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Abstract 
Deep Boltzmann machines (DBMs) are models for unsupervised learning in the field 
of artificial intelligence, promising to be useful for dimensionality reduction and pat-
tern detection in clinical and genomic data. Multimodal and partitioned DBMs alle-
viate the problem of small sample sizes and make it possible to combine different 
input data types in one DBM model. We present the package “BoltzmannMachines” 
for the Julia programming language, which makes this model class available for prac-
tical use in working with biomedical data. 
 
Availability 
Notebook with example data: http://github.com/stefan-m-lenz/BMs4BInf2019 
Julia package: http://github.com/stefan-m-lenz/BoltzmannMachines.jl 
 
 

1 Motivation 
In the field of artificial intelligence, generative models can learn potentially complex 
structure in biomedical data in an unsupervised manner. Subsequently, new, syn-
thetic samples can be generated that represent what kind of biological structure has 
been uncovered. We focus on Deep Boltzmann Machines (DBMs) (Srivastava and 
Salakhutdinov, 2014) because these allow for flexible conditional sampling, and we 
have already adapted them for training with small sample sizes (Hess et al., 2017). 
While our previous approach was primarily designed for handling genetic data, our 
Julia package “BoltzmannMachines” now can integrate data of different types, i.e. 
multimodal data, e. g. clinical, gene expression, and single nucleotide polymorphism 
(SNP) data. We also provide convenient tools for the notorious challenge of hy-
perparameter tuning in our instance of deep learning. 

In contrast to generative adversarial networks (GANs) (Goodfellow et al., 2014) 
and variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 
2014), which are other popular generative models, DBMs aim at modeling the prob-
ability distribution and then make it easy to sample conditionally and access hidden 
nodes. While VAEs and GANs are trained based on a backpropagation algorithm, and 
thus can readily be implemented in frameworks such as TensorFlow (Abadi et al., 
2015), DBMs require a different approach (see below). So we decided to build a spe-
cific tool in the Julia programming language (Bezanson et al., 2017), which allows for 
gradually implementing and optimizing algorithms and DBM architectures without 
having to implement time-critical parts in a low-level language such as C. 

2 Features 
In the following, we describe the most important features of our package, which are 
also illustrated with an exemplary multimodal application and published as a Jupyter 
notebook. The features are described in greater detail in the package documenta-
tion.  
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DBMs can be used for dimensionality reduction in a similar way as common tech-
niques such as principal component analysis (PCA) or t-distributed stochastic neigh-
bor embedding (t-SNE). This is done by training a DBM with a small number of nodes 
in the highest abstraction layer and plotting their activations against each other (see 
figure 2, panel A). 
 
 

  

 
The training procedure implemented for DBMs consists of two parts: In the first 

step, a stack of restricted Boltzmann machines (RBMs) is trained. This then gives a 
good starting point for the subsequent training procedure employing mean-field 
approximation (Salakhutdinov and Hinton, 2009). 

Due to low sample sizes, training deep learning models on genomic data poses a 
challenge. Compared to the number of measurements per patient or sample, e. g. 
SNPs or expressed genes, the number of available genome sequences or gene ex-
pression profiles is still low. But fewer samples can suffice for the training if the 
number of network parameters is reduced. In DBMs this can be done by grouping 
variables into blocks and by allowing connections between these blocks only at a 
higher level, thereby partitioning the network. Such parsimony in parameters is one 
use case for so-called multimodal DBMs, which are implemented in our package. 
Grouping variables may also be a way to incorporate background knowledge such as 
gene locations. It is natural in case of different measurements modalities such as 
SNP data and gene expression data or brain scans and test scores, which may also 
have different data types and/or may include measurement-specific patterns. To 
make the composition of such multimodal DBMs convenient and intuitive, the de-
sign of our package uses RBMs as simple building blocks for DBMs. It is possible to 
plug in different types of RBMs in the input layer, stack RBMs on top of each other 
to get a deeper network, and put RBMs side-by-side in partitioned layers. Different 
RBM types are available for modeling binary, continuous and categorical data. The 

Figure 2. Plots created with the accompanying plotting package. Panel A shows a dimensionality reduction of multimodal 
data comprising of SNP and gene expression (GEP) data via the DBM’s hidden nodes. Panels B and C show exemplary 
monitoring ouput. The mean reconstruction error (panel B) should go down when pre-training an RBM layer, the estimated 
lower bound of the log-likelihood (panel C) should go up during DBM training until an optimum is reached. The uncertainty
of the estimations is indicated by the ribbons around the graphs. 

Figure 1. An exemplary architecture of a multimodal DBM and Julia code for creating the architecture 

using BoltzmannMachines 
fitdbm(omicsdata; pretraining = [ 
      TrainPartitionedLayer([ 
         TrainLayer(nvisible = 3, nhidden = 3),  
         TrainLayer(nhidden = 3)]), 
      TrainLayer(nhidden = 4), 
      TrainLayer(nhidden = 2)]) 
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package is also designed to enable fast development and integration of new types of 
RBMs at the input layer. The complete network architecture can be defined and 
trained in a single statement (see figure 1), which performs both layer-wise pre-
training and the subsequent fine-tuning of the model. For pre-training, the hyperpa-
rameters of each RBM may be specified independently via TrainLayer arguments. 
It is also possible to individually monitor the training of RBM layers (see figure 2, 
panel B). An established optimization metric for this is the reconstruction error (Hin-
ton, 2012), which is a proxy metric for the likelihood and computationally very easy 
to evaluate. After the stack of RBMs has been created, the composed network archi-
tecture can be trained and evaluated as a DBM. 

The optimization target for DBM training is the variational lower bound of the 
model’s log-likelihood (see figure 2, panel C). The exact value for the likelihood can 
only be calculated exactly for very small models. For larger models, it can only be 
estimated by stochastic algorithms such as annealed importance sampling. Although 
the likelihood is hard to evaluate, it often remains as the only evaluation criterion 
for clinical or genomic data since other evaluation strategies such as judging gener-
ated images or sentences, which is popular for imaging data or in natural language 
processing, are not applicable. Exact likelihood calculation and estimation are both 
implemented in our package for all architectures of multimodal DBMs. This allows 
for monitoring the training process to see whether the optimization is successful. To 
additionally support other evaluation strategies, we designed the monitoring to be 
as easily extensible as possible. The training can thereby be examined from all an-
gles. The optimization method itself is also designed to be customizable to run and 
evaluate different optimization algorithms. 
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