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Abstract

The number of Mendelian randomization analyses including large numbers of genetic variants is

rapidly increasing. This is due to the proliferation of genome-wide association studies, and the de-

sire to obtain more precise estimates of causal effects. Since it is unlikely that all genetic variants will

be valid instrumental variables, several robust methods have been proposed. We compare nine robust

methods for Mendelian randomization based on summary data that can be implemented using standard

statistical software. Methods were compared in three ways: by reviewing their theoretical properties,

in an extensive simulation study, and in an empirical example to investigate the effect of body mass in-

dex on coronary artery disease risk. In the simulation study, the overall best methods, judged by mean

squared error, were the contamination mixture method and the mode based estimation method. These

methods generally had well-controlled Type 1 error rates with up to 50% invalid instruments across

a range of scenarios. Outlier-robust methods such as MR-Lasso, MR-Robust, and MR-PRESSO, had

the narrowest confidence intervals in the empirical example. They performed well when most variants

were valid instruments with a few outliers, but less well with several invalid instruments. With iso-

lated exceptions, all methods performed badly when over 50% of the variants were invalid instruments.

Our recommendation for investigators is to perform a variety of robust methods that operate in differ-

ent ways and rely on different assumptions for valid inferences to assess the reliability of Mendelian

randomization analyses.

Keywords: Mendelian randomization, instrumental variables, causal inference, pleiotropy, robust es-

timation, summary statistics, genome-wide association study.
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Introduction

Mendelian randomization (MR) uses genetic variants as instrumental variables (IV) to determine

whether an observational association between a risk factor and an outcome is consistent with a causal

effect [1, 2]. This approach is less vulnerable to traditional problems of epidemiological studies such

as confounding and reverse causality. With the increasing availability of genome-wide association

studies that find robust associations between genetic variants and exposures of interest [3, 4], the po-

tential of this approach is rapidly evolving. A genetic variant is a valid IV if (i) it is associated with

the exposure, (ii) it has no direct effect on the outcome, and (iii) there are no associations between the

variant and any potential confounders.

There has been much discussion on the potentials and limitations of MR, as the IV assumptions

cannot be fully tested [1, 5, 6]. Violation of the IV assumptions can lead to invalid conclusions in

applied investigations. In practice, the exclusion restriction assumption that the proposed instruments

(genetic variants) should not have a direct effect on the outcome of interest is debatable, particularly if

the biological roles of the genetic variants are insufficiently understood [5, 7].

Some genetic variants are associated with multiple phenotypic variables [8, 9]. This is referred to

as pleiotropy. There are two types of pleiotropy. Vertical pleiotropy occurs when a variant is directly

associated with the exposure and another phenotype on the same biological pathway. This does not

lead to violation of the IV assumptions provided the only causal pathway from the genetic variant to

the outcome passes via the exposure. Horizontal pleiotropy occurs when the second phenotype is on a

different biological pathway, and so there may exist different causal pathways from the variant to the

outcome. This would violate the exclusion restriction assumption. To solve the problems that arise due

to horizontal pleiotropy, several robust methods for MR have been developed that can provide reliable

inferences when some genetic variants violate the IV assumptions, or when genetic variants violate the

IV assumptions in a particular way. To our knowledge, a comprehensive review and simulation study

to compare the statistical performance of these different methods has not been performed.

To focus our simulation study and compare the most relevant robust methods for applied practice,

we concentrate on methods that satisfy two criteria. First, the method requires only summary data

on estimates (beta-coefficients and standard errors) of genetic variant–exposure and genetic variant–

outcome associations. We exclude methods that require individual participant data [10–13], and those

that require data on additional variants not associated with the risk factor [14, 15]. This is because the

sharing of individual participant data is often impractical, so that many empirical researchers only have

access to summary data, and for fairness, to ensure that all methods are using the same information to

make inferences. Secondly, the method must be performed using standard statistical software pack-

ages. We exclude methods requiring specific computational tools that are unlikely to be accessible to

the majority of epidemiologists [16] or are computationally infeasible for large numbers of variants in

a reasonable running time [17].

In this article, we review nine robust methods for MR from a theoretical perspective, and evalu-

ate their performance in a simulation study set in a two-sample summary data setting. The methods

differ in how they estimate a causal effect of the exposure on the outcome, as well as in the assump-
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tions required for consistent estimation. We consider the weighted median, mode based estimation,

MR-PRESSO, MR-Robust, MR-Lasso, MR-Egger, contamination mixture, MR-Mix, and MR-RAPS

methods. Some methods take a summarized measure of the variant-specific causal estimates as the

overall causal effect estimate (weighted median, and mode based estimation), whereas others remove

or downweight outliers (MR-PRESSO, MR-Lasso, MR-Robust), or attempt to model the distribution

of the estimates from invalid IVs (MR-Egger, contamination mixture, MR-Mix, and MR-RAPS). We

also consider the performance of the methods in an empirical example to evaluate the causal effect of

body mass index on coronary artery disease risk.

This paper is organized as follows. First, we give an overview of the robust methods and compare

their theoretical properties. Then, we introduce the simulation framework and applied example to

compare their properties in practice. Finally, we discuss the implications of this work for applied

practice.

Methods

Modelling assumptions and summary data

We consider a model as previously described [18, 19] for J genetic variants G1, G2, . . . , GJ that are

independent in their distributions, a modifiable exposure X , an outcome variable Y , and a confounder

U . We assume that all relationships between variables are linear and homogeneous without effect mod-

ification, meaning that the same causal effect is estimated by any valid IV [20]. A visual representation

of the model is shown in Figure 1.

U

Gj X Yγj

αj

φj

θ

Fig. 1 Illustrative diagram showing the model assumed for genetic variant Gj , with effect φj on the
unobserved confounder U , effect γj on exposure X , and direct effect αj on outcome Y . The causal
effect of the exposure on the outcome is θ. Dotted lines represent possible ways the instrumental
variable assumptions could be violated.

We assume that summary data are available on genetic associations with the exposure (beta-

coefficient β̂Xj
and standard error σXj

) and with the outcome (beta-coefficient β̂Yj
and standard error

σYj ) for each variant Gj .
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Inverse-variance weighted method

The causal effect of the exposure on the outcome can be estimated using a single genetic variant Gj

by the ratio method:

θ̂Rj
=
β̂Yj

β̂Xj

. (1)

The ratio estimate θ̂Rj
is a consistent estimate of the causal effect if variantGj satisfies the IV assump-

tions [20]. If the uncertainty in the genetic association with the exposure is low, then the standard error

of the ratio estimate σRj can be approximated as [21]:

σRj =|
σYj

β̂Xj

| . (2)

The individual ratio estimates can be combined to obtain a single more efficient estimate. The

optimally-efficient combination of the ratio estimates is referred to as the inverse-variance weighted

(IVW) estimate [22]:

β̂IVW =

J∑
j=1

θ̂Rjσ
−2
Rj

J∑
j=1

σ−2
Rj

=

J∑
j=1

β̂Xj β̂Yjσ
−2
Yj

J∑
j=1

β̂2
Xj
σ−2
Yj

. (3)

The IVW estimate is equal to the estimate from the two-stage least squares method that is performed

using individual participant data [23]. It is a weighted mean of the ratio estimates, where the weights

are the inverse-variances of the ratio estimates. The IVW estimate can also be obtained by weighted

regression of the genetic associations with the outcome on the genetic associations with the exposure:

β̂Yj
= θ β̂Xj

+ εj , εj ∼ N (0, σ2
Yj
). (4)

However, the IVW method has a 0% breakdown point, meaning that if only one genetic variant is

not a valid IV, then the estimator is typically biased [24]. Bias will be present unless the pleiotropic

effects of genetic variants average to zero (balanced pleiotropy) and the pleiotropic effects are inde-

pendent of the genetic variant–exposure associations (see MR-Egger method below) [19]. With the

increasing number of variants used in MR investigations, it is increasingly unlikely that all variants

are valid IVs. Hence, it is crucial to consider robust estimation methods despite their lower statistical

efficiency (that is, lower power to detect a causal effect).

We proceed to introduce the different robust methods we consider in this study in three categories:

consensus methods, outlier-robust methods, and modelling methods.
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Consensus methods

A consensus method is one that takes its causal estimate as a summary measure of the distribution of

the ratio estimates. The most straightforward consensus method is the median method. Rather than

taking a weighted mean of the ratio estimates as in the IVW method, we take the median of the ratio

estimates. The median estimator is consistent (that is, unbiased in large samples) even if up to 50% of

the variants are invalid [24]. We consider a weighted version of the median method, where the median

is taken from a distribution of the ratio estimates in which genetic variants with more precise ratio

estimates receive more weight. Here, an unbiased estimate will be obtained if up to 50% of the weight

comes from variants that are valid IVs. We refer to this as the ‘majority valid’ assumption.

A related assumption is the ‘plurality valid’ assumption [11]. In large samples, while ratio esti-

mates for all valid IVs should equal the true causal effect, ratio estimates for invalid IVs will take

different values. The ‘plurality valid’ assumption is that, out of all the different values taken by ratio

estimates in large samples (we term these the ratio estimands), the true causal effect is the value taken

for the largest number of genetic variants (that is, the modal ratio estimand). For example, the plurality

assumption would be satisfied if only 40% of the genetic variants are valid instruments, provided that

out of the remaining 60% invalid instruments, no larger group with the same ratio estimand exists.

This assumption is also referred to as the Zero Modal Pleiotropy Assumption (ZEMPA) [25].

This assumption is exploited by the mode based estimation (MBE) method [25]. As no two ratio

estimates will be identical in finite samples, it is not possible to take the mode of the ratio estimates

directly. In the MBE method, a normal density is drawn for each genetic variant centered at its ratio es-

timate. The spread of this density depends on a bandwidth parameter, and (for the weighted version of

the MBE method) the precision of the ratio estimate. A smoothed density function is then constructed

by summing these normal densities. The maximum of this distribution is the causal estimate.

As these consensus methods take the median or mode of the ratio estimate distribution as the causal

estimate, they are naturally robust to outliers, as the median and mode of a distribution are unaffected

by the magnitude of extreme values. However, they are still influenced by outliers, as these variants

still contribute to determining the location of the median or mode of a distribution. These methods can

also be sensitive to changes in the ratio estimates for variants that contribute to the median or mode,

and to the addition and removal of variants from the analysis. Additionally, the methods may not be as

efficient as those that base their estimates on all the genetic variants.

Outlier-robust methods

Next, we present three outlier-robust methods. These methods either downweight or remove genetic

variants from the analysis that have outlying ratio estimates. They provide consistent estimates under

the same assumptions as the IVW method for the set of genetic variants that are not identified as

outliers.

In the MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) method [26], the IVW method

is implemented by regression using all the genetic variants, and the residual sum of squares (RSS) is

calculated from the regression equation. The RSS is a heterogeneity measure for the ratio estimates.
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Then, the IVW method is performed omitting each genetic variant from the analysis in turn. If the RSS

decreases substantially compared to a simulated expected distribution, then that variant is removed

from the analysis. This procedure is repeated until no further variants are removed from the analysis.

The causal estimate is then obtained by the IVW method using the remaining genetic variants.

In MR-Robust, the IVW method is performed by regression, except that instead of using ordinary

least squares regression, MM-estimation is used combined with Tukey’s biweight loss function [27].

MM-estimation provides robustness against influential points and Tukey’s loss function provides ro-

bustness against outliers. Tukey’s loss function is a truncated quadratic function, meaning that there

is a limit in the degree to which an outlier contributes to the analysis [28]. This contrasts with the

quadratic loss function used in ordinary least squares regression, which is unbounded, meaning that a

single outlier can have an unlimited effect on the IVW estimate.

In MR-Lasso, the IVW regression model is augmented by adding an intercept term for each genetic

variant [27]. The IVW estimate is the value of θ that minimizes:

J∑
j=1

σ−2
Yj

(
β̂Yj
− θ β̂Xj

)2
. (5)

In MR-Lasso, we minimize:

J∑
j=1

σ−2
Yj

(
β̂Yj
− θ0j − θ β̂Xj

)2
+ λ

J∑
j=1

| θ0j |, (6)

where λ is a tuning parameter. As the regression equation contains more parameters than there are

genetic variants, a lasso penalty term is added for identification [29]. The intercept term θ0j represents

the direct (pleiotropic) effect on the outcome, and should be zero for a valid IV, but will be non-zero for

an invalid IV. The causal estimate is then obtained by the IVW method using the genetic variants that

had θ0j = 0 in equation (6). A heterogeneity criterion is used to determine the value of λ. Increasing λ

means that more of the pleiotropy parameters equal zero and so the corresponding variants are included

in the analysis; we increase λ step-by-step until one step before there is more heterogeneity in the ratio

estimates for variants included in the analysis than expected by chance alone.

The MR-PRESSO and MR-Lasso methods remove variants from the analysis, whereas MR-Robust

downweights variants. These methods will be valuable when there is a small number of genetic vari-

ants with heterogeneous ratio estimates, as they will be removed from the analysis or heavily down-

weighted, and so will not influence the overall estimate. In such a case, these methods are likely to

be efficient, as they are based on the IVW method. The methods are less likely to be valuable when

there is a larger number of genetic variants that are pleiotropic, particularly if the pleiotropic effects

are small in magnitude, and when the average pleiotropic effect of non-outliers is not zero.

Modelling methods

Finally, we present four methods that attempt to model the distribution of estimates from invalid IVs

or make a specific assumption about the way in which the IV assumptions are violated. The MR-
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Egger method is performed similarly to the IVW method, except that the regression model contains an

intercept term θ0:

β̂Yj
= θ0 + θ β̂Xj

+ εj , εj ∼ N (0, σ2
Yj
). (7)

This differs from the MR-Lasso method, as there is only one intercept term, which represents the aver-

age pleiotropic effect. The MR-Egger method gives consistent estimates of the causal effect under the

Instrument Strength Independent of Direct Effect (InSIDE) assumption, which states that pleiotropic

effects of genetic variants must be uncorrelated with genetic variant–exposure association. As the re-

gression model is no longer symmetric to changes in the signs of the genetic association estimates

(which result from switching the reference and effect alleles), we first re-orientate the genetic asso-

ciations before performing the regression by fixing all genetic associations with the exposure to be

positive, and correspondingly changing the signs of the genetic associations with the outcome if nec-

essary. The intercept in MR-Egger also provides a test of the IV assumptions. The intercept will differ

from zero when either the average pleiotropic effect is not zero, or the InSIDE assumption is violated.

These are precisely the conditions required for the IVW estimate to be unbiased.

The contamination mixture method assumes that only some of the genetic variants are valid IVs

[30]. We construct a likelihood function from the ratio estimates. If a variant is a valid instrument,

then its ratio estimate is assumed to be normally distributed about the true causal effect θ with variance

σ2
Rj

. If a variant is not a valid instrument, then its ratio estimate is assumed to be normally distributed

about zero with variance ψ2 + σ2
Rj

, where ψ2 represents the variance of the estimands from invalid

IVs. This parameter is specified by the analyst. We then maximize the likelihood over different values

of the causal effect θ and different configurations of valid and invalid IVs. Maximization is performed

in linear time by first constructing a profile likelihood as a function of θ, and then maximizing this

function with respect to θ. The value of θ that maximizes the profile likelihood is the causal estimate.

The MR-Mix method [31] is similar to the contamination mixture method, except that rather than

dividing the genetic variants into valid and invalid IVs, the method divides variants into four cate-

gories: 1) variants that directly influence the exposure only (valid instruments), and 2) variants that

influence the exposure and outcome, 3) that influence the outcome only, and 4) that neither influence

the exposure or outcome (invalid instruments). This allows for more flexibility in modelling genetic

variants, although potentially leads to more uncertainty in assigning genetic variants to categories.

The MR-Robust Adjusted Profile Score (RAPS) [32] method models the pleiotropic effects of

genetic variants directly using a random-effects distribution. The pleiotropic effects are assumed to

be normally distributed about zero with unknown variance. Estimates are obtained using a profile

likelihood function for the causal effect and the variance of the pleiotropic effect distribution. To

provide further robustness to outliers, either Tukey’s biweight loss function or Huber’s loss function

[28] can be used.

Modelling methods are likely to be valuable when the modelling assumptions are correct, but

not when the assumptions are incorrect. For example, the MR-Egger method requires the InSIDE

assumption to be satisfied to give a consistent estimate. The MR-RAPS method is likely to perform
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well when pleiotropic effects truly are normally distributed about zero, but less well when they are not.

The MR-Mix method is likely to require large numbers of genetic variants in order to correct classify

variants into the different categories. The contamination mixture method is less likely to be affected

by modelling assumptions as it does not make such strict assumptions, but it is likely to be sensitive to

specification of the variance parameter.

Simulation study

To compare the performance of these methods in a realistic setting, we perform a simulation study.

Full details of the simulation study are given in the Supplementary Material. In brief, we consider

three scenarios:

1. balanced pleiotropy, InSIDE satisfied – invalid IVs have direct effects on the outcome generated

from a normal distribution centered at zero;

2. directional pleiotropy, InSIDE satisfied – invalid IVs have direct effects on the outcome gener-

ated from a normal distribution centered away from zero;

3. directional pleiotropy, InSIDE violated – invalid IVs have direct effects on the outcome gener-

ated from a normal distribution centered away from zero, and indirect effects on the outcome via

the confounder.

We simulated data on J = 10, 30, and 100 genetic variants. A portion of the genetic variants were

invalid IVs (30%, 50% and 70%), and the direct effects of the variants explain 10% of the variance

in the exposure. Summary genetic associations were calculated for the exposure and the outcome

on non-overlapping sets of individuals, each consisting of 10 000 individuals [33]. This situation is

often referred to as two-sample summary data MR [34]. We considered situations with a null causal

effect (θ = 0) and a positive causal effect (θ = 0.2). In total, 10 000 datasets were generated in

each scenario. We additionally considered scenarios with 500 genetic variants and a wider range of

proportions of invalid IVs (additionally 1%, 5%, and 10% invalid).

Empirical example: the effect of body mass index on coronary artery disease

risk

We also compare the methods in an empirical example considering the effect of body mass index (BMI)

on coronary artery disease (CAD) risk. Since BMI is influenced by several biological mechanisms [35],

it is likely that the exclusion restriction is not satisfied for all associated genetic variants. Hence it is

necessary to use robust methods to analyse these data. Additionally, we consider methods that detect

outliers (MR-Presso, MR-Robust, MR-Lasso, contamination mixture, MR-Mix, and MR-RAPS), and

compare whether the same outliers are detected in each of these methods.

We take 97 genome-wide significant variants associated with BMI from the GIANT consortium

[36]. Associations with BMI are estimated in up to 339,224 participants from this consortium. Associ-

ations with coronary artery disease risk are estimated in up to 60,801 CAD cases and 123,504 controls



A Comparison Of Robust Mendelian Randomization Methods Using Summary
Data 9

from the CARDIoGRAMplusC4D Consortium [37]. Association estimates for CAD were available

for 94 of these variants.

The scatter plot of the genetic associations with BMI and CAD risk is shown in Figure 2. While

most variants seem to suggest a harmful effect of increased BMI on CAD risk, there is substantial

heterogeneity in the plot. This suggests that some of the variants violate the IV assumptions.

Fig. 2 Scatter plot of genetic associations with BMI (standard deviation units) and coronary artery
disease risk (log odds ratios) for 94 variants taken from the GIANT and CARDIoGRAMplusC4D
consortia respectively.

Results

Simulation study

Results of the simulation study are presented in Table 1 (10 variants), Table 2 (30 variants), and Table

3 (100 variants). For each scenario, we present the mean, median, and standard deviation of estimates

across simulations, and the empirical power of the 95% confidence interval. With a null causal effect,

the empirical power is the Type 1 error rate, and should be close to 0.05. The mean squared error

across simulations for the different methods with a null causal effect is presented in Figure 3 (Scenario

2), and Figure 4 (Scenario 3) for 30 variants. The corresponding plots for 10 variants (Supplementary

Figures 5 and 6) and 100 variants (Supplementary Figures 7 and 8) were broadly similar, as were

results with 500 variants (Supplementary Tables 6 and 7).

Overall, judging by mean squared error, the contamination mixture and MBE methods performed

best. The contamination mixture method performed slightly better with 30% and 50% invalid variants,

and the MBE method performed better with 70% invalid variants. However, with some isolated ex-

ceptions, all the methods performed badly with 70% invalid instruments. Between these two methods,
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MBE tended to be more conservative, whereas the contamination mixture method had slightly lower

standard deviation of estimates and increased power to detect a causal effect. Neither method con-

sistently dominated the other in terms of Type 1 error rate. Several other methods performed well in

particular scenarios.

Amongst consensus methods, estimates from the MBE method were less biased than those from

the weighted median method, with lower Type 1 errors. The weighted median method had slightly

higher power to detect a causal effect, although comparisons of power lose much of their value when

a method has inflated Type 1 error rates. Amongst outlier-robust methods, estimates were similar

amongst the methods, with the MR-Lasso method generally having the lowest bias, but MR-Robust

having the lowest Type 1 error rates. None of the methods dominated in terms of power to detect a

causal effect.

The modelling methods performed well in some scenarios, but less well in others. This is unsur-

prising, as in some scenarios, consistency assumptions for the methods were satisfied, and in others

they were not. The MR-Egger method performed well in terms of Type 1 error rate in Scenarios 1 and

2, where the InSIDE assumption was satisfied. Estimates from the method were generally imprecise

with low power. However, power in the MR-Egger method depends on the genetic associations with

the exposure varying substantially between variants, which was not the case in the simulation study

[38]. The contamination mixture method performed well with 30% and 50% valid instruments, with

low bias and Type 1 error rates at or below 10% with 10 variants, 12% with 30 variants, and 20%

with 100 variants. The MR-Mix method performed badly throughout, with highly inflated Type 1 er-

ror rates in almost all scenarios and comparatively low power to detect a causal effect. It performed

slightly better with more genetic variants, although its performance was still worse than other methods.

The MR-RAPS method performed well in Scenario 1, where its consistency assumption was satisfied,

but less well in other scenarios with highly inflated Type 1 error rates.

30% invalid 50% invalid 70% invalid
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Fig. 3 Mean squared errors for the different methods in scenario 2 (directional pleiotropy, InSIDE
satisfied) with a null causal effect for 30 variants. Note the vertical axis is on a logarithmic scale.
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Table 1 Mean, median, standard deviation (SD) of estimates, and empirical power with 10 genetic
variants.

30% invalid 50% invalid 70% invalid
Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Null causal effect: θ = 0
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.000 0.000 0.050 0.079 0.000 0.001 0.079 0.167 0.001 0.001 0.132 0.317
Mode Based Estimation 0.000 0.001 0.048 0.039 0.001 0.001 0.069 0.098 0.001 -0.001 0.119 0.271

MR-PRESSO 0.000 0.000 0.054 0.094 0.000 0.000 0.093 0.120 0.003 0.002 0.137 0.157
MR-Robust -0.001 0.000 0.048 0.067 0.000 0.001 0.099 0.061 0.001 0.001 0.150 0.082
MR-Lasso -0.001 -0.001 0.055 0.035 0.000 0.001 0.076 0.068 0.000 0.000 0.128 0.126
MR-Egger -0.007 0.002 0.553 0.087 0.002 0.000 0.708 0.093 -0.015 -0.013 0.823 0.084

Contamination Mixture 0.000 0.000 0.042 0.061 0.000 0.001 0.069 0.088 0.002 0.001 0.214 0.152
MR-Mix -0.002 -0.006 0.377 0.604 -0.003 -0.002 0.401 0.588 0.009 0.010 0.432 0.578

MR-RAPS -0.001 -0.002 0.077 0.034 0.000 -0.001 0.120 0.054 0.002 0.002 0.156 0.076
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.078 0.065 0.073 0.317 0.245 0.232 0.143 0.837 0.382 0.381 0.135 0.983
Mode Based Estimation 0.019 0.008 0.073 0.068 0.119 0.062 0.157 0.325 0.285 0.267 0.187 0.765

MR-PRESSO 0.086 0.074 0.071 0.232 0.253 0.244 0.126 0.539 0.386 0.384 0.120 0.841
MR-Robust 0.053 0.044 0.063 0.071 0.252 0.257 0.108 0.516 0.377 0.377 0.097 0.919
MR-Lasso 0.056 0.052 0.056 0.142 0.180 0.153 0.130 0.607 0.365 0.356 0.159 0.947
MR-Egger 0.000 -0.032 0.441 0.085 -0.007 -0.029 0.507 0.081 -0.005 -0.014 0.536 0.086

Contamination Mixture 0.006 0.005 0.043 0.055 0.053 0.016 0.150 0.101 0.361 0.378 0.282 0.452
MR-Mix 0.360 0.346 0.169 0.808 0.423 0.405 0.161 0.842 0.484 0.466 0.164 0.832

MR-RAPS 0.154 0.148 0.071 0.333 0.277 0.274 0.087 0.844 0.379 0.377 0.092 0.981
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.037 0.034 0.049 0.138 0.104 0.087 0.092 0.455 0.225 0.213 0.134 0.813
Mode Based Estimation 0.009 0.005 0.051 0.046 0.042 0.028 0.081 0.141 0.136 0.101 0.140 0.455

MR-PRESSO 0.043 0.038 0.051 0.132 0.134 0.120 0.095 0.337 0.257 0.248 0.125 0.670
MR-Robust 0.040 0.036 0.051 0.070 0.148 0.145 0.089 0.244 0.259 0.257 0.101 0.654
MR-Lasso 0.037 0.035 0.048 0.097 0.090 0.079 0.080 0.315 0.221 0.196 0.146 0.719
MR-Egger 0.454 0.406 0.475 0.249 0.531 0.505 0.516 0.262 0.490 0.475 0.517 0.229

Contamination Mixture 0.007 0.006 0.043 0.064 0.031 0.015 0.096 0.104 0.206 0.107 0.249 0.319
MR-Mix 0.321 0.303 0.195 0.719 0.370 0.353 0.182 0.747 0.427 0.408 0.189 0.756

MR-RAPS 0.087 0.083 0.058 0.115 0.175 0.171 0.078 0.429 0.265 0.261 0.095 0.758

Positive causal effect: θ = +0.2
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.198 0.198 0.057 0.962 0.198 0.198 0.084 0.898 0.195 0.195 0.133 0.799
Mode Based Estimation 0.193 0.194 0.058 0.906 0.189 0.192 0.080 0.840 0.174 0.181 0.129 0.706

MR-PRESSO 0.199 0.199 0.058 0.947 0.198 0.198 0.092 0.829 0.194 0.194 0.137 0.633
MR-Robust 0.199 0.199 0.055 0.840 0.199 0.199 0.102 0.520 0.196 0.196 0.150 0.329
MR-Lasso 0.199 0.199 0.061 0.920 0.200 0.200 0.082 0.849 0.197 0.196 0.134 0.704
MR-Egger 0.174 0.172 0.559 0.120 0.172 0.178 0.709 0.101 0.165 0.167 0.826 0.094

Contamination Mixture 0.200 0.199 0.050 0.965 0.202 0.200 0.083 0.882 0.219 0.202 0.233 0.669
MR-Mix 0.278 0.268 0.368 0.579 0.304 0.296 0.373 0.578 0.321 0.320 0.401 0.601

MR-RAPS 0.201 0.200 0.079 0.692 0.200 0.200 0.119 0.461 0.197 0.197 0.157 0.315
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.282 0.270 0.079 1.000 0.444 0.433 0.141 1.000 0.579 0.578 0.134 1.000
Mode Based Estimation 0.213 0.203 0.073 0.930 0.305 0.257 0.150 0.924 0.471 0.448 0.187 0.969

MR-PRESSO 0.283 0.275 0.072 0.981 0.442 0.434 0.119 0.917 0.578 0.575 0.122 0.968
MR-Robust 0.265 0.258 0.072 0.730 0.452 0.458 0.105 0.846 0.576 0.575 0.097 0.987
MR-Lasso 0.259 0.255 0.063 0.998 0.384 0.362 0.127 0.999 0.559 0.548 0.155 1.000
MR-Egger 0.167 0.144 0.442 0.122 0.168 0.141 0.521 0.110 0.171 0.160 0.538 0.109

Contamination Mixture 0.208 0.205 0.054 0.979 0.289 0.229 0.189 0.947 0.597 0.614 0.274 0.960
MR-Mix 0.584 0.566 0.178 0.874 0.645 0.628 0.163 0.881 0.699 0.681 0.161 0.855

MR-RAPS 0.356 0.351 0.074 1.000 0.477 0.475 0.086 1.000 0.579 0.577 0.094 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.240 0.237 0.056 0.998 0.308 0.292 0.096 0.999 0.424 0.412 0.133 0.999
Mode Based Estimation 0.205 0.201 0.057 0.941 0.238 0.225 0.083 0.943 0.322 0.292 0.138 0.946

MR-PRESSO 0.243 0.239 0.054 0.997 0.330 0.319 0.094 0.969 0.448 0.437 0.123 0.966
MR-Robust 0.247 0.243 0.057 0.873 0.352 0.350 0.091 0.844 0.459 0.456 0.101 0.961
MR-Lasso 0.241 0.238 0.054 0.997 0.299 0.288 0.086 0.997 0.422 0.400 0.141 0.997
MR-Egger 0.633 0.582 0.496 0.350 0.708 0.682 0.511 0.375 0.675 0.658 0.528 0.335

Contamination Mixture 0.209 0.207 0.051 0.981 0.248 0.223 0.125 0.955 0.430 0.344 0.253 0.941
MR-Mix 0.547 0.526 0.210 0.828 0.604 0.583 0.189 0.833 0.653 0.637 0.184 0.816

MR-RAPS 0.288 0.284 0.060 0.996 0.377 0.374 0.081 0.997 0.466 0.461 0.095 0.998
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Table 2 Mean, median, standard deviation (SD) of estimates, and empirical power with 30 genetic
variants.

30% invalid 50% invalid 70% invalid
Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Null causal effect: θ = 0
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.000 0.000 0.032 0.058 0.000 0.000 0.044 0.112 0.000 0.000 0.068 0.208
Mode Based Estimation 0.000 0.000 0.035 0.014 0.000 0.001 0.038 0.033 0.000 0.000 0.058 0.111

MR-PRESSO 0.000 0.000 0.029 0.090 0.001 0.001 0.046 0.152 0.000 0.000 0.072 0.233
MR-Robust 0.000 0.000 0.030 0.047 0.001 0.001 0.059 0.034 -0.001 -0.002 0.098 0.052
MR-Lasso 0.000 0.000 0.029 0.045 0.000 0.001 0.041 0.072 0.000 0.000 0.067 0.123
MR-Egger 0.004 0.004 0.451 0.067 0.005 0.010 0.563 0.060 0.008 0.011 0.673 0.063

Contamination Mixture 0.000 0.000 0.028 0.067 0.000 0.001 0.038 0.094 0.000 0.000 0.071 0.153
MR-Mix -0.004 -0.002 0.206 0.202 0.002 0.000 0.307 0.235 0.002 0.000 0.411 0.302

MR-RAPS 0.000 0.000 0.047 0.018 0.001 0.000 0.077 0.041 -0.001 -0.001 0.104 0.052
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.085 0.082 0.042 0.653 0.293 0.289 0.106 0.994 0.452 0.452 0.089 1.000
Mode Based Estimation 0.006 0.005 0.034 0.019 0.053 0.037 0.082 0.120 0.302 0.285 0.189 0.742

MR-PRESSO 0.093 0.090 0.044 0.749 0.278 0.273 0.077 0.999 0.438 0.437 0.078 1.000
MR-Robust 0.049 0.045 0.041 0.044 0.289 0.294 0.075 0.691 0.433 0.433 0.059 0.999
MR-Lasso 0.037 0.036 0.030 0.292 0.183 0.171 0.084 0.963 0.419 0.417 0.106 1.000
MR-Egger 0.000 -0.021 0.343 0.058 0.000 -0.013 0.405 0.062 0.004 -0.010 0.432 0.065

Contamination Mixture 0.005 0.005 0.028 0.070 0.017 0.013 0.051 0.106 0.373 0.432 0.290 0.592
MR-Mix 0.254 0.236 0.192 0.455 0.384 0.367 0.208 0.548 0.513 0.511 0.190 0.634

MR-RAPS 0.175 0.174 0.047 0.950 0.321 0.320 0.056 1.000 0.435 0.434 0.058 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.042 0.041 0.031 0.243 0.106 0.101 0.055 0.726 0.256 0.250 0.096 0.980
Mode Based Estimation 0.004 0.003 0.034 0.014 0.021 0.018 0.039 0.048 0.089 0.072 0.088 0.331

MR-PRESSO 0.045 0.044 0.032 0.335 0.140 0.136 0.056 0.893 0.281 0.277 0.082 0.997
MR-Robust 0.039 0.038 0.033 0.071 0.163 0.163 0.063 0.409 0.301 0.301 0.065 0.968
MR-Lasso 0.025 0.024 0.028 0.178 0.082 0.078 0.048 0.658 0.238 0.228 0.100 0.980
MR-Egger 0.838 0.817 0.375 0.754 0.919 0.904 0.365 0.789 0.845 0.830 0.359 0.719

Contamination Mixture 0.006 0.006 0.028 0.072 0.017 0.015 0.040 0.123 0.139 0.061 0.203 0.344
MR-Mix 0.205 0.184 0.166 0.360 0.299 0.283 0.178 0.436 0.409 0.395 0.191 0.516

MR-RAPS 0.097 0.096 0.037 0.499 0.202 0.201 0.052 0.963 0.307 0.306 0.061 0.999

Positive causal effect: θ = +0.2
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.196 0.195 0.036 1.000 0.195 0.194 0.048 0.991 0.197 0.196 0.073 0.942
Mode Based Estimation 0.189 0.189 0.041 0.976 0.187 0.187 0.044 0.964 0.180 0.181 0.067 0.853

MR-PRESSO 0.198 0.197 0.033 1.000 0.197 0.197 0.049 0.989 0.199 0.197 0.075 0.929
MR-Robust 0.198 0.197 0.035 0.995 0.197 0.197 0.061 0.824 0.199 0.198 0.098 0.518
MR-Lasso 0.198 0.198 0.033 1.000 0.197 0.197 0.045 0.996 0.199 0.199 0.073 0.939
MR-Egger 0.113 0.120 0.453 0.076 0.118 0.123 0.566 0.073 0.116 0.121 0.666 0.064

Contamination Mixture 0.199 0.199 0.033 1.000 0.199 0.198 0.043 0.993 0.206 0.201 0.084 0.933
MR-Mix 0.255 0.225 0.213 0.378 0.276 0.232 0.283 0.367 0.323 0.254 0.385 0.386

MR-RAPS 0.200 0.200 0.049 0.942 0.200 0.200 0.077 0.708 0.201 0.200 0.103 0.502
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.293 0.290 0.048 1.000 0.493 0.488 0.104 1.000 0.646 0.647 0.091 1.000
Mode Based Estimation 0.198 0.196 0.040 0.987 0.246 0.232 0.081 0.940 0.472 0.434 0.188 0.938

MR-PRESSO 0.294 0.292 0.045 1.000 0.465 0.461 0.072 1.000 0.624 0.622 0.080 1.000
MR-Robust 0.265 0.262 0.049 0.941 0.495 0.500 0.073 0.958 0.632 0.632 0.061 1.000
MR-Lasso 0.243 0.242 0.036 1.000 0.396 0.386 0.084 1.000 0.614 0.610 0.104 1.000
MR-Egger 0.110 0.096 0.352 0.081 0.110 0.100 0.401 0.076 0.111 0.103 0.429 0.077

Contamination Mixture 0.206 0.204 0.034 1.000 0.233 0.218 0.093 0.999 0.648 0.707 0.270 0.999
MR-Mix 0.504 0.490 0.171 0.647 0.614 0.601 0.173 0.672 0.718 0.708 0.166 0.708

MR-RAPS 0.378 0.377 0.048 1.000 0.522 0.522 0.057 1.000 0.636 0.636 0.060 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.242 0.241 0.036 1.000 0.312 0.307 0.058 1.000 0.453 0.448 0.095 1.000
Mode Based Estimation 0.195 0.193 0.039 0.994 0.213 0.211 0.043 0.995 0.277 0.263 0.086 0.966

MR-PRESSO 0.247 0.246 0.035 1.000 0.341 0.339 0.056 1.000 0.473 0.469 0.079 1.000
MR-Robust 0.246 0.245 0.038 0.997 0.370 0.370 0.062 0.982 0.500 0.500 0.066 0.999
MR-Lasso 0.228 0.227 0.032 1.000 0.294 0.290 0.054 1.000 0.441 0.433 0.095 1.000
MR-Egger 0.987 0.964 0.375 0.859 1.081 1.063 0.368 0.890 0.993 0.975 0.354 0.832

Contamination Mixture 0.207 0.206 0.034 1.000 0.225 0.221 0.054 0.999 0.399 0.302 0.233 0.997
MR-Mix 0.455 0.434 0.169 0.592 0.549 0.535 0.168 0.602 0.637 0.623 0.171 0.637

MR-RAPS 0.298 0.297 0.039 1.000 0.403 0.402 0.053 1.000 0.508 0.507 0.063 1.000
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Table 3 Mean, median, standard deviation (SD) of estimates, and empirical power with 100 genetic
variants.

30% invalid 50% invalid 70% invalid
Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Null causal effect: θ = 0
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.000 0.000 0.019 0.057 0.000 0.000 0.026 0.098 0.000 0.000 0.038 0.176
Mode Based Estimation 0.000 0.000 0.026 0.005 0.000 0.000 0.026 0.010 0.000 0.000 0.033 0.036

MR-PRESSO 0.000 0.000 0.017 0.092 0.000 0.000 0.027 0.151 0.000 0.000 0.041 0.229
MR-Robust 0.000 0.000 0.017 0.044 0.000 0.000 0.033 0.035 0.000 0.000 0.055 0.044
MR-Lasso 0.000 0.000 0.016 0.047 0.000 0.000 0.022 0.080 0.000 0.000 0.034 0.130
MR-Egger 0.000 0.000 0.257 0.054 0.000 0.003 0.327 0.055 -0.002 -0.001 0.385 0.055

Contamination Mixture 0.000 0.000 0.017 0.070 0.000 0.000 0.023 0.100 0.000 0.001 0.037 0.164
MR-Mix 0.000 0.000 0.062 0.042 0.000 0.000 0.068 0.035 0.000 0.000 0.085 0.037

MR-RAPS 0.000 0.000 0.027 0.018 0.000 0.000 0.044 0.035 0.000 0.000 0.059 0.046
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.092 0.091 0.024 0.990 0.306 0.305 0.063 1.000 0.471 0.471 0.050 1.000
Mode Based Estimation 0.005 0.004 0.024 0.008 0.028 0.027 0.026 0.043 0.246 0.178 0.177 0.590

MR-PRESSO 0.095 0.094 0.024 0.995 0.269 0.268 0.040 1.000 0.437 0.436 0.044 1.000
MR-Robust 0.053 0.052 0.024 0.178 0.307 0.308 0.041 0.990 0.450 0.450 0.034 1.000
MR-Lasso 0.042 0.041 0.019 0.767 0.206 0.201 0.051 1.000 0.446 0.447 0.056 1.000
MR-Egger -0.002 -0.002 0.195 0.049 -0.003 -0.005 0.228 0.052 0.002 0.003 0.244 0.054

Contamination Mixture 0.006 0.006 0.017 0.087 0.017 0.016 0.025 0.179 0.391 0.492 0.277 0.793
MR-Mix 0.083 0.030 0.163 0.134 0.235 0.098 0.272 0.273 0.468 0.532 0.282 0.452

MR-RAPS 0.183 0.182 0.027 1.000 0.335 0.335 0.032 1.000 0.454 0.453 0.034 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.044 0.044 0.018 0.651 0.109 0.108 0.029 0.993 0.265 0.264 0.056 1.000
Mode Based Estimation 0.003 0.003 0.024 0.006 0.014 0.013 0.023 0.022 0.056 0.053 0.037 0.242

MR-PRESSO 0.048 0.048 0.018 0.801 0.140 0.139 0.030 1.000 0.280 0.279 0.044 1.000
MR-Robust 0.040 0.040 0.019 0.313 0.170 0.169 0.036 0.945 0.315 0.315 0.037 1.000
MR-Lasso 0.026 0.026 0.017 0.485 0.090 0.088 0.028 0.991 0.258 0.255 0.059 1.000
MR-Egger 0.902 0.902 0.193 0.998 0.980 0.980 0.185 1.000 0.882 0.881 0.181 0.998

Contamination Mixture 0.007 0.006 0.016 0.096 0.018 0.017 0.023 0.202 0.071 0.049 0.105 0.481
MR-Mix 0.064 0.035 0.119 0.122 0.163 0.080 0.207 0.202 0.325 0.315 0.262 0.323

MR-RAPS 0.100 0.099 0.021 0.993 0.211 0.210 0.030 1.000 0.322 0.322 0.035 1.000

Positive causal effect: θ = +0.2
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.192 0.192 0.022 1.000 0.193 0.192 0.029 1.000 0.193 0.193 0.041 0.999
Mode Based Estimation 0.180 0.180 0.031 0.999 0.180 0.180 0.030 0.999 0.175 0.175 0.038 0.986

MR-PRESSO 0.196 0.195 0.020 1.000 0.197 0.196 0.030 1.000 0.197 0.196 0.045 0.999
MR-Robust 0.196 0.196 0.020 1.000 0.196 0.196 0.035 0.998 0.197 0.197 0.057 0.925
MR-Lasso 0.196 0.196 0.019 1.000 0.196 0.197 0.025 1.000 0.196 0.196 0.038 1.000
MR-Egger 0.047 0.048 0.256 0.062 0.051 0.054 0.329 0.062 0.045 0.049 0.386 0.055

Contamination Mixture 0.196 0.196 0.020 1.000 0.198 0.198 0.027 1.000 0.199 0.198 0.043 0.999
MR-Mix 0.210 0.208 0.076 0.293 0.211 0.200 0.095 0.401 0.215 0.200 0.134 0.626

MR-RAPS 0.200 0.200 0.028 1.000 0.200 0.199 0.044 0.989 0.201 0.201 0.060 0.910
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.301 0.300 0.029 1.000 0.505 0.503 0.060 1.000 0.662 0.662 0.052 1.000
Mode Based Estimation 0.189 0.187 0.028 1.000 0.217 0.215 0.034 0.984 0.425 0.370 0.168 0.892

MR-PRESSO 0.305 0.305 0.027 1.000 0.471 0.471 0.040 1.000 0.627 0.626 0.043 1.000
MR-Robust 0.274 0.273 0.031 1.000 0.512 0.513 0.039 1.000 0.646 0.646 0.035 1.000
MR-Lasso 0.251 0.251 0.023 1.000 0.421 0.418 0.051 1.000 0.636 0.636 0.056 1.000
MR-Egger 0.053 0.050 0.201 0.068 0.053 0.052 0.231 0.061 0.046 0.047 0.247 0.058

Contamination Mixture 0.206 0.205 0.022 1.000 0.226 0.223 0.037 1.000 0.702 0.761 0.217 1.000
MR-Mix 0.354 0.302 0.184 0.460 0.540 0.525 0.251 0.544 0.730 0.753 0.220 0.605

MR-RAPS 0.386 0.386 0.029 1.000 0.536 0.536 0.033 1.000 0.654 0.654 0.036 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.244 0.243 0.022 1.000 0.316 0.315 0.034 1.000 0.461 0.459 0.055 1.000
Mode Based Estimation 0.187 0.186 0.028 1.000 0.201 0.199 0.028 1.000 0.244 0.240 0.044 0.997

MR-PRESSO 0.255 0.255 0.022 1.000 0.349 0.348 0.032 1.000 0.478 0.477 0.043 1.000
MR-Robust 0.249 0.249 0.023 1.000 0.377 0.377 0.037 1.000 0.511 0.512 0.038 1.000
MR-Lasso 0.229 0.229 0.020 1.000 0.302 0.301 0.032 1.000 0.458 0.456 0.056 1.000
MR-Egger 1.015 1.015 0.198 1.000 1.098 1.097 0.190 1.000 0.996 0.994 0.182 1.000

Contamination Mixture 0.207 0.207 0.020 1.000 0.224 0.223 0.030 1.000 0.340 0.284 0.164 1.000
MR-Mix 0.316 0.284 0.138 0.445 0.443 0.410 0.209 0.475 0.605 0.604 0.223 0.535

MR-RAPS 0.303 0.302 0.023 1.000 0.412 0.412 0.032 1.000 0.523 0.522 0.037 1.000
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Fig. 4 Mean squared errors for the different methods in scenario 3 (directional pleiotropy, InSIDE
violated) with a null causal effect for 30 variants. Note the vertical axis is on a logarithmic scale.

Empirical example: The effect of body mass index on coronary artery disease

Results from the empirical example are shown in Table 4. All methods agree that there is a positive

effect of BMI on CAD risk, except for the MR-Mix method which gives a wide confidence interval that

includes the null. The narrowest confidence intervals are for the outlier-robust methods (MR-Lasso,

MR-Robust, MR-PRESSO), followed by the modelling methods except MR-Mix and MR-Egger (con-

tamination mixture, MR-RAPS), then the consensus methods (weighted median, mode based estima-

tion), and finally MR-Egger and MR-Mix.

Table 4 Estimates and 95% confidence intervals (CI) for the effect of BMI on coronary artery disease
risk from robust methods. Estimates represent log odds ratios for CAD risk per 1 kg/m2 increase in
BMI.

Method Causal estimate (95% CI) CI width
Weighted Median 0.376 (0.206, 0.546) 0.340
Mode Based Estimation 0.382 (0.181, 0.583) 0.402
MR-PRESSO 0.410 (0.309, 0.511) 0.202
MR-Robust 0.425 (0.325, 0.526) 0.201
MR-Lasso 0.442 (0.354, 0.530) 0.176
MR-Egger 0.481 (0.165, 0.796) 0.631
(intercept) -0.003 (-0.011, 0.005)

Contamination Mixture 0.490 (0.372, 0.602) 0.230
MR-Mix 0.425 (-0.283, 1.133) 1.416
MR-RAPS 0.390 (0.308, 0.546) 0.238

While the methods that detect outliers varied in terms of how lenient or strictly they identified out-

liers, they agreed on the order of outliers (Supplementary Table 8). The MR-Robust method was the

most lenient, downweighting two variants as outliers. Each subsequent method in order of strictness

identified all previously identified variants as outliers. MR-PRESSO excluded the two variants identi-

fied by MR-Robust plus an additional three variants. MR-RAPS identified these five plus an additional

two variants. MR-Lasso identified an additional three variants, 10 in total. The contamination mixture



A Comparison Of Robust Mendelian Randomization Methods Using Summary
Data 15

method identified an additional 14 variants, 24 in total. MR-Mix identified an additional 21 variants,

45 in total. This suggests that any difference between results from outlier-robust methods are likely

due to the strictness of outlier detection, rather than due to intrinsic differences in how the different

methods select outliers. In several methods, the threshold at which outliers are detected can be varied

by the analyst (for example, by varying the penalization parameter λ in MR-Lasso, or the significance

threshold in MR-PRESSO). In practice, rather than performing different outlier-robust methods, it may

be better to concentrate on one method, but vary this threshold.

Discussion

In this paper, we have provided a review of robust methods for MR, focusing on methods that can be

performed using summary data and implemented using standard statistical software. We have divided

methods into three categories: consensus methods, outlier-robust methods, and modelling methods.

Methods were compared in three ways: by their theoretical properties, including the assumptions

required for the method to give a consistent estimate, in an extensive simulation study, and in an

empirical investigation. A summary table comparing the methods is presented as Table 5.

Table 5 Summary comparison of methods.
Method Consistency assumption Strengths and/or weaknesses
Weighted Median Majority valid Robust to outliers, sensitive to additional/re-

moval of genetic variants, may be less efficient
Mode Based
Estimation

Plurality valid Robust to outliers, sensitive to bandwidth pa-
rameter and addition/removal of genetic vari-
ants, generally conservative

MR-PRESSO Outlier-robust Removes outliers, efficient with valid IVs,
very high false positive rate with several in-
valid IVs

MR-Robust Outlier-robust Downweights outliers, efficient with valid IVs,
high false positive rate with several invalid IVs

MR-Lasso Outlier-robust Removes outliers, efficient with valid IVs,
high false positive rate with several invalid IVs

MR-Egger InSIDE Sensitive to outliers, sensitive to violations of
InSIDE assumption, InSIDE assumption often
not plausible, may be less efficient

Contamination
Mixture

Plurality valid Robust to outliers, sensitive to variance param-
eter and addition/removal of genetic variants,
less conservative than MBE

MR-Mix Plurality valid Robust to outliers, requires large numbers of
genetic variants, very high false positive rate
in several scenarios

MR-RAPS Pleiotropic effects (except
outliers) normally dis-
tributed about zero

Downweights outliers, sensitive to violations
of balanced pleiotropy assumption

While the use of robust methods for MR analyses with multiple genetic variants is highly recom-

mended, it is not practical or desirable to perform and report results from every single robust method

that has been proposed. Guidance is therefore needed as to which robust methods should be performed

in practice. As an example, if an investigator performed the MR-PRESSO, MR-Robust, and MR-Lasso
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methods, they would have assessed robustness of the result to outliers, but they would not have not as-

sessed other potential violations of the IV assumptions. The categorization of methods proposed here

is not the only possible division of methods, but we hope it is practically useful. For instance, the

contamination mixture and MR-Mix methods make the same ‘plurality valid’ assumption as the MBE

method, and so could have been placed in the same category.

The similarity and ubiquity of the ‘outlier-robust’ and ‘majority/plurality valid’ assumptions should

encourage investigators to consider methods that make alternative assumptions, such as the MR-Egger

method. While the InSIDE assumption is often not plausible [38], the MR-Egger method and the in-

tercept test have value in providing a different route to testing the validity of an MR study. Another

potential choice is the constrained IV method, which uses information on measured confounders to

construct a composite IV that is not associated with these confounders [12]. This method was not con-

sidered in the simulation study, as it requires additional data on confounders and individual participant

data. Further methods development is needed to develop robust methods for summary data that make

different consistency assumptions.

We encourage researchers to perform robust methods from different categories, and that make

varied consistency assumptions. For example, an investigator could perform the weighted median

method (majority valid assumption), the MBE and/or contamination mixture methods (both plurality

valid assumption, MBE is more conservative), and the MR-Egger method (InSIDE assumption). If

there are a few clear outliers in the data, then an outlier-robust method such as MR-PRESSO or MR-

Robust could also be performed. While we are hesitant to make a definitive recommendation as each

method has its own strengths and weaknesses, this set of methods would be a reasonable compromise

between performing too few methods and not adequately assessing the IV assumptions, and performing

so many methods that clarity is obscured. Another danger of the use of large numbers of methods is

the possibility to cherry-pick results, either by an investigator seeking to present their results in a more

positive light, or a reader picking the one method that gives a different result (such as the MR-Mix

method in our empirical example).

One important limitation of these methods is the assumption that all valid IVs estimate the same

causal effect. Particularly for complex risk factors such as BMI, it is possible that different genetic

variants have different ratio estimates not because they are invalid IVs, but because there are different

ways of intervening on BMI that lead to different effects on the outcome. This can be remedied

somewhat in methods based on the IVW method by using a random-effects model [19], or in the

contamination mixture method, where causal effects evidenced by different sets of variants will lead to

a multimodal likelihood function, and potentially a confidence interval that consists of more than one

region.

In summary, while robust methods for MR do not provide a perfect solution to violations of the IV

assumptions, they are able to detect such violations and help investigators make more reliable causal

inferences. Investigators should perform a range of robust methods that operate in different ways and

make different assumptions to assess the robustness of findings from a MR investigation.
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Supporting Information

S1 Details of simulation study

For each participant i, we simulate data on J genetic variants Gi1, Gi2, . . . , GiJ , a modifiable expo-

sure Xi, an outcome variable Yi, and a confounder Ui (assumed unknown). The confounder is a linear

function of the genetic variants and an independent error term εUi . The effect of variant j on the con-

founder is represented by coefficient φj . The exposure is linear in the genetic variants, the confounder

and an independent error term εXi . The effect of variant j on the exposure is represented by coefficient

γj (this is zero for a valid IV). The outcome is linear in the genetic variants, exposure, confounders and

an independent error term εYi . The effect of variant j on the outcome is represented by coefficient αj

(again, this is zero for a valid IV). The effect of the exposure on the outcome is represented by θ. The

genetic variants are modelled as single nucleotide polymorphisms (SNPs) with minor allele frequency

30%, and take values 0, 1 or 2. The error terms εUi , εXi and εYi each follow an independent normal

distribution with mean 0 and unit variance.

We can represent the model mathematically as:

Ui =

J∑
j=1

φjGij + εUi , (8)

Xi =

J∑
j=1

γjGij + Ui + εXi , (9)

Yi =

J∑
j=1

αjGij + θ Xi + Ui + εYi , (10)

Gij ∼ Binomial(2, 0.3) independently, (11)

εUi , ε
X
i , ε

Y
i ∼ N (0, 1) independently. (12)

The causal effect of the exposure on the outcome was either taken as null (θ = 0) or positive

(θ = 0.2). Genetic associations with the exposure γj are drawn from a truncated normal distribution.

Parameters are chosen such that the total proportion of variance explained in the exposure by direct

effects of the genetic variants is 10%. In scenario 3, the overall proportion of variance explained in the

exposure by genetic variants is slightly larger, as there is an additional effect of the invalid IVs on the

exposure via their effect on the confounder.

For valid IVs, φj = 0 and αj = 0. For invalid IVs, in scenario 1 (balanced pleiotropy, InSIDE

satisfied), the effects of the genetic variants on the outcome are generated from a normal distribution

centered at zero (αj ∼ N (0, 0.15)) and genetic effects on the confounder are zero (φj = 0). In

scenario 2 (directional pleiotropy, InSIDE satisfied), the effects of the genetic variants on the outcome

are generated from a normal distribution centered away from zero (αj ∼ N (0.1, 0.075)) and genetic

effects on the confounder are zero (φj = 0). In scenario 3 (directional pleiotropy, InSIDE violated), the

direct effects of the genetic variants on the outcome are generated from a normal distribution centered

away from zero (αj ∼ N (0.1, 0.075)) and genetic effects on the confounder are generated from a
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uniform distribution (φj ∼ U (0, 0.1)).

Summary genetic association data are calculated by regression of the risk factor on each genetic

variant in turn, and the outcome on each genetic variant in turn. Individual participant data are gener-

ated for 20 000 individuals: the exposure regressions are performed on the first 10 000 individuals, and

the outcome regressions on the remaining 10 000 individuals. This represents a two-sample Mendelian

randomization study. We generated 10 000 simulated datasets for each scenario, and for null and posi-

tive causal effects.

Each method is performed using the default options suggested by the authors of the method, either

in the corresponding publication, or in the software code recommended by the authors. The weighted

median method is performed using inverse-variance weights. The mode based estimation method is

performed using inverse-variance weights, the ‘no measurement error’ assumption, and the default

bandwidth setting (φ = 1). The MR-PRESSO method is performed using a significance cut-off of p <

0.05 for determining outliers. The MR-Lasso method is performed using the heterogeneity criterion

for selecting the lasso penalty parameter. The contamination mixture method is performed using the

standard deviation of the ratio estimates multiplied by 1.5 for the variance parameter. For MR-Mix,

we choose an initial value of the probability mass at the null component as 0.6 and the initial value

of the variance of the non-null component as 1 × 10−5. As the method performs a grid search, these

decisions should not influence the results. For MR-RAPS, we use the overdispersed robust version

with the Huber loss function. All regression models use random-effects.

The mean squared errors of the different methods are presented in Supplementary Figure 5 (10

variants, scenario 2), Supplementary Figure 6 (10 variants, scenario 3), Supplementary Figure 7 (100

variants, scenario 2), and Supplementary Figure 8 (100 variants, scenario 3). Note that in each case

the vertical axis is on a logarithmic scale. Findings are similar to before among the different scenarios.

We observe again that the performance of the mode based estimator is the best for the consensus based

approach, MR-Robust gets the best result among the outlier-robust methods, and the contamination

mixture approach has the best performance among the modelling methods.

In addition to the scenarios presented in the main paper, we also performed simulations with 500

genetic variants, and a wider range of wider range of proportions of invalid IVs (1%, 5%, and 10%).

Due to computational burden, only 1000 simulated datasets were generated in each case.

The results of these additional simulations can be found in Table 6 (invalidness 1%, 5%, and 10%),

and 7 (invalidness 30%, 50% and 70%).

With few invalid IVs, most methods had reasonable behaviour. An exception was the MR-Egger

method, which had inflated Type 1 error rates in Scenario 3 even with only 1% of variants invalid.

Although we would expect the outlier-removal methods to behave best with few invalid IVs, in fact

most methods have some mechanism for providing robustness to outliers, and so it was difficult to

differentiate between the methods.



A Comparison Of Robust Mendelian Randomization Methods Using Summary
Data 23

Table 6 Mean, median, standard deviation (SD) of estimates, and empirical power (%) for scenarios
with 500 genetic variants.

1% invalid 5% invalid 10% invalid
Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Null causal effect: β = 0
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.000 0.000 0.006 0.038 0.000 0.000 0.006 0.014 0.000 0.000 0.007 0.034
Mode Based Estimation 0.000 -0.001 0.017 0.001 0.000 0.000 0.017 0.003 0.000 0.000 0.018 0.004

MR-PRESSO 0.000 0.000 0.005 0.049 0.000 0.000 0.005 0.046 0.000 0.000 0.006 0.059
MR-Robust 0.000 0.000 0.005 0.048 0.000 0.000 0.005 0.046 0.000 0.000 0.006 0.046
MR-Lasso 0.000 0.000 0.005 0.023 0.000 0.000 0.005 0.027 0.000 0.000 0.006 0.037
MR-Egger 0.000 0.000 0.023 0.049 -0.001 0.000 0.036 0.047 0.000 0.000 0.047 0.054

Contamination Mixture 0.000 0.000 0.005 0.055 0.000 0.000 0.006 0.050 0.000 0.001 0.006 0.052
MR-Mix 0.000 0.000 0.023 0.007 -0.001 0.000 0.020 0.004 -0.001 0.000 0.021 0.005

MR-RAPS 0.000 0.000 0.005 0.047 0.000 0.000 0.006 0.016 0.000 0.000 0.007 0.020
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.001 0.001 0.006 0.021 0.005 0.005 0.006 0.073 0.011 0.011 0.007 0.289
Mode Based Estimation 0.000 0.000 0.016 0.003 0.000 0.000 0.017 0.004 -0.001 0.000 0.037 0.000

MR-PRESSO 0.001 0.001 0.005 0.049 0.004 0.004 0.005 0.114 0.010 0.010 0.006 0.392
MR-Robust 0.000 0.000 0.005 0.041 0.002 0.002 0.005 0.072 0.006 0.006 0.006 0.152
MR-Lasso 0.001 0.001 0.005 0.046 0.003 0.003 0.005 0.078 0.005 0.006 0.006 0.184
MR-Egger 0.000 0.000 0.022 0.052 0.000 0.000 0.032 0.052 0.001 0.001 0.039 0.049

Contamination Mixture 0.000 0.000 0.005 0.048 0.001 0.001 0.006 0.061 0.002 0.002 0.006 0.067
MR-Mix 0.000 0.000 0.022 0.007 0.003 0.001 0.019 0.002 0.003 0.001 0.021 0.007

MR-RAPS 0.001 0.001 0.005 0.050 0.008 0.008 0.006 0.239 0.020 0.020 0.006 0.783
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.002 0.002 0.006 0.030 0.010 0.010 0.007 0.232 0.022 0.022 0.007 0.778
Mode Based Estimation 0.000 0.000 0.016 0.004 0.000 0.001 0.018 0.004 0.001 0.001 0.017 0.003

MR-PRESSO 0.001 0.000 0.005 0.059 0.004 0.004 0.005 0.130 0.013 0.013 0.007 0.582
MR-Robust 0.000 0.000 0.005 0.048 0.002 0.002 0.005 0.064 0.006 0.006 0.006 0.148
MR-Lasso 0.001 0.001 0.005 0.058 0.003 0.003 0.005 0.102 0.007 0.007 0.006 0.230
MR-Egger 0.031 0.030 0.027 0.269 0.140 0.139 0.043 0.956 0.250 0.249 0.051 0.999

Contamination Mixture 0.000 0.000 0.005 0.043 0.001 0.001 0.006 0.058 0.002 0.002 0.006 0.059
MR-Mix 0.002 0.000 0.018 0.007 0.004 0.001 0.018 0.003 0.005 0.000 0.018 0.002

MR-RAPS 0.002 0.002 0.005 0.063 0.014 0.014 0.006 0.487 0.035 0.035 0.006 0.998

Positive causal effect: θ = +0.2
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.179 0.179 0.008 1.000 0.179 0.179 0.008 1.000 0.180 0.179 0.009 1.000
Mode Based Estimation 0.154 0.154 0.020 0.989 0.153 0.153 0.021 0.992 0.154 0.153 0.020 0.995

MR-PRESSO 0.188 0.188 0.007 1.000 0.188 0.188 0.007 1.000 0.189 0.189 0.008 1.000
MR-Robust 0.188 0.188 0.007 1.000 0.188 0.188 0.007 1.000 0.189 0.189 0.007 1.000
MR-Lasso 0.188 0.188 0.007 1.000 0.188 0.188 0.007 1.000 0.189 0.188 0.008 1.000
MR-Egger 0.010 0.009 0.027 0.073 0.009 0.009 0.038 0.057 0.010 0.009 0.049 0.055

Contamination Mixture 0.187 0.187 0.007 1.000 0.187 0.187 0.008 1.000 0.187 0.187 0.008 1.000
MR-Mix 0.060 0.055 0.034 0.076 0.057 0.052 0.033 0.012 0.048 0.045 0.033 0.002

MR-RAPS 0.200 0.200 0.007 1.000 0.199 0.199 0.008 1.000 0.200 0.199 0.008 1.000
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.181 0.181 0.008 1.000 0.186 0.186 0.009 1.000 0.193 0.193 0.009 1.000
Mode Based Estimation 0.155 0.154 0.020 0.993 0.155 0.155 0.022 0.992 0.156 0.156 0.021 0.991

MR-PRESSO 0.190 0.190 0.007 1.000 0.195 0.195 0.007 1.000 0.204 0.203 0.008 1.000
MR-Robust 0.189 0.189 0.007 1.000 0.192 0.192 0.007 1.000 0.198 0.197 0.008 1.000
MR-Lasso 0.189 0.189 0.007 1.000 0.192 0.192 0.007 1.000 0.196 0.196 0.008 1.000
MR-Egger 0.010 0.010 0.026 0.070 0.010 0.010 0.034 0.062 0.010 0.010 0.042 0.062

Contamination Mixture 0.187 0.187 0.008 1.000 0.188 0.189 0.008 1.000 0.189 0.190 0.009 1.000
MR-Mix 0.063 0.061 0.035 0.061 0.066 0.064 0.033 0.018 0.064 0.060 0.034 0.017

MR-RAPS 0.202 0.202 0.007 1.000 0.210 0.210 0.008 1.000 0.222 0.222 0.009 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.182 0.182 0.008 1.000 0.191 0.191 0.009 1.000 0.206 0.207 0.010 1.000
Mode Based Estimation 0.154 0.153 0.020 0.997 0.154 0.154 0.022 0.987 0.152 0.155 0.057 0.988

MR-PRESSO 0.190 0.189 0.007 1.000 0.195 0.195 0.008 1.000 0.211 0.210 0.009 1.000
MR-Robust 0.189 0.189 0.007 1.000 0.192 0.191 0.007 1.000 0.199 0.199 0.008 1.000
MR-Lasso 0.189 0.189 0.007 1.000 0.192 0.192 0.008 1.000 0.199 0.199 0.009 1.000
MR-Egger 0.044 0.043 0.031 0.360 0.161 0.160 0.046 0.965 0.278 0.277 0.054 1.000

Contamination Mixture 0.187 0.187 0.008 1.000 0.188 0.188 0.008 1.000 0.190 0.190 0.009 1.000
MR-Mix 0.060 0.058 0.033 0.057 0.053 0.049 0.031 0.016 0.043 0.040 0.028 0.008

MR-RAPS 0.203 0.202 0.007 1.000 0.215 0.215 0.008 1.000 0.240 0.240 0.009 1.000
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Table 7 Mean, median, standard deviation (SD) of estimates, and empirical power (%) for scenarios
with 500 genetic variants.

30% invalid 50% invalid 70% invalid
Method Mean Median SD Power Mean Median SD Power Mean Median SD Power

Null causal effect: θ = 0
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.000 -0.001 0.010 0.054 -0.001 0.000 0.015 0.099 0.000 -0.001 0.021 0.164
Mode Based Estimation 0.003 -0.001 0.101 0.005 -0.002 -0.001 0.020 0.004 -0.004 -0.001 0.112 0.008

MR-PRESSO 0.000 0.000 0.010 0.080 -0.001 0.000 0.016 0.150 0.000 0.000 0.023 0.187
MR-Robust 0.000 -0.001 0.009 0.043 0.000 0.000 0.018 0.059 -0.001 -0.001 0.026 0.048
MR-Lasso 0.000 0.000 0.009 0.058 -0.001 -0.001 0.013 0.085 0.000 -0.001 0.019 0.136
MR-Egger -0.001 0.000 0.076 0.049 -0.001 -0.001 0.097 0.053 0.001 0.000 0.115 0.052

Contamination Mixture 0.000 0.000 0.010 0.085 -0.001 -0.002 0.015 0.131 0.000 0.000 0.025 0.197
MR-Mix 0.001 0.000 0.016 0.002 0.000 0.000 0.020 0.000 0.000 0.000 0.015 0.000

MR-RAPS 0.000 0.000 0.013 0.018 0.000 0.001 0.021 0.040 -0.001 -0.001 0.028 0.050
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.105 0.105 0.014 1.000 0.294 0.292 0.027 1.000 0.440 0.440 0.025 1.000
Mode Based Estimation 0.006 0.006 0.016 0.002 0.035 0.035 0.021 0.052 0.207 0.183 0.100 0.762

MR-Robust 0.086 0.086 0.014 0.999 0.313 0.313 0.018 1.000 0.438 0.438 0.018 1.000
MR-Lasso 0.061 0.061 0.011 1.000 0.233 0.233 0.023 1.000 0.426 0.426 0.025 1.000

MR-PRESSO 0.121 0.120 0.014 1.000 0.285 0.284 0.019 1.000 0.424 0.424 0.020 1.000
MR-Egger 0.000 0.000 0.059 0.050 0.000 0.000 0.069 0.052 0.000 0.000 0.072 0.044

Contamination Mixture 0.011 0.011 0.010 0.254 0.042 0.041 0.020 0.797 0.502 0.527 0.120 1.000
MR-Mix 0.004 0.000 0.011 0.000 0.004 0.000 0.011 0.001 0.012 0.000 0.020 0.000

MR-RAPS 0.188 0.188 0.014 1.000 0.341 0.340 0.017 1.000 0.460 0.460 0.019 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.048 0.048 0.010 1.000 0.121 0.120 0.016 1.000 0.256 0.257 0.024 1.000
Mode Based Estimation 0.003 0.003 0.016 0.004 0.016 0.015 0.016 0.018 0.054 0.055 0.022 0.313

MR-PRESSO 0.063 0.062 0.010 1.000 0.161 0.160 0.015 1.000 0.284 0.285 0.019 1.000
MR-Robust 0.051 0.050 0.010 0.999 0.180 0.180 0.016 1.000 0.309 0.309 0.017 1.000
MR-Lasso 0.033 0.033 0.009 0.990 0.109 0.109 0.015 1.000 0.260 0.260 0.024 1.000
MR-Egger 0.485 0.485 0.061 1.000 0.537 0.537 0.061 1.000 0.473 0.473 0.062 1.000

Contamination Mixture 0.010 0.010 0.009 0.257 0.030 0.030 0.014 0.738 0.095 0.092 0.036 0.993
MR-Mix 0.003 0.000 0.020 0.003 0.006 0.000 0.026 0.003 0.013 0.000 0.038 0.004

MR-RAPS 0.103 0.103 0.011 1.000 0.216 0.215 0.015 1.000 0.328 0.328 0.017 1.000

Positive causal effect: θ = +0.2
Scenario 1: Balanced pleiotropy, InSIDE satisfied

Weighted Median 0.180 0.179 0.013 1.000 0.179 0.179 0.016 1.000 0.180 0.179 0.023 1.000
Mode Based Estimation 0.154 0.154 0.022 0.987 0.152 0.151 0.023 0.983 0.146 0.145 0.029 0.978

MR-PRESSO 0.189 0.189 0.012 1.000 0.188 0.188 0.018 1.000 0.190 0.189 0.025 1.000
MR-Robust 0.189 0.189 0.011 1.000 0.188 0.188 0.018 1.000 0.189 0.188 0.026 1.000
MR-Lasso 0.189 0.189 0.011 1.000 0.188 0.188 0.015 1.000 0.190 0.189 0.022 1.000
MR-Egger 0.010 0.010 0.078 0.056 0.011 0.009 0.098 0.056 0.011 0.012 0.115 0.051

Contamination Mixture 0.188 0.188 0.012 1.000 0.190 0.190 0.017 1.000 0.196 0.194 0.028 1.000
MR-Mix 0.021 0.000 0.028 0.001 0.006 0.000 0.019 0.000 0.002 0.000 0.015 0.000

MR-RAPS 0.200 0.200 0.014 1.000 0.200 0.200 0.022 1.000 0.201 0.201 0.028 1.000
Scenario 2: Directional pleiotropy, InSIDE satisfied

Weighted Median 0.307 0.307 0.018 1.000 0.488 0.487 0.026 1.000 0.619 0.618 0.026 1.000
Mode Based Estimation 0.164 0.163 0.022 0.986 0.201 0.202 0.105 0.971 0.395 0.384 0.097 0.983

MR-PRESSO 0.343 0.343 0.017 1.000 0.500 0.501 0.019 1.000 0.622 0.623 0.020 1.000
MR-Robust 0.314 0.314 0.018 1.000 0.510 0.510 0.018 1.000 0.627 0.627 0.019 1.000
MR-Lasso 0.273 0.273 0.015 1.000 0.449 0.448 0.024 1.000 0.613 0.614 0.025 1.000
MR-Egger 0.010 0.010 0.061 0.051 0.010 0.009 0.071 0.053 0.010 0.010 0.076 0.056

Contamination Mixture 0.207 0.207 0.015 1.000 0.288 0.280 0.051 1.000 0.717 0.721 0.081 1.000
MR-Mix 0.022 0.019 0.022 0.000 0.020 0.012 0.025 0.007 0.039 0.030 0.037 0.011

MR-RAPS 0.394 0.394 0.016 1.000 0.545 0.544 0.018 1.000 0.662 0.662 0.020 1.000
Scenario 3: Directional pleiotropy, InSIDE violated

Weighted Median 0.238 0.238 0.013 1.000 0.319 0.319 0.019 1.000 0.445 0.445 0.025 1.000
Mode Based Estimation 0.156 0.161 0.137 0.987 0.179 0.176 0.053 0.990 0.223 0.221 0.032 0.990

MR-PRESSO 0.273 0.273 0.013 1.000 0.375 0.374 0.018 1.000 0.490 0.489 0.020 1.000
MR-Robust 0.259 0.259 0.013 1.000 0.382 0.382 0.018 1.000 0.500 0.500 0.019 1.000
MR-Lasso 0.234 0.234 0.012 1.000 0.321 0.321 0.018 1.000 0.461 0.461 0.025 1.000
MR-Egger 0.535 0.535 0.064 1.000 0.592 0.591 0.065 1.000 0.527 0.526 0.066 1.000

Contamination Mixture 0.204 0.204 0.012 1.000 0.238 0.237 0.020 1.000 0.386 0.368 0.087 1.000
MR-Mix 0.039 0.036 0.034 0.009 0.034 0.016 0.048 0.011 0.052 0.027 0.069 0.036

MR-RAPS 0.308 0.308 0.013 1.000 0.419 0.418 0.018 1.000 0.530 0.531 0.020 1.000
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Fig. 5 Mean squared error for the different methods in scenario 2 for 10 000 simulations, with direc-
tional pleiotropy and InSIDE satisfied with 10 variants.
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Fig. 6 Mean squared error for the different methods in scenario 3 for 10 000 simulations, with direc-
tional pleiotropy and InSIDE violated with 10 variants.
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Fig. 7 Mean squared error for the different methods in scenario 2 for 10 000 simulations, with direc-
tional pleiotropy and InSIDE satisfied with 100 variants.

30% invalid 50% invalid 70% invalid

W
ei

gh
te

d 
M

ed
ia

n

M
od

e 
B

as
ed

 E
st

im
at

io
n

M
R

−
P

R
E

S
S

O

M
R

−
R

ob
us

t

M
R

−
La

ss
o

M
R

−
E

gg
er

C
on

ta
m

in
at

io
n 

M
ix

tu
re

M
R

−
M

ix

M
R

−
R

A
P

S

W
ei

gh
te

d 
M

ed
ia

n

M
od

e 
B

as
ed

 E
st

im
at

io
n

M
R

−
P

R
E

S
S

O

M
R

−
R

ob
us

t

M
R

−
La

ss
o

M
R

−
E

gg
er

C
on

ta
m

in
at

io
n 

M
ix

tu
re

M
R

−
M

ix

M
R

−
R

A
P

S

W
ei

gh
te

d 
M

ed
ia

n

M
od

e 
B

as
ed

 E
st

im
at

io
n

M
R

−
P

R
E

S
S

O

M
R

−
R

ob
us

t

M
R

−
La

ss
o

M
R

−
E

gg
er

C
on

ta
m

in
at

io
n 

M
ix

tu
re

M
R

−
M

ix

M
R

−
R

A
P

S

1e−04

0.001

0.01

0.1

1

M
ea

n 
sq

ua
re

d 
er

ro
r

Fig. 8 Mean squared error for the different methods in scenario 3 for 10 000 simulations, with direc-
tional pleiotropy and InSIDE violated with 100 variants.
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S2 Outliers according to different methods

Table 8 Genetic variants identified as outliers by the different methods in the Mendelian Randomiza-
tion study of the effect of BMI on cardiovascular disease risk.

Variant MR-Robust MR-PRESSO MR-RAPS MR-Lasso Contamination mixture MR-Mix
rs11191560 X X X X X X
rs2075650 X X X X X X
rs2176040 X X X X X
rs6567160 X X X X X
rs7903146 X X X X X
rs11727676 X X X X
rs17024393 X X X X
rs11126666 X X X
rs13078960 X X X
rs9914578 X X X
rs1000940 X X
rs11057405 X X
rs11847697 X X
rs12446632 X X
rs12566985 X X
rs16907751 X X
rs205262 X X
rs2650492 X X
rs2836754 X X
rs3849570 X X
rs4787491 X X
rs492400 X X
rs7243357 X X
rs9641123 X X
rs10938397 X
rs10968576 X
rs11030104 X
rs11688816 X
rs12016871 X
rs13021737 X
rs13191362 X
rs13201877 X
rs1460676 X
rs1516725 X
rs1528435 X
rs17203016 X
rs2176598 X
rs2287019 X
rs2820292 X
rs3810291 X
rs3817334 X
rs543874 X
rs7164727 X
rs7599312 X
rs7899106 X
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S3 Software code

This section includes the code to run the robust methods used in this paper. Please note that the MR-

Mix package is not publicly available, please contact the authors for the package 1.

#install required packages

if (!require("MendelianRandomization")) {install.packages("

MendelianRandomization")} else {}

if (!require("mr.raps")) {install.packages("mr.raps")} else {}

if (!require("devtools")) { install.packages("devtools") } else {}

if (!require("penalized")) {install.packages("penalized")} else {}

library("devtools")

devtools::install_github("rondolab/MR-PRESSO")

#load packages

library("MendelianRandomization")

library("mr.raps")

library("MRMix")

library("MRPRESSO")

library("penalized")

#create dataframe and object by different methods

mr_frame<-as.data.frame(cbind(ldlc,ldlcse,chdlodds,chdloddsse))

names(mr_frame)<-c("ldlc","ldlcse","chdlodds","chdloddsse")

mr_object<-mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse =

chdloddsse)#create used by methods from MendelianRandomization

package

#perform weighted median

mr_median(mr_object,weighting = "weighted", iterations = 10000)

#perform Mode based estimation

mr_mbe(mr_object, weighting = "weighted", stderror = "delta", phi =

1,

seed = 19940407, iterations = 10000, distribution = "normal",

alpha = 0.05)

#perform MR-PRESSO

mr_presso(BetaOutcome = "chdlodds", BetaExposure = "ldlc",

1current maintainer of the package is Guanghao Qi (gqi1@jhu.edu).
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SdOutcome = "chdloddsse", SdExposure = "ldlcse", OUTLIERtest =

TRUE, DISTORTIONtest = TRUE, data = mr_frame, NbDistribution =

1000, SignifThreshold = 0.05)

#perform MR-Robust

mr_ivw(mr_object,"random", robust = TRUE)

#define function for MR-Lasso with heterogeneity criterion

MR_lasso<-function(betaYG,betaXG,sebetaYG){

betaYGw = betaYG/sebetaYG # dividing the association estimates by

sebetaYG is equivalent

betaXGw = betaXG/sebetaYG # to weighting by sebetaYG^-2

pleio = diag(rep(1, length(betaXG)))

l1grid = c(seq(from=0.1, to=5, by=0.1), seq(from=5.2, to=10, by

=0.2))

# values of lambda for grid search

l1grid_rse = NULL; l1grid_length = NULL; l1grid_beta = NULL;

l1grid_se = NULL

for (i in 1:length(l1grid)) {

l1grid_which = which(attributes(penalized(betaYGw, pleio,

betaXGw, lambda1=l1grid[i], trace=FALSE))$penalized==0)

l1grid_rse[i] = summary(lm(betaYG[l1grid_which]~betaXG[l1grid_

which]-1, weights=sebetaYG[l1grid_which]^-2))$sigma

l1grid_length[i] = length(l1grid_which)

l1grid_beta[i] = lm(betaYG[l1grid_which]~betaXG[l1grid_which]-1,

weights=sebetaYG[l1grid_which]^-2)$coef[1]

l1grid_se[i] = summary(lm(betaYG[l1grid_which]~betaXG[l1grid_

which]-1, weights=sebetaYG[l1grid_which]^-2))$coef[1,2]/min(

summary(lm(betaYG[l1grid_which]~betaXG[l1grid_which]-1,

weights=sebetaYG[l1grid_which]^-2))$sigma, 1)

}

l1which_hetero = c(which(l1grid_rse[1:(length(l1grid)-1)]>1& diff(

l1grid_rse)>qchisq(0.95, df=1)/l1grid_length[2:length(l1grid)])

, length(l1grid))[1]

# heterogeneity criterion for choosing lambda

l1hetero_beta = l1grid_beta[l1which_hetero]
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l1hetero_se = l1grid_se[l1which_hetero]

list(ThetaEstimate=l1hetero_beta, ThetaSE=l1hetero_se )

}

#perform MR-Lasso

MR_lasso(mr_frame$chdlodds,mr_frame$ldlc,mr_frame$chdloddsse)

#perform MR-Egger

mr_egger(mr_object)

#define function for contamination mixture

contaminationmixture<-function(by,bx,byse){

iters = 2001; theta = seq(from=-3, to=3, by=2/(iters-1))

# if the causal estimate (and confidence interval) is not expected

to lie between -1 and 1 then change from and to (and maybe

increase iters)

ratio = by/bx; ratio.se = abs(byse/bx); psi = 1.5*sd(ratio)

lik=NULL

for (j1 in 1:iters) {

lik.inc = exp(-(theta[j1]-ratio)^2/2/ratio.se^2) /sqrt(2*pi*

ratio.se^2)

lik.exc = exp(-ratio^2/2/(psi^2+ratio.se^2)) /(sqrt(2*pi*(psi^2+

ratio.se^2)))

valid = (lik.inc>lik.exc)*1

lik[j1] = prod(c(lik.inc[valid==1], lik.exc[valid==0]))

if (which.max(lik)==length(lik)) { valid.best = valid }

}

phi = ifelse(sum(valid.best)<1.5, 1, max(sqrt(sum(((ratio[valid.

best==1]-weighted.mean(ratio[valid.best==1] , ratio.se[valid.

best==1]^-2))^2 * ratio.se[valid.best==1]^-2)) /(sum(valid.best

)-1)), 1))

loglik = log(lik)

whichin = which(2*loglik>(2*max(loglik)-qchisq(0.95, df=1)*phi^2))

theta[which.max(loglik)] # estimate

theta[whichin[1]] # lower limit of CI
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theta[whichin[length(whichin)]] # upper limit of CI

list(ThetaEstimate=theta[which.max(loglik)], ThetaLower=theta[

whichin[1]] , ThetaUpper= theta[whichin[length(whichin)]] )

}

#perform contamination mixture, note we removed the 27th variable

due to having a ratio to close to infty.

contaminationmixture(mr_frame$chdlodds[-27],mr_frame$ldlc[-27],mr_

frame$chdloddsse[-27])

#perform MR-Mix

estMix = MRMix(mr_frame$chdlodds, mr_frame$ldlc, mr_frame$

chdloddsse^2, mr_frame$ldlcse^2)

se = MRMix_se(mr_frame$chdlodds, mr_frame$ldlc, mr_frame$chdloddsse

^2, mr_frame$ldlcse^2, estMix$theta, estMix$pi0, estMix$sigma2)

#perform MR-RAPS with Huber loss function

mr.raps.overdispersed.robust(mr_frame$chdlodds, mr_frame$ldlc, mr_

frame$chdloddsse, mr_frame$ldlcse,

loss.function = "huber", k = 1.345,

initialization = c("l2"), suppress.warning

= FALSE, diagnosis = FALSE, niter = 20,

tol = .Machine$double.eps^0.5)


