network. (Fig. 2A and B. See Methods) 

DELTA-l was used to align the simulated CLT with itself.  This process was 

repeated with 1,000 different simulated CLTs, and the top ten local alignments from 
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each simulation were examined to assess the performance of DELTA.  Several 

results in support of the capability of DELTA were observed.  First, we found that 

for each simulated CLT, the self-alignment always has the highest DELTA score in 

the local alignment result (Fig. 2C, left most red dot).  Second, DELTA tends to find 

alignments between large sub-CLTs, which contain more developmental information 

(Fig. 2D, red dots).  Third, the CLT alignments are statistically highly significant, 

indicating DELTA scores are much higher than those between random CLTs of 

similar sizes and terminal cell type compositions (Fig. 2E, red dots).  Fourth, the 

epigenetic distance (measured by hamming distance) between the roots of the aligned 

sub-CLTs is much smaller than that of two randomly chosen internal cells, and tends 

to be lower for those with higher DELTA scores (Fig. 2F, red dots).  Fifth, by 

comparing the expression (i.e. epigenetic on/off state) of each gene for all aligned 

(terminal and internal) cells in a pair of (sub-)CLTs, we found that their expression 

trajectories were much more similar than expected (hamming distance normalized to 

[0,1], with expectation of 0.5) between aligned internal or terminal cells (Fig. 2G), 

suggesting that not only the initial state, but also the subsequence changes of 

expression is highly similar between the aligned CLTs.  These results demonstrated 

that a DELTA can indeed pair up internal cells with similar epigenetic states. 

 Two practical considerations prompted us to further scrutinize the performance of 

DELTA using revised models of CLT simulation.  First, the aforementioned model 

used in simulated CLTs implicitly assumed that all cells differentiate autonomously, 

whereas the real differentiation process is believed as highly regulatory, i.e. affected 
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by external signals from other cells or the environment.  We thus introduced a 

probability (5%) of randomly flipping the epigenetic state of a gene in every time 

point during the simulated development, by negating its expression level (See 

Methods), excluding the cell cycle and asymmetric division regulator.  Second, 

current experimental techniques are not perfect in capturing all single cells, making 

the experimentally reconstructed CLTs incomplete.  For example, the state-of-the-art 

lineage tree reconstruction method 23 isolates single cells using the 10x Chromium, an 

instrument with an average of 35% cell losses.  To reflect such technical limitation, 

we simulated two CLTs with identical initial parameters (regulatory network and 

expression of the root), but different random loss of 35% terminal cells, reconstructed 

the simulated CLTs following their actual lineal relationship (See Methods), and 

aligned them by DELTA.  As expected, these two perturbations reduced the DELTA 

score (Fig. 2C), CLT size (Fig. 2D), statistical significance (Fig. 2E), and the 

epigenetic similarity between the aligned sub-CLTs (Fig. 2F and G).  Nevertheless, 

it is still capable of identifying statistically significant and epigenetically similar 

sub-CLTs (Fig. 2C-G).  We found by additional simulations that the performance of 

DELTA remains satisfactory with 5, 10, 20 or 50% cell losses, but not 90% (data not 

shown).  Nevertheless, these result suggested that, despite of the detection power 

reduction due to the stochastic perturbations, associating CLT phenotypes to 

underlying epigenetic states by DELTA remains feasible. 
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Alignment of C. elegans CLT by DELTA reveals cells with highly similar 

developmental programs 

 Next, we sought to test the performance of DELTA using real CLTs from C. 

elegans.  The C. elegans embryonic CLT contains 8 pairs of bilaterally symmetrical 

sub-CLTs 16 with 10 or more terminal cells (Fig. 3A).  We aligned these symmetric 

pairs of sub-CLTs by DELTA-g, and found that their DELTA scores are highly 

significant (Fig. 3B, gray bars), and are always higher than those from the alignments 

between one sub-CLT from the symmetric pairs, and another sub-CLT with a similar 

number of terminal cells (Fig. 3B, blue dots. See Methods).  These results showed 

that DELTA efficiently aligns symmetric pairs of sub-CLTs, which likely have 

identical developmental states. 

 To further assess the capability of DELTA in finding similarities in 

developmental programs, we take advantage of the EPIC database (Expression 

Patterns in C. elegans), where expression of 130 genes were tracked in each cell 

during the embryonic development of C. elegans from the zygote to the larva 29.  We 

collected the top 1,000 alignments in DELTA-l results of C. elegans CLT vs itself, 

and calculated the Pearson’s correlation coefficient R between the aligned cells in the 

sub-CLTs.  Since the sizes of different alignments vary, the Pearson’s Rs are 

standardized by Fisher’s r-to-z transformation before being compared.  In support of 

the usefulness of DELTA, higher z is observed in CLT alignments with higher DELTA 

score (Fig. 4A, Pearson’s R = 0.951, P<10-300, Spearman’s ρ = 0.926, P < 10-300) and 

more significant alignment P values (Fig. 4B, Pearson’s R = 0.504, P < 10-98, 
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Spearman’s ρ = 0.176, P < 10-11).  In combination with the results from the simulated 

CLTs, we demonstrated that DELTA can indeed identify CLTs with highly similar 

developmental programs. 

 

Phenotypic changes of mutant CLT quantified by DELTA reveals functional 

relationship among underlying genes 

Inspired by the capability of DELTA in identifying similarities in developmental 

programs by homeomorphic (sub-)CLTs, we continued to test whether DELTA can 

associate CLT changes to their underlying genetic mechanisms.  The database of 

Digital Development 3, where CLTs are recorded for C. elegans strains with ~ 200 

conserved genes individually knocked out (KO strains), provides a unique opportunity 

of comparing phenotypic changes in CLT with underlying genetic differences.  

Specifically, homeotic transformations, where a cell x adopts the fate used by another 

cell y in normal development (an x-to-y transformation), were previously observed 

using this dataset 5.   Here the fate of a cell was indicated by the lineal name of the 

cell.  For a homeotic transformation of x-to-y in a mutant strain, we extracted the 

sub-CLT rooted at x from the mutant strain, as well as the sub-CLT rooted at y from 

the wildtype strain.  Using a scoring matrix defined by the number of markers with 

shared expression (Fig. 5A) and a prune cost of 1, we used DELTA-g to align all the 

extracted pairs of sub-CLTs from the homeotic transformations, i.e. the sub-CLT with 

an altered fate in the mutant strain, and the sub-CLT from the wildtype strain 
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representing the transformed new fate.  We found that 93.5% of them gave rise to 

statistically significant (P < 0.05) alignments (Fig. 5B and C), suggesting that DELTA 

can indeed identify homeotic cell fate transformations.  Moreover, DELTA 

elaborated the correspondence between the terminal cells of these aligned CLTs (Fig. 

5D, alignments on the left), revealing the subtle differences between wildtype and 

transformed sub-CLTs.   

We further looked the top 100 DELTA-l results between wildtype and each 

mutant strain for homeotic transformations events.  Some known homeotic 

transformations are among the top ranking local alignments.  For example, the cell 

fate transformation of ABar lineage in MOM-2 KO strain into ABal in wildtype strain 

has the 6th highest DELTA score in local alignment between wildtype and MOM-2 

KO CLT, whose detailed alignment between individual cells found by DELTA were 

visualized by ggVITA (Fig. 5D, top left alignment).  Similarly, the E cell in GLD-2 

KO strains takes the cell fate of wildtype MS, which corresponds to 32nd top 

alignments in DELTA-l results between wildtype and GLD-2 KO CLTs (Fig. 5D, 

bottom left alignment).  Furthermore, we found some alignments between sub-CLTs 

that likely correspond to addition homeotic cell fate transformation that is not 

previously reported, such as the transformation of P1 into ABp when CAMT-1 is 

deleted, and P1 into ABa when C01A2.5 is deleted (Fig. 5D, right alignments).  Note, 

however, that most local alignments found in DELTA-l between wildtype vs mutant 

strains are between sub-CLTs that is unchanged by the gene knockout, or sub-CLTs 

that are highly similar in the original CLT.  Nevertheless, these results suggest that 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577809doi: bioRxiv preprint 

https://doi.org/10.1101/577809
http://creativecommons.org/licenses/by-nc-nd/4.0/


homeotic cell fate transformation can be readily found by DELTA. 

 Given the above result, we further hypothesized that the phenotypic impact of the 

gene deletions, as approximated by the DELTA score between wildtype and KO 

CLTs, can reflect the functional importance of the underlying genes.  To test this 

hypothesis, we compared the DELTA score from global alignment between wildtype 

and KO CLTs with the evolutionary rate of the genes being knocked out, since 

functionally more important genes generally evolve more slowly and thus are more 

conserved 30.  Here, we used the dN/dS ratio to measure protein evolutionary rate, 

where dN is the number of nonsynonymous nucleotide substitutions per 

nonsynonymous site, and dS is the number of synonymous nucleotide substitutions 

per synonymous site 31.  We split the genes with KO CLTs into two groups with high 

or low DELTA score with the wildtype CLT and compared the average evolutionary 

rate of the two groups.  As we divided the two groups by greater DELTA score 

differences, the deviation of evolutionary rate of the two groups continues to increase 

to up to ~ 8 fold when genes with DELTA score > 7400 and < 2600 were compared 

(Fig. 6A).  Since genes with more dramatic functional impact upon deletion are 

generally more constrained by natural selection 30, this observation suggests that 

DELTA comparison between KO and wildtype CLT can indeed quantify phenotypic 

changes in CLT in relation to the functional importance of the deleted gene. 

To better understand this observation, we compared dN and dS separately with 

the DELTA score.  We found that difference in DELTA scores are predictive of 

deviation in dN (Fig. 6B), but not dS (Fig. 6C).  Since dS is primarily determined by 
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mutation rate, whereas dN is determined jointly by mutation rate and natural selection 

31, these results suggest that DELTA score indeed captured phenotypic changes in 

CLT that is subject to natural selection acting on the function of the gene, instead of a 

mutational bias in favor of less important genes.  In addition, gene expression level, 

a potential confounding factor that is correlated with both evolutionary conservation 

and functional importance of a gene 30, was found unrelated to DELTA score (Fig. 

6D).  Therefore, the correspondence between the evolutionary conservation of a 

gene and the impact of its deletion quantify by DELTA is not confounded by 

expression level of the gene.. 

We next asked whether comparison between CLTs of two KO strains can reveal 

functional relationship between the deleted genes, as has been shown by CLT 

comparison using methods other than DELTA 32-34.  Since DELTA score quantifies 

phenotypic similarity between two CLTs, we hypothesized that if the DELTA score 

between two KO CLTs is higher, the genes deleted in these strains are more likely 

functionally related.  To test our hypothesis, we assessed the enrichment for 

experimentally determined interactions as recorded by STRING 35 in pairs of genes 

with KO CLTs of high DELTA score, relative to those with low DELTA score.  To 

avoid interdependence between gene pairs due to involvement of the same gene, we 

construct a 2x2 contingency table for each of the 204 genes separately by (i) whether 

its DELTA scores with other 203 KO CLTs are higher or lower than some thresholds 

(Fig. 6E, x axis), and (ii) whether the confidence of experimentally determined 

interactions between the pair of deleted genes in comparison surpasses certain 
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confidence threshold (Fig. 6E, color scale).  The 2x2 contingency tables for all genes 

were summarized by Mantel-Haenszel procedure to calculate a combined odds ratio 

to reflect the enrichment of interaction.  Similar analysis was also done for 

coexpression between deleted genes (Fig. 6F).  For both interaction and 

coexpression, we found that the odds ratio increases as the DELTA score difference 

between the two groups of gene pairs becomes larger, regardless the confidence 

threshold used.  For example, the enrichment of experimentally determined 

interactions with confidence > 0.5 yielded an odds ratio of 25.5 when gene pairs with 

DETLA score > 6000 is compared to those with DELTA score < 4000.  These 

results suggest that genes whose deletion yield similar phenotypic outcome for CLT 

tend to be functionally related.  Altogether, our comparative analyses among KO and 

wildtype CLTs by DELTA successfully associate CLT phenotypes to the underlying 

genotypes. 

 

 

CLT alignment between species by DELTA hints at evolutionary correspondence 

between cell types 

The diversity of cell types is a significant feature of multicellular organisms, yet 

how it evolves remains largely unexplored.  Just as one needs to find orthologous 

genes between species, the study of cell type evolution is impossible without a 

mapping of cell types, or “cell type orthology” between different species.  

Traditionally, cell types from two species are considered “orthologous” according to 
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structure- and/or function-based cell type definition, such as neuron or muscle cells.  

Recent technological development of single cell RNA-seq and other high-throughput 

approaches 36-38 have promoted research efforts in revisiting cell type definition by 

molecular similarities at transcriptome or epigenome level, such as in the Human Cell 

Atlas Project 39.  However, inferring cell type orthology by 

structural/functional/molecular similarities may not be reliable because they could 

have emerged from phenotypic convergence 15, such as found for the striated muscles 

of vertebrates and Drosophila melanogaster 40.  Alternatively, we hypothesized that 

the DELTA score between CLTs from two species with non-uniformly defined cell 

types should be maximized by a scoring matrix based on the actual correspondence 

between specific cell types. 

 To test our hypothesis, we compared the CLT of Pellioditis marina and C. 

elegans, whose cell type identities were previously defined by structure and function 

non-uniformly in the two species 26.  By a greedy strategy (See Methods, Fig. 7A 

and Fig. S4), we optimized the scoring matrix such that the DELTA score from global 

alignments between the two CLTs is maximally higher than those from pairs of 

control CLTs created by relabeling all cells of a type as another random type.  

Intriguingly, the high matching scores in the optimized scoring matrix indeed hints at 

biologically reasonable correspondence between cell types from the two species (Fig. 

7B).  For example, the optimized matrix suggests that the cells labeled as “Muscle”, 

“Death”, “Intestinal” and “Germ” have exact matches between the two species.  On 

the other hand, cells labeled as “Nervous System” in P. marina correspond to the cells 
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labeled as “Neurons” and “Structural” (Neuronal structural) cells; and cells labelled as 

“Pharynx” in P. marina corresponds to “Gland”, “Epithelial”, “Muscle” and “Neuron” 

cells in C. elegans.  Last but not least, the 30 cells in P .marina with “Other” fate are 

suggested by the optimized matrix as epithelial cells in C. elegans.  Furthermore, the 

DELTA-g alignment based on the optimized scoring matrix revealed the detailed 

correspondence between terminal cells of the two species (Fig. 7C).  Some 

evolutionary events of cell fate changes are clearly highlighted, such as an Epiderm 

cell in P. marina becomes apoptotic in C. elegans (Fig. 7D).  Collectively, these 

results exemplified the comparative analysis of CLTs by DELTA, which offers novel 

insights into the evolution of cell types and CLTs. 

 

DISCUSSION 

A computational framework for comparative study of CLTs 

In this study, we designed and implemented DELTA, a computational framework 

for the alignment of developmental cell lineage trees.  Using simulated CLTs and 

real CLT from C. elegans, we showed that DELTA can find sub-CLTs with highly 

similar developmental programs, such as bilaterally symmetric lineage pairs, and 

lineages whose expression trajectory are highly correlated.  Furthermore, DELTA 

alignments among mutant and wildtype C. elegans strains identify homeotic cell fate 

transformation, show more dramatic phenotypic change for the deletion of more 

important genes, and reveal higher CLT similarities between strains where 
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functionally related genes were individually knocked out.  Finally, we found that the 

scoring matrix, optimized for the DELTA score between CLTs from two species, can 

shed light on the evolution of cell types and CLTs of the two species.  Together, our 

work has demonstrated the applicability of DELTA in multiple biological questions 

related to CLT, thus opening new paths to the analysis of CLTs, a type of data that 

will rapidly accumulate 1,2,4,22,23. 

 

Potential applications of DELTA 

 As more CLT being determined, the application of DELTA to them shall provide 

critical insight to several important biological questions.  First, the repeatability of 

development can be assessed by comparing CLTs from different individuals, or CLTs 

that root at different single cells from an otherwise homogeneous cell population.  

This analysis is particularly relevant to the efficiency of iPS, where a seemingly 

homogeneous population of cells are similarly treated, but only a very small fraction 

are successfully transformed to the pluripotent state, with an even smaller fraction 

capable of growth into organoids.  Comparison between the CLTs rooted at failed or 

successful iPS may lead to a mechanistic explanation for their differences. 

 Second, as demonstrated with simulated and wildtype C. elegans CLT, DELTA is 

capable of associating CLT phenotypes to the (epi-)genetic states of individual cells.  

Theoretically, the phenotypic consequence of (epi-)genetic states, or the 

genotype-phenotype mapping (GPM) shall become more complex when more cells 
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were involved.  As an intermediate phenotype between those of single cells and of 

tissues/organisms, DELTA offers a novel path of bridging GPM on unicellular and 

multicellular levels. 

 Third, we have shown in our study that DELTA can be used to find the 

evolutionary correspondence between cell types in two species.  The advancement of 

single cell transcriptome profiling experiments has allowed cell type classification at 

its finest scale with molecular signatures of gene expression.  Experimental pitfalls 

aside, this approach of cell type identity determination has two biological difficulties.  

On the one hand, similarity of transcriptional profile could have arisen from both cell 

type homology due to inheritance from common precursor, and phenotypic 

convergence, which might lead to false combination of different cell types into one.  

On the other hand, the stochastic nature of gene expression41 may lead to erroneous 

separation of homogeneous cell population of one type into two.  This problem is 

also recently noticed 15, where evolutionary definition of cell types based on the “core 

regulatory complex” (CoRC) of transcription factors is proposed.  As a 

complementary approach, DELTA utilizes the biological information in CLT to find 

the evolutionary correspondence between cell types, and simultaneously reveals how 

CLT itself evolves. 

 Fourth, one critical unanswered question in development is the relative 

prevalence of autonomous and regulative development.  In nematodes such as C. 

elegans, development is autonomous except for a small number of sub-CLTs 42.  In 

most other animals, however, it is generally believed that regulatory development is 
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the prevailing mode and autonomy the exception.  A direct quantitative answer to 

this question would emerge by examining the result from DELTA local alignments 

for the frequency of identical sub-CLTs, should CLT or sub-CLT be available for 

those species. 

 Fifth, an ideal CLT comprise complete longitudinal and horizontal data.  

However, during experimental assessment of CLTs by single cell transcriptome 

profiling and lineage barcoding, cell lyses and losses are inevitable in the 

state-of-the-art method, which respectively dictate that CLT is longitudinally (because 

the cells are killed at the time of experimentation) and horizontally incomplete.   

DELTA may just provide a resolution to this problem by allowing assembly of 

temporally “sliced” incomplete CLTs, just as sequence alignment had allowed 

assembly of the genome out of short reads. 

 

Limitations and future improvements 

There are several potential caveats in our study that worth discussing.  

Apparently, DELTA result critically relies on the choice of its two parameters, the 

scoring matrix between cell types and the pruning cost.  Although we’ve carefully 

chosen biologically informed parameters (See Methods), there has been no objective 

estimation on how good or bad they are, which is likely impossible before more CLT 

data becomes available, much like the refinement of substitution matrix for sequence 

alignment when more sequence was determined43.  Also, the value of pruning cost 
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relative to the matching score also affects DELTA results.  On the one hand, lower 

pruning cost makes DELTA more sensitive, because pruning of small sub-CLTs 

improves alignment compared to terminal cell type mismatches.  On the other hand, 

higher pruning cost makes DELTA more specific, since terminal cell type mismatches 

are more likely retained than pruned.  Nevertheless, a poor choice of parameters 

likely reduces the biological signals.  The significance of all patterns we’ve shown in 

the paper would thus be stronger if the parameters were further optimized, further 

enhancing the value of DELTA. 

We have considered qualitative cell type or epigenetic states in our definition of 

CLT.  However, the dynamic programming scheme for comparison between CLTs is 

readily adaptable to quantitative definition of cell types made by high throughput 

experiments such as single cell transcriptomics.  In this case, instead of using the 

scoring matrix between qualitatively defined cell types, the alignment score between a 

pair of terminal cells will be calculated by the similarities between their transcriptome 

profiles, using quantitative metrics such as correlation coefficient or negated 

Euclidean distance. 

 In the current study, CLTs were used without considering the temporal duration 

of cell cycle for each cell.  Apparently, discarding the information of cell cycle 

duration did not prevent us from discovering the similarities in developmental 

program by analyzing CLTs.  There are two potential explanations for this 

observation.  On the one hand, the molecular pathway that regulates cell cycles 

might be tightly coupled to the developmental program, such that cell cycle duration 
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is an intrinsic property of the cell type.  In other words, most cell types have their 

own specific cell cycle duration, so that the definition of cell types already contains 

the information of cell cycle duration.  On the other hand, the definition of cell types 

might have nothing to do with the cell cycle duration, where DELTA needs to be 

further improved by allowing cell cycle duration adjustment as an additional CLT 

edition (besides sub-CLT pruning), with properly defined costs to DELTA score. 

 For both simulated CLTs and real CLTs from C. elegans, the developmental 

process is mostly autonomous, whereas in most complex organisms (except 

nematode), appears largely regulatory.  The critical difference between autonomous 

and regulatory development is whether the epigenetic states of individual cells can be 

altered by external cues, such as environmental stress or signals from other cells.  

For example, when isolated from the 8-cell stage mouse blastomere, one cell can 

grow into one individual mouse 44, but not one eighth of a mouse, as would be 

predicted by autonomous development.  However, autonomous cell fate 

determination is certainly not absent in complex organisms, especially towards the 

end of the developmental process.  Meiosis is one such example, where a primary 

oocyte divides twice (three division events) and creates one mature ovum and three 

polar bodies.  As along as such autonomous sub-CLTs exist, DELTA alignment 

would be possible and informative, as demonstrated by our simulated CLTs with 

perturbed genes expression (Fig. 2). 

 Finally, current single cell high throughput experiments suffer from loss of cells, 

thus the CLT reconstructed by lineage tracing DNA barcode is likely incomplete, with 
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majority of terminal cells missing.  The robustness to such data quality issues 

dictates the applicability of DELTA.  As shown in our DELTA analysis by simulated 

CLTs with randomly dropped terminal cells, although the alignment becomes smaller 

as more terminal cells are lost, those sub-CLT pairs aligned by DELTA remains 

highly similar in epigenetic state.  In other words, the loss of terminal cells decreases 

sensitivity of DELTA, whereas the specificity likely remains high (Fig. 2C-G).  If 

more CLT data were to become available, this limitation would also likely be 

alleviated, just as short sequence fragments with high enough coverage could be 

assembled into the full-length sequence. 

 Collectively, DELTA establishes a computational foundation for the alignment of 

CLTs and potentiates systematic analyses of lineage trees.  Together with the 

accumulating experimental data of CLTs, DELTA will likely illuminate the 

connection between phenotypes represented by CLTs and their underlying genotypes, 

providing novel insights to many unresolved biological questions. 

 

Methods 

The DELTA algorithm 

Given an alignment (not necessarily optimal) of two CLTs, two parameters are 

required to quantify how similar these two CLTs are.  First, for any pair of cell types 

comprising one cell type from each of the two CLTs being compared, a “matching 

score” is required to describe their similarity in developmental state.  All the 
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matching scores between the cell types from one CLT and the cell types from the 

other CLT can be summarized as a scoring matrix, in analogy to the substitution 

matrix (e.g., PAM, BLOSUM) used in sequence alignment, except that cell types 

from the two CLTs could be different.  Second, similar to gap penalty in sequence 

alignment, a pruning cost is used when some cells or sub-CLTs from one CLT is 

“pruned”, meaning no correspondence in the other CLT can be found for them.  In 

our implementation, the pruning cost is multiplied by the size (number of leaves) of 

the pruned sub-CLTs, and then simply subtracted from the alignment score when 

sub-CLT pruning is required.  With scoring matrix and pruning cost defined, the 

goodness of correspondence between terminal cell types and topology can be 

quantified as a score for the alignment between a pair of CLTs.  The task of DELTA 

is then to find the alignment with the maximal possible score (the “DELTA score”), 

allowing necessary mismatches of types in terminal cells and pruning of sub-CLTs. 

Finding the optimal alignment between CLTs is computationally intensive, 

because a CLT remains unchanged, or isomorphic, by swapping any pair of sister 

sub-CLTs.  Thus a query CLT with 1,000 internal nodes, approximately the size of 

the full C. elegans CLT, could be aligned to another subject CLT in 21,000 possible 

ways, not to mention the isomorphic transformation of the subject CLT, and pruning.  

In DELTA, this issue is resolved by the dynamic programming 24,25,45 (Fig. S1A), 

where the smallest sub-CLTs (those containing only one terminal cell) were aligned 

first, and larger sub-CLTs were aligned by the best combination of the alignments of 

its two daughter sub-CLTs, be it match, mismatch, or pruning.  The final alignment 
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is extracted from the dynamic programming matrix by backtracing the sub-alignments 

from the matrix cell with the top DELTA score.   

To gauge the statistical significance of an alignment, for each of the aligned 

CLTs, we generated 1,000 pseudo-CLTs by randomly coalescing the leaves of the real 

CLT and calculated the DELTA score between the 1,000 pairs of pseudo-CLTs. 

(Details given in Supplementary Text S1).  The distribution of DELTA score 

assessed by these randomized CLTs controls both the sizes of the CLT, as well as the 

composition of the terminal cells.  The DELTA scores of the 1,000 pairs of 

pseudo-CLTs were used to estimate a P value for the actual DELTA score by Z-test. 

We implemented DELTA algorithm in C++, whose source is available on github. 

Three files are required as input for DELTA algorithm, including two files with trees 

to be aligned, and a file defining the matching scores of different terminal cell types 

(Fig. S3). 

 

 

Simulated CLT 

We simulated CLTs using a previously published model 27.  Briefly, the expression 

profile of a cell at time t is represented by vector S(t), whose elements si(t) (-1 ≤ si(t) ≤ 

1) indicate the expression of genes i = 1,2,…,N (N > 2), and the epigenetic state of the 

gene is considered as “on” if si(t) > 0, or “off” otherwise.  A regulatory network 

composing of these N genes are constructed as a � �  � matrix R, whose elements 

rij indicate the regulatory effect of gene i on the expression of gene j (Fig. 2A).  We 
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defined that each gene regulates an average of K other genes, and thus random values 

following standard normal distribution was assigned to � �  � random elements in 

R, whose remaining elements were set to 0, indicating no regulation (Fig. S2A).  

Therefore, the expression profile of the cell at the next discrete time point S(t+1) can 

be calculate algebraically using S(t) and R as S�t � 1
 � f�R � S�t

, where 

f�x
 � ���
���

������
 is a sigmoid activation function that determines how the expression of 

each gene is influenced by the total regulatory input from the interaction network 46,47, 

and a is the activation constant that determines the transition shape of the sigmoid 

curve.  Among the N genes, two of them have special roles as cell cycle regulator 

and asymmetric division regulator, respectively.  For the cell cycle regulator (gene 1), 

the cell divides instantaneously into two daughter cells once s1(t) > 0, and s1(t) for 

both daughter cells are reset to -1.  For the asymmetric division regulator (gene 2), if 

the cell divides when s2(t) ≤ 0, both daughter cells retain the original expression of 

s2(t), otherwise, one of the daughter cells will be assigned s2(t) = -1, while the other 

daughter cell retains the original s2(t).  The developmental process is then simulated 

by initializing a single cell with a randomly generated S(0), with which S(1), S(2), and 

so on, is calculated.  Multiple rounds of cell division as dictated by the regulatory 

network will be recorded until t = tmax or the “depth” of any terminal cells reach dmax, 

where “depth” refers to the number of cell divisions a terminal cell undergoes since 

the zygote.  This procedure gives rise to a CLT, where the terminal cell types are 

defined by S(tmax) (Fig. 2A).  Note that tmax and dmax not necessarily indicate the end, 

but rather a “cross-section” of the full developmental process.   
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 We performed 1,000 tree simulations for each condition, and performed 

self-alignment using a scoring matrix defined by the number of genes with identical 

epigenetic on/off states between a pair of cell types, and a pruning cost of 1.25�.  

In the main text, we showed results from a = 100, N = 16, K = 2, tmax = 50 and dmax = 

6.  We tried various different settings (Fig. S2B) and found our observation of 

DELTA’s capability of associating CLT with epigenetic similarity to be robust in 

different settings.  For example, most of the aligned sub-CLTs have very small 

P-values (Fig. S2C), which means that this DELTA score is much higher than that 

between two random trees.  Also, the log10(P-value) is highly correlated with the 

match length (Fig. S2C) and alignment scores (Fig. S2D) of the subtrees, indicating 

that the more complex two subtrees are, the lower chance that the alignments can be 

generated by chance. 

 CLT of other species might not be fully autonomous and deterministic as C. 

elegans, and experimentally determined CLT might not capture all terminal cells.  

We modeled these issues as two types of perturbations in CLT simulation.  On the 

one hand, expression of each gene has a 5% probability to be negated at every time 

point in every cell.  On the other hand, 35% of terminal cells were randomly 

removed, and an apparent CLT was reconstructed following the topology of the real 

underlying CLT.  That is, any internal cells that lost all its descendant leaves were 

also removed, and those that loss one of its daughter cells were replaced by the 

remaining daughter. 
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Experimentally determined cell lineage trees 

The developmental cell lineage tree of wildtype Caenorphabditis elegans as 

determined by Sulston et al. 16, and that of Pellioditis marina as determined by 

Houthoofd et al. 18 were retrieved from previous publications 7,26.  Briefly, the 671 

terminal cells in C. elegans cell lineage (up to hermaphrodite embryogenesis) were 

categorized by standard anatomical descriptions 16 as: 39 blast, 113 death, 93 

epithelial (arcade, hypodermis, pharyngeal structural, rectum, valves), 2 germ, 13 

gland (coelomocytes, excretory system, and pharyngeal glands), 20 intestinal, 123 

muscle (including the head mesodermal cell), 46 neural structural cells, and 222 

neurons.  DELTA comparison between C.elegans CLTs with anatomically defined 

terminal cell types was carried out using a scoring matrix where the cell pairs of 

identical types are scored by 10 and other pairs by -2, and a pruning cost of 1.  For P. 

marina, the cell lineage with 638 terminal cells (up to muscle contraction) were 

classified as: 81 body muscle, 67 death, 2 germ, 131 hypodermis, 20 intestine, 195 

nervous system, 112 pharynx, and 30 other fate 18.  Bilaterally symmetric sub-CLTs 

in C. elegans were extracted from previous reports 16.  

For gene expression along the C. elegans lineage tree, we downloaded the EPIC 

(Expression Patterns in Caenorhabditis) data 29. Of genes with more than one 

biological replicates, only the one used as examples on the website was used.  For 

each individual gene, we further averaged its expression across the whole lifespan of 

each cell to generate its expression level for the individual cell.  Each cell was then 

represented by the expression of all 130 genes recorded in EPIC, and one Pearson’s 
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correlation coefficient was calculated by concatenating expressions from all aligned 

cells in one CLT, with that from the other CLT in the alignment.  Since different 

CLT alignments involve different number of aligned cells, before the Pearson’s 

correlation coefficients (R) were standardized by � �  ���� � 3
/1.06 (Fisher’s 

r-to-z transformation) before being compared (Fig. 4). 

 To evaluate the capability of DELTA in associating phenotypic changes in CLT 

to their underlying genetic changes, we downloaded the CLT of C. elegans where  

204 conserved genes were individually knocked down from the Digital Development 

database 3.  The downloaded data contain the epigenetic state (“ON” or “OFF”) of 

three tissue markers, namely cnd-1 ( a subset of neurons ), pha-4 (pharynx and gut), 

nhr-25( HYP).  Assuming cells with the same lineal name in different experiment are 

cells with the same identity, we further combined the experimental replicates for the 

same mutant CLT by a simple majority rule.  That is, the epigenetic state of this 

marker in a specific cell is considered “ON” if it is supported by the majority of the 

experimental replications of the specific mutant strain.  With the epigenetic states of 

the three markers, each terminal cell was categorized into one of eight (23) types.  To 

construct a scoring matrix as DELTA parameter, the matching score between two cell 

types were defined as 10� � �, where x and y are respectively the number of markers 

with same and opposite epigenetic states in the two cell types (Fig. 5A).  The 

pruning parameter was set to 1.  During DELTA comparison between two CLTs, it 

is possible that some terminal cells from one CLT become internal in the other CLT.  

To ensure their comparability, we removed any cell that is recorded in only one of the 
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two CLTs based on their lineal names, and used the remaining ancestral internal cells 

(mother of the removed cells) as terminal.  The list of homeotic transformation 

previously discovered was manually retrieved from the original report 5. 

  

  

Genomic and comparative genomic data 

 The expression level of C. elegans protein coding genes, and the number of 

synonymous (dS) and nonsynonymous (dN) substitutions between one-to-one 

orthologs in C. elegans and C. briggsae was obtained as previously described 30.  

The confidence score for experimentally determined protein-protein interaction and 

gene coexpression among C. elegans genes were extracted from the STRING 

database 35 v10.5. 

 

 

Optimizing scoring matrix between cell types from two CLTs 

To find the proper scoring matrix for alignment between CLTs of two species, such 

that correspondence between subjectively defined cell types can be inferred from 

DELTA, we employed an Expectation Maximization algorithm to optimize the 

scoring matrix between cell types from two CLTs.  The basic logic behind this 

algorithm is that a biologically meaningful scoring matrix should maximize 

∆� � � � �� , where w is the DELTA score from global alignment between the two 
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CLTs being compared using a specific scoring matrix, and ��  is the expected 

DELTA score when the same pair of CLTs is being compared using scoring matrix 

where cell types (labels of rows and columns) were randomly shuffled (Fig. 7A).  

For alignment between two CLTs with different cell types, say x and y respectively, 

there are x * y matching scores to be optimized.  We employed a greedy grid search 

strategy to reduce the computational time of this optimization (Fig. S4).  Briefly, the 

scoring matrix was initialized by assigning 0 to all elements, and then the scoring 

matrix was optimized by four rounds of grid search with increasing precision.  Each 

round of grid search is finished by progressively optimizing multiple groups of 4 

elements, with elements associated with more cells were optimized first (Fig. S4). 

The details of the optimization are as follows.  In the first round of grid search, 

for the first four element in the scoring matrix, we assigned -1 or 1 to each of the four 

elements, giving rise to 24 different scoring matrices, and calculate ∆� � � � ��  for 

each matrix, where ��  is the averaged DELTA score between the two CLTs by all the 

scoring matrices generated by permutating the cell types (column and row labels of 

the matrix) associated with the four elements being optimized (i.e., max number of 

permutation is 4! * 4! - 1= 575) (Fig. S4A).  The one out of 24 scoring matrices who 

has the largest ∆� was chosen.  The next four elements were then optimized 

similarly.  The whole scoring matrix was optimized by progressively optimizing 

groups of 4 elements until all elements were scanned once (Fig. S4B).  In the second 

round of optimization, those elements assigned as -1 and 1 were further optimized for 

a choice between -2 or -1, and 1 or 2, respectively, by a method similar to the first 
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round.  The third round then continues, resulting in a scoring matrix whose elements 

were one of (-4,-3,-2,-1,1,2,3,4), where -4 and -3 were from elements valued -2 in the 

previous round, -2 and -1 were from -1, and so on.  The final round of optimization 

will give rise to a scoring matrix whose elements were one of (-8,-7, 

-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8) (Fig. S4C).  The pruning cost was fixed at 10 times 

the maximal possible matching score during this process.  I.e. pruning cost is 10, 20, 

40 and 80 for round 1, 2, 3 and 4, respectively.  A high matching score between two 

cell types in this final scoring matrix indicates that the two cell types are closely 

related as suggested by the DELTA alignment between CLTs. 
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Figure Legends 

Fig. 1 Overview of DELTA algorithm.  

(A) A very simple typical developmental cell lineage tree (CLT) rooted at the zygote 

(“Z”).  Cells undergo further division were represented by internal nodes, and others 

terminal nodes.  Cell types of the terminal nodes were indicated by the color legend 

on the right, whereas the (epi-)genetic state of an internal cell, as inferred from the 

cell type of the two daughter cells, were also indicated by different node colors.  The 

depth, or the number of divisions since the zygote, of a cell is indicated by the vertical 

axis.  A subtree, or sub-CLT, is outlined by a dotted box.  (B) Two CLTs, Q and S, 

with types of their terminal cells were color-labeled.  DELTA aligns them globally 

(DELTA-g), where all cells in respective CLTs are either pruned or aligned, or locally 

(DELTA-l), where only pairs of sub-CLTs with good enough alignments were 

reported (See Fig. S1A for more details). (C) The DELTA alignment of the 

Caenorhabditis elegans CLT of standard anatomical terminal cell type annotation, 

with an isomorphic version of itself, where 30% randomly chosen sister sub-CLT 

pairs were swapped.  The resulting CLT alignments were visualized by our newly 

developed R package, “ggVITA” (See also Fig. S1C). 

 

Fig.2 Validating DELTA by simulated CLTs 

(A) An example of transcriptional regulatory network used to simulate CLT. There 

are eight genes each regulated by an average of four other genes. Red and blue lines 
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represent activations and repressions, respectively. Values in the matrix of regulatory 

interactions are detailed Fig. S2A. (B) An example of simulated cell lineage tree. 

Lowercase letters a to h represent eight terminal cell types based on the ON/OFF state 

of eight genes, which is shown as red (ON) or white (OFF) on the corresponding 

sector around the letter.  The development of the lineage tree stops when one of the 

terminal cells reaches 12 rounds of divisions or the 50th discrete time point of the 

simulation.  CLT were also simulated under other different parameter settings, as 

listed in Fig. S2B and explained in Methods.  (C) The score of the top 10 CLT 

alignments found by DELTA-l from self-comparison of simulated CLTs.  Besides 

the full simulated CLT (red dots), perturbations were added to mimic 

experimental/biological noises, such as loss of terminal cells (green dots), 

non-autonomous cell fate (purple dots), or both (blue dots).  Each dot shows the 

average score and its standard error assessed by 1,000 simulations with different 

regulatory network and initial expression state. (D-F) Similar to (C), except that the 

number of terminal cells of the aligned CLT (D), statistical significance of the 

alignment (E) and epigenetic distance between roots of aligned CLTs as measured by 

hamming distance of expression states (F) are plotted. (G) For the same set of top 10 

CLT alignments presented in (C) (x axis), the expression trajectory dissimilarity of 

every gene except gene 1 and 2 (y axis) were shown.  The expression states of a 

specific gene at the last time point of every cell were compared for every pair of 

matched cells from the two aligned CLTs.  The resulting hamming distance is 

normalized by the number of matched cell pairs, giving rise to the expression 
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trajectory dissimilarity, whose value was scaled as the color scale bar to the right.  

All expression trajectory dissimilarities were averaged values from DELTA-l results 

of 1,000 simulations.  The expression trajectory dissimilarities between the aligned 

cells are clearly much lower than null expectation of normalized hamming distance = 

0.5. 

 

Fig. 3 Bilaterally symmetric sub-CLTs yielded highly significant DELTA alignment 

(A) Bilaterally symmetric sub-CLTs in C. elegans CLT were highlighted by different 

colors, whereas the lineal names of their root were also marked below every 

sub-CLTs.  (B) The alignment score (dots, scaled by the left y axis) and statistical 

significance (gray boxes, scaled by the right y axis) found by DELTA-g alignment 

between the symmetric sub-CLTs were indicated by red dots.  As controls, 

sub-CLTs whose number of terminal cells differs from the symmetric sub-CLTs by no 

more than 10% were also compared to one of the symmetric sub-CLTs, and the 

resulting DELTA scores were indicated by the blue dots. 

 

Fig. 4 Expression similarities between aligned sub-CLTs in C. elegans 

Top 1,000 local alignments between sub-CLTs of C. elegans were found by DELTA-l, 

and those with nominal P < 0.05 were checked for expression similarities between 

aligned cells.  For each sub-CLT alignment, the expression level of 130 genes 

recorded by EPIC were compared for all aligned cells, giving rise to the expression 

similarity between the two aligned sub-CLTs in the form of a Pearson’s Correlation 
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Coefficient (point size).  The expression similarities were further processed by 

Fisher’s r-to-z transformation to ensure comparability between sub-CLT alignments 

with different number of cells, and then shown to be highly correlated with the 

DELTA score (A) and P value (B) of the sub-CLT alignment.   

 

Fig. 5 DELTA reveals homeotic cell fate transformation in C. elegans mutant 

(A) The scoring matrix used in DELTA analyses for cell types annotated in the 

Digital Development database.  (B-C) For the 131 homeotic cell fate transformation 

events found by Du et al. between CLTs with at least 5 terminal cells, the DELTA 

score (B) and P value (C) between the sub-CLTs in mutant strains and that in 

wildtype strain representing the adopted cell fate were shown.  (D) Detailed 

sub-CLT alignments visualized by our newly developed R package “ggvita”. The two 

alignments on left were previously marked by Du et al., and the two on right were 

newly found by DELTA. Terminal cell types are indicated by colors same as in (A). 

  

Fig.6 DELTA relates phenotypic changes in CLT to underlying genetic mechanisms 

(A-D) C. elegans single gene KO CLTs were categorized into high (dark color) or 

low (light color) DELTA score groups by different thresholds (x axis) according to 

their global alignments with wildtype CLT.  For dN/dS (A) and dN (B), but not dS 

(B) or expression level (D) of the deleted genes, their differences becomes more 

dramatic as the DELTA score becomes more separated for the high and low group.  

Error bar indicates standard deviation assessed by 1,000 bootstraps of the genes.  
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(E-F)  Enrichment with experimentally determined interactions (E) and coexpression 

(F) in pairs of genes with KO CLTs of high DELTA score, relative to those with low 

DELTA score was assessed by odds ratio from Mantel-Haenszel Test, where the 

thresholds for high and low DELTA score are indicated by x axis.  The 

experimentally determined interactions and coexpression relationship were extracted 

from the STRING database with different confidence thresholds, as indicated by the 

color scale.  Error bar indicates 95% confidence interval of the odds ratio given by 

Mantel-Haenszel Test. 

 

Fig. 7 DELTA comparison across species highlights evolutionary correspondence of 

cell fates 

(A) The optimization of scoring matrix between cell types of two species.  With the 

cell types from two species, we first defined a scoring matrix M, whose row and 

column labels (cell types) were randomly permutated to generate control matrices M1, 

M2, … Mi.  These 1+i matrices were individually used by DELTA to align the CLTs 

from two species, giving rise to 1+i corresponding DELTA scores w, w1, w2, … wi.  

The deviation of w from its random expectation �� �  �
�

∑ ��
�
� , i.e. ∆� � � � �� , is 

optimized by a greedy strategy. See Methods and Fig. S4 for more details.  (B) The 

optimal scoring matrix for comparison between C. elegans and P. marina.  (C) The 

alignment between C. elegans and P. marina found by DELTA using the scoring 

matrix shown in (B).  Note the small circled numbers on some internal branch 

indicate size of pruned sub-CLT.  (D) A sub-alignment from (C), note the Epiderm 
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“P1aabab” cell in P. marina is apoptotic in C. elegans. 
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