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One sentence Summary: Deep mutagenesis of the lambda repressor reveals that changes in gene 

expression will alter the strength and direction of genetic interactions between mutations in many 

genes. 

 

 

 

Summary  

 

An important goal in disease genetics and evolutionary biology is to understand how mutations 

combine to alter phenotypes and fitness.  Non-additive interactions between mutations occur 

extensively and change across conditions, cell types, and species, making genetic prediction a 

difficult challenge. To understand the reasons for this, we reduced the problem to a minimal system 

where we combined mutations in a single protein performing a single function (a transcriptional 

repressor inhibiting a target gene). Even in this minimal system, a change in gene expression altered 

both the strength and type of genetic interactions. These seemingly complicated changes could, 

however, be predicted by a mathematical model that propagates the effects of mutations on protein 

folding to the cellular phenotype.  We show that similar changes will be observed for many genes.  

These results provide fundamental insights into genotype-phenotype maps and illustrate how 

changes in genetic interactions can be predicted using hierarchical mechanistic models. 
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Highlights 

 

• Deep mutagenesis of the lambda repressor at two expression levels reveals extensive 

changes in mutational effects and genetic interactions 

 

• Genetic interactions can switch from positive (suppressive) to negative (enhancing) as the 

expression of a gene changes 

 

• A mathematical model that propagates the effects of mutations on protein folding to the 

cellular phenotype accurately predicts changes in mutational effects and interactions 

 

• Changes in expression will alter mutational effects and interactions for many genes 

 

• For some genes, perfect mechanistic models will never be able to predict how mutations of 

known effect combine without measurements of intermediate phenotypes 
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Introduction 

 

To interpret personal genomes, make accurate genetic predictions, and understand evolution we 

need to be able to predict the effects of mutations and also to understand how they combine 

(interact).  Large-scale projects (Costanzo et al., 2016) and deep mutagenesis (Bank et al., 2015; 

Diss and Lehner, 2018; Domingo et al., 2018; Fowler et al., 2010; Hietpas et al., 2011; Melamed et 

al., 2013; Olson et al., 2014; Sarkisyan et al., 2016) have revealed that mutations frequently interact 

non-additively, which makes accurate genetic prediction a difficult challenge (Lehner, 2011).    

 

Genetic (epistatic) interactions between gene deletions and loss-of-function alleles have been 

mapped genome-wide in budding yeast, revealing that both pairwise (Costanzo et al., 2016) and 

higher order (Dowell et al., 2010; Kuzmin et al., 2018) epistasis are widespread. Similarly, epistasis is 

widely detected when combining all possible pairs of mutations between two different proteins (Diss 

and Lehner, 2018), between natural genetic variants (Brem et al., 2005; Taylor et al., 2016) and 

between mutations selected during adaptation to new environments (Palmer et al., 2015; Weinreich et 

al., 2006). Systematic mutagenesis of individual proteins (Bank et al., 2015; Fowler et al., 2010; 

Hietpas et al., 2011; Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016) and 

RNAs(Domingo et al., 2018; Li et al., 2016; Puchta et al., 2016) has also revealed widespread 

epistasis within individual macromolecules. 

 

Moreover, comparisons across species (Dixon et al., 2008; Frost et al., 2012a; Roguev et al., 2008; 

Tischler et al., 2008), conditions (Bandyopadhyay et al., 2010; Díaz-Mejía et al., 2018a; Harrison et 

al., 2007) and cell types (Park and Lehner, 2015), have repeatedly found that genetic interactions are 

plastic, changing in different cells and conditions.  This plasticity has important clinical implications for 

both evolution and genetic disease. For example, a ‘synthetic lethal’ genetic interaction between a 

cancer driver mutation and a drug or gene inhibition that can be exploited to specifically kill tumour 

cells of one type often proves ineffective in other cell types that carry the same driver mutation 

(Ashworth et al., 2011).  

 

Why is this?  Why do both the effects of mutations and genetic interactions change across conditions, 

cell types and species?  Comparing between any two cell types, environmental conditions or species, 

there are typically thousands of molecular differences such as changes in gene expression, making 

this a difficult question to address. We reasoned that one way to address this question would be to 

ask it in a minimal system in which we could quantify the effects of mutations and how mutations 

interact and then test how these effects and interactions change in response to a simple perturbation 

of the cellular state. One of the simplest perturbations to make to a system is to change the 

expression level of a single gene, for example the expression level of the gene that is being mutated 

(Castel et al., 2018).  
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The phage lambda repressor (CI) is one of the best characterized proteins, serving as a paradigm for 

both gene regulation (Ptashne, 2004) and quantitative biology (Ackers et al., 1982; Igler et al., 2018; 

Lagator et al., 2017). The detailed and quantitative understanding of how this protein functions makes 

it an ideal system in which to address our question of how mutational effects and the interactions 

between mutations change when a system is perturbed. 

 

Here we show that, even in this minimal system, the effects of individual mutations and the 

interactions between mutations change extensively when the expression level of the mutated gene is 

altered. Indeed we show that even a simple perturbation can result in the interactions between 

mutations changing in sign, flipping between positive (suppressive) and negative (enhancing) 

epistasis. We show that these seemingly complicated changes can be both understood and predicted 

using a mathematical model that propagates the effects of mutations on protein folding to the cellular 

phenotype. More generally, changes in gene expression will alter the effects of mutations and how 

they interact whenever the relationship between expression and a phenotype is nonlinear.  Given that 

this is the case for most genes, shifts and switches in the interactions between mutations should be 

widely expected when the expression level of a gene changes.  
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Results 

 

Deep mutagenesis of the lambda repressor at two expression levels 

 

We used ‘doped’ oligonucleotide synthesis to introduce random mutations into the 59 amino acid 

helix-turn-helix DNA-binding domain of CI, and quantified the ability of each genotype to repress 

expression of a fluorescent protein (GFP) from the PR (Promoter R) target promoter by fluorescence-

activated cell sorting into near neutral  (Output1) and partially detrimental (Output2) bins and deep 

sequencing (Figure 1A – C). CI was expressed at a level similar to that observed in phage lysogens 

(Ptashne, 2004) (see STAR Methods). We quantified both the effects of single mutants and the 

genetic interactions between pairs of mutations. We then repeated the experiment expressing CI at a 

higher expression level and re-quantified the mutation effects and genetic interactions. The effects of 

wild type, 18 single and 4 double mutants when measured individually were highly correlated with 

their effects quantified in the pooled assay by deep sequencing at both expression levels (Figures 1D, 

rho=0.87, P<2e-16, n= 46; rho=0.82 and rho=0.71 respectively for low and high CI expression 

conditions, n=23, S1). 

 

At both expression levels, the single (Figure 2A, n=351) and double amino acid-change mutants 

(Figure 2B, n=468) had a bimodal distribution of target gene expression levels, with the low and high 

modes centred on the phenotypes observed for synonymous and premature stop codon-containing 

genotypes, respectively (Figure 2A, B). These bimodal distributions of mutational effects are 

consistent with observations for many different proteins (Diss and Lehner, 2018; Hietpas et al., 2011; 

Jiang et al., 2013; Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016; Starr et al., 2018; 

Wylie and Shakhnovich, 2011), as is the shifted distribution of double mutant phenotypes towards 

higher expression of the target gene (i.e. reduced activity (Diss and Lehner, 2018; Sarkisyan et al., 

2016)) (Figure 2A, B). Also consistent with previous deep mutagenesis datasets (Araya et al., 2012; 

Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016), mutations in the core residues of the 

protein were more detrimental (reduced repression of the target gene) than mutations in solvent-

exposed residues (Figures 2C, S2). Mutations in residues contacting DNA were also more detrimental 

than mutations in solvent-exposed residues (Figures 2C, S2). As expected, mutations to less similar 

amino acids were also more detrimental, as were mutations predicted to reduce the free energy of 

protein folding or DNA-binding (Figure S2C – F). Mutations to less hydrophobic amino acids were 

detrimental in the core and mutations that introduced a negative charge were detrimental at positions 

that contact DNA (Figure S2G – J). 

 

Mutation effects change non-linearly with a change in expression 

 

Comparing the expression of the target gene when the same single (Figure 2D) or double (Figure 2E) 

mutant genotypes were expressed at high and low levels revealed a nonlinear relationship, with four 

main classes of genotypes: (1) genotypes with little effect at either high or low expression (~42% of 
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single mutants), (2) genotypes having little effect at high expression but detrimental effects at low 

expression (~26% of single mutants), (3) genotypes that are partially detrimental at high expression 

but behave similarly to null alleles at low expression (~5% of single mutants), and (4) genotypes that 

behave similar to null alleles at both expression levels (~20% of single mutants). This ‘unmasking’ of 

detrimental mutation effects at low expression levels has been previously observed for mutations in a 

region of yeast Hsp90 (Jiang et al., 2013) and also for human disease-causing variants (Castel et al., 

2018). 

 

Changing expression alters how mutations interact  

 

We quantified epistasis between pairs of mutations as the difference between the observed and 

expected phenotypes based on a log additive model (Boucher et al., 2016). A positive epistatic 

interaction means that repression of the target gene by the double mutant is greater than expected 

and a negative interaction means that it is less than expected (Figure 2F). The distribution of epistasis 

scores differed between the two expression levels of the protein, with more strong positive and 

negative interactions at high expression (Figure 2G, two-sample Kolmogorov-Smirnov Test P=4.1e-8, 

D=0.19, n=468). Furthermore, epistasis scores of the same pairs of mutations at the two protein 

expression levels correlated only weakly (Figure 2H, rho=0.15, P=0.001,n=468). Plotting epistasis 

against the expected double mutational effects revealed systematic trends in the data (Figure S5A). 

Whereas double mutants with high expected target gene expression tended to interact positively at 

both low and high expression, double mutants with intermediate expected outcomes had stronger 

negative interactions at low expression, and double mutants with low expected target gene 

expression had stronger negative interactions at high expression (Figure S5A). 

 

A simple mathematical modelling predicts changes in mutational effects and interactions 

 

What accounts for these systematic patterns of epistasis and also their dependence on expression 

level? To address this, we turned to a previously published quantitative model of repression of the PR 

promoter by CI (Ackers et al., 1982) (Figure S3A). Briefly, the model describes the probability of CI 

repressing the expression of the target gene as a function of the CI concentration (Figure 3A, C). We 

first mapped each single mutant’s effect from the target gene expression level to the concentration of 

active CI. We then extended this model to include the effects of mutations on the folding of CI and 

estimated changes in the free energy of folding for each single mutant (see STAR Methods). To 

predict the CI concentration and the resulting expression of the GFP target gene for each double 

mutant, we summed the change in free energy for each single mutant and then mapped the total free 

energy to a change in protein folding and concentration, which was in turn mapped to altered 

repression of the target gene (Figure S3B, C). We compared the behaviour of the full model (Figure 

3B – E) to that of models that only considered protein folding (Figure S3D) or only repression of the 

target gene by CI (Figure S3E). 
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Both the full model and the transcription regulation-only model correctly predict the shape of the 

relationship between mutation effects at low and high expression (Figure 3E, n=819). However, only 

the full model provides good prediction of the phenotypes of double mutants from the phenotypes of 

the single mutants (Figure 3F). The full model (Figure 3G, H), but not the folding-only or regulation-

only models (Figure S4), also captures the systematic trends in how mutations combine at both low 

and high expression.  

  

Nonlinear concentration-phenotype relationships cause expression-dependent epistasis 

 

Inspection of the model reveals that it is the nonlinear relationship (Otwinowski et al., 2018) between 

protein concentration and target gene repression that causes the concentration-dependence of both 

mutational effects and genetic interactions (Figure 3D, I). Each mutation has a fixed effect on the free 

energy of protein folding (Figure 3B). When combining two mutations, the changes in free energy are 

summed and so alter the fraction of folded protein according to the nonlinear relationship in Figure 

3B. However, because the relationship between protein concentration and target gene expression is 

also nonlinear, the same change in protein concentration can lead to a different change in target gene 

expression depending upon the starting protein concentration (Figure 3B – D). The nonlinear 

relationship between protein concentration and target gene expression therefore transforms the 

concentration-independent effects of mutations on protein folding (Figure 3B) into concentration-

dependent changes in target gene expression (Figure 3C, D), resulting in concentration-dependent 

epistasis (Figures 3I – K, S5).  

 

Changes in gene expression reverse the sign of genetic interactions 

 

Comparing how mutations combine at different expression levels in the full model revealed that 

changes in expression not only alter the magnitude of genetic interactions but can also switch their 

sign (between positive and negative interactions, Figure 4A, B). Re-analysis of the experimental data 

validated this prediction, with mutations in the regime predicted by the model switching from positive 

to negative epistasis as the expression level increased (Figures 4C, S6). In other words, genetic 

interactions that are suppressive at one expression level can become enhancing at another 

expression level (Figure 4D,E). Our model and data therefore show for the first time that changes in 

expression can alter both the strength and the type of epistasis between mutations.   

 

Changes in gene expression will alter genetic interactions for many genes 

 

To what extent should we expect these conclusions to apply to other genes? Mutational effects and 

genetic interactions will be expression-level dependent whenever the relationship between expression 

and a phenotype is nonlinear. Such nonlinear expression-fitness functions are indeed very common in 

biology because of the abundance of cooperation, competition, and feedback, with nonlinear functions 

used to model almost all aspects of cell biology (Bhaskaran et al., 2015). Moreover, the relationship 
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between expression level and fitness (growth rate) has been systematically quantified for 81 yeast 

genes and, for all genes sensitive to a change in expression in the tested conditions, the expression-

fitness function was nonlinear (Keren et al., 2016).  

 

We quantified epistasis and its sensitivity to concentration changes in three of the most common 

expression-fitness functions of yeast genes (Keren et al., 2016). For many yeast genes, fitness 

increases as a concave function as their expression is increased from zero to a fitness plateau close 

to the wild-type expression level (Figure 5A). For these genes, epistasis changes in magnitude but not 

sign as the expression level changes (Figures 5C, E, G, S7). Similar results are seen for genes where 

fitness decreases as a concave function as expression is increased (Figure 5). Multiple genes in 

yeast have a ‘peaked’ expression-fitness landscape(Keren et al., 2016). For these genes epistasis 

can change substantially and also switch in sign as the expression level changes because of the non-

monotonic relationship between the free energy of protein folding and fitness (Figure 5B, D, F, H).  

 

Non-monotonic expression-phenotype relationships result in ambiguous genetic prediction 

 

Finally, analysing how mutations combine in genes with different expression-fitness functions we 

realised that for some genes accurate predictions for how mutations combine will never be possible, 

even with a perfect mechanistic model. Specifically, when there is a non-monotonic relationship 

between the expression level and a phenotype, the same observed phenotype for a single mutant can 

map to two or more different free energies of protein folding, leading to multiple possible double 

mutant phenotype predictions for each mutation pair (Figures 6, S8). For these genes, even a perfect 

mechanistic model is therefore insufficient to predict how mutations of precisely measured effects 

combine to alter a phenotype. In such cases it will always be necessary to make additional 

measurements – for example of intermediate phenotypes such as protein concentrations – to predict 

how two mutations will combine to alter a phenotype.  
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Discussion 

 

Non-additive interactions between mutations greatly complicate genotype-phenotype maps and so 

make genetic prediction a difficult challenge.  That the interactions between mutations change across 

conditions, for example between different types of cancer (Park and Lehner, 2015), further 

complicates this.  To better understand the plasticity of both mutational effects and genetic 

interactions, we studied the question in a very well-understood minimal system where we could 

quantify how both the effects of mutations and their interactions change in response to a simple 

perturbation.  We chose to use the lambda repressor as a model system because it is one of the best-

understood regulatory proteins in biology and because there are very well established and accurate 

mathematical models that describe its regulatory activity (Ackers et al., 1982).  

 

For the lambda repressor, we found that a change in expression altered both the effects of individual 

mutations and how these mutations combined. Moreover, we found that changes in expression 

altered both the strength and the type of interactions between mutations, with many mutations 

switching from positive (suppressive) to negative (enhancing) epistasis at different expression levels.  

 

Although our experimental work focussed on the lambda repressor, by analysing other common 

expression-fitness functions, we have shown that our conclusions will widely apply to many genes.  

Indeed changes in expression will transform the effects of mutations and their interactions whenever 

the relationship between expression and a phenotype is nonlinear. In yeast, where expression-fitness 

functions have been systematically quantified (Keren et al., 2016), this is normally the case: for most 

genes the growth rate of the organism does not depend in a linear way on the gene’s expression 

level. For many genes, therefore, changes in expression alone will drive changes in mutational effects 

and genetic interactions.  Thus we should expect that genetic interactions will change extensively 

across conditions and cell types in an animal, as well as between individuals in a population and 

between different species.  Analyses of genetic interactions across conditions (Bandyopadhyay et al., 

2010; Díaz-Mejía et al., 2018b; Harrison et al., 2007; Onge et al., 2007), cell types (Ashworth et al., 

2011; Park and Lehner, 2015), and species (Dixon et al., 2008; Frost et al., 2012b; Roguev et al., 

2008; Tischler et al., 2008) are highly consistent with this.  

 

Changes in genetic interactions are highly relevant to both agriculture (Soyk et al., 2017) and human 

genetic disease.  For example, dynamic epistasis may contribute to the tissue-specificity of human 

disease mutations as well as the cancer type-specificity of interactions between cancer driver 

mutations (Park and Lehner, 2015).  Moreover, the success of synthetic lethal strategies to 

specifically kill target cells depends on the stability of these interactions.  Many examples now exist of 

synthetic lethal gene perturbations that are effective in one cancer cell type but ineffective in other cell 

types, and the most successful targets will be interactions that are very stable across individuals and 

perturbations (Ashworth et al., 2011; Park and Lehner, 2015).   
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Finally, the plasticity of epistasis will also need to be incorporated into evolutionary models. Epistasis 

is a strong determinant of evolutionary paths (Breen et al., 2012; Starr and Thornton, 2016). The 

plasticity of epistasis caused by changes in the expression level suggests that the accessible and 

most likely evolutionary paths will change over time as the expression level of a gene is altered.   

 

Very importantly, we found that the seemingly complicated shifts and switches in genetic interactions 

as the expression level of the lambda repressor changed could be both understood and accurately 

predicted using a hierarchical mechanistic model that propagates the effects of mutations on the free 

energy of protein folding to the cellular phenotype.  Considering just the effects of mutations on 

protein folding or just how the repressor regulates gene expression could not account for the changes 

in interactions.  We envisage that such multi-step models that propagate the effects of mutations on 

protein stability to higher-level phenotypes may prove generally useful for genetic prediction and for 

understanding how mutations combine to alter phenotypes, including in human disease.  

 

In our analyses we only considered the effects of mutations that alter the free energy of protein 

folding.  Altered protein stability is likely to be by far the most common affect of amino acid changing 

mutations (Tokuriki and Tawfik, 2009a).  However, subsets of mutations will have additional effects, 

for example altering the affinity and kinetics of molecular interactions.  In future work it will be 

important to study how mutations with different molecular effects interact with each other, as well as 

with mutations that affect stability and with changes in expression.  Our model also makes the 

assumption that the effects of mutations on protein stability are independent of the expression level 

but this may sometimes not be the case, for example because of chaperone titration (Tokuriki and 

Tawfik, 2009b) or interactions with other molecules (Bridgham et al., 2009; Diss and Lehner, 2018).  

Concentration-dependent changes in the effects of mutations on protein stability will lead to further 

shifts in mutational effects and genetic interactions as a gene’s expression changes. 

 

Finally, although we found that a hierarchical model provided accurate genetic prediction for the 

lambda repressor, we also realised that there are cases where such a mechanistic model will fail to 

accurately predict how mutations combine to alter phenotypes.  Specifically, when there is a non-

monotonic relationship between the concentration of a protein and a phenotype, it is sometimes not 

possible to predict how two mutations will combine, even with a detailed mechanistic model. This is 

because some phenotypes map to two or more possible changes in protein concentration and so to 

multiple changes in the free energy of protein folding.  Without additional measurements it is not 

possible to tell which of the underlying changes is causing the phenotype. This results in multiple 

possible outcomes when mutations of known phenotypic effect are combined.  In these cases, 

additional measurements of intermediate phenotypes such as protein concentrations will always be 

required for accurate genetic prediction. 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/578419doi: bioRxiv preprint 

https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgements:   

We thank members of the Lehner lab and J. Ren for comments on the manuscript.  This work was 

supported by a European Research Council (ERC) Consolidator grant (616434), the Spanish Ministry 

of Economy and Competitiveness (BFU2017-89488-P and SEV-2012-0208), the Bettencourt 

Schueller Foundation, Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR, 2017 SGR 

1322.), and the CERCA Program/Generalitat de Catalunya.  X. Li was supported in part by a 

fellowship from the Ramón Areces Foundation.  

 

Authors Contributions: X.L. performed all experiments, analyses, and modelling. J.L. built the 

plasmid construct pCIPR. X.L., J.L., R.D., and B.L. conceived the project.  X.L. and B.L. designed the 

project and interpreted the data, X.L., P.B-C., and B.L. wrote the manuscript.  

 

Declaration of Interests: There are no competing interests.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/578419doi: bioRxiv preprint 

https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure titles and legends:  

 

Figure 1. Deep mutagenesis of the lambda repressor CI DNA-binding domain at two 

expression levels (see also Figure S1).  

(A) CI-operator complex with mutated HTH domain in magenta.  

(B) Experimental design.  

(C) Distribution of GFP target gene expression when the mutant library is expressed at high and low 

levels and when WT or no CI is expressed. Sorted populations with GFP level similar to the wild-type 

population (Output1), and population with intermediate GFP level (Output2) were collected for deep 

sequencing.  

(D) Correlation of target gene expression estimated by deep sequencing with target gene expression 

individually quantified for wild type, 22 single and double mutants at low and high expression levels. 

Error bars denote standard error of the mean from four (y-axis) and three (x-axis) biological replicates.    

 

Figure 2. Comparison of mutational effects and genetic interactions at two expression levels 

(see also Figure S2).  

(A and B) Histogram of the mean mutational effects of single (n=351) (A) and double (n=468) (B) 

missense amino acid variants together with synonymous (n=114 for single, n=37 for double) and 

nonsense (n=21 for single, n=47 for double) variants.  

(C) Effects of single mutants in different structural regions. Classes compared using Wilcoxon Rank 

Sum test.  

(D and E) Comparison of mean mutational effects at the two expression levels.  

(F) Log-additive definition of epistasis.  

(G) Cumulative distributions of mean epistasis scores at the two expression levels (n=468). 

Distributions compared using two-sample Kolmogorov–Smirnov test.  

(H) Mean epistasis scores at the two expression levels. Error bars in (D, E, H) denote standard error 

of the mean.   

 

Figure 3. Combined model of protein folding and regulatory interaction predicts mutational 

effects and genetic interactions (see also Figures S3 – 5).  

(A) Mutations alter the free energy of protein folding (ΔGF) and so protein concentration and 

repression of the target gene.  

(B – D) Relationships between change in folding energy (ΔΔGF) and the fraction of folded protein (B), 

protein concentration and target gene expression (C), and change in folding energy (ΔΔGF) and target 

gene expression at low (blue) and high (red) expression (D). The effect of an example mutation (A) is 

indicated in each graph.  

(E) Regulatory interaction-only but not the protein folding-only model predicts the inverse relationship 

between target gene expression at the two expression levels. SSDC: sum of the squared distance 

from the curve.  
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(F) Percentage of variance explained for double mutations for each model. ‘L’ indicates low 

expression and ‘H’ indicates high expression of CI.  

(G and H) Observed vs. predicted target gene expression for the log-additive and full folding + 

regulation model at low (G) and high (H) CI expression. RMSD: root-mean-square-deviation between 

the predicted and observed data. I, Predicted epistasis at low and high expression for the full model.  

(J and K) Model-predicted and experimentally-observed target gene expression and epistasis when 

combining mutants at low (J) and high (K) expression. Mutations were ordered by their effects into 5 

equally-populated bins and the median target gene expression and epistasis plotted for each bin 

combination.    

 

Figure 4. Changes in expression alter both the strength and sign of epistasis (See also Figure 

S6). 

(A and B) Changes in epistasis strength (A) and class (B) between low and high expression predicted 

by the model.  

(C) Experimentally-determined epistasis scores for double mutants with the indicated model-predicted 

epistasis scores.  

(D and E) The same pair of mutations can interact positively at low expression (D) and negatively at 

high expression (E).  

 

Figure 5. Other common expression-fitness functions generate concentration-dependent 

genetic interactions (See also Figure S7). 

(A and B) Two common expression-fitness functions in budding yeast.  

(C and D) Relationship between change in free energy of protein folding and fitness for these 

functions,  

(E and F) Change in epistasis magnitude between high and low expression.  

(G and H) Change in epistasis sign between high and low expression.  

 

Figure 6. Unpredictable double mutant phenotypes (See also Figure S8). 

(A) For ‘peaked’ expression-fitness functions such as that shown in Figure 5B, the same change in 

fitness can be caused by two different changes in folding free energy.  

(B) For a pair of single mutant phenotypes there can therefore be up to 4 possible double mutant 

outcomes. 
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Supplemental figure titles and legends:  

 

Figure S1. Reproducibility of mutational effects between biological replicates. Related to 

Figure 1.  

(A and B) Spearman correlations of mutational effects among three biological replicates for low (A) 

and high (B) CI expression.  

(C) Comparisons of mutational effects between low and high expression level for 22 individually 

retested single and double mutants together with wild type. Error bars denote standard error of the 

mean.  

(D) Density plots of GFP expression for the 22 individually re-tested single and double mutants at the 

two expression levels of CI.  

 

Figure S2. Mutational effects depend on both the chemical features of amino acid 

substitutions and the tertiary structural positions. Related to Figure 2.  

(A) Structure of CI dimer bound to an operator (PDB 3bdn). One monomer is shown as a ribbon and 

the other one with all its atoms shown as spheres. Only the mutagenized HTH domain is shown. Left 

panel is the structural classification of the residues. Middle and right panels show the positional 

median z-scores of GFP expression levels after subtracting wild type z-scores at the two expression 

levels of CI. Z-scores rather than absolute GFP expression levels are shown here to compare 

positional sensitivity to mutations at two expressions of CI.  

(B) Heatmaps of mean GFP expression for single mutations at the two expression levels. Amino acids 

are ordered based on their similarities, from top to bottom: hydrophobic aromatic (F,W,Y), 

hydrophobic nonpolar aliphatic (P,M,I,L,V,A,G), hydrophilic polar uncharged (C,S,T,N,Q), hydrophilic 

negatively charged (D,E) and hydrophilic positively charged (H,K,R). Wild type amino acids are shown 

as letters inside the heatmap.  

(C and D) Target GFP expression compared to the amino acid substitution matrix scores 

(BLOSUM62) at low (C) and high (D) expression of CI.  

(E and F) Target GFP expression compared to the FoldX-predicted changes in the folding energy of 

the protein (E) and protein-DNA binding (F) at the two expression levels. Linear regression lines for 

each structural class are shown with the shaded areas showing the permutation-based 95% 

confidence intervals for the fit. ns – not significant.  

(G and H) Target gene expression compared to the change in the hydrophobicity at low (G) and high 

(H) expression of CI.  

(I and J) Target gene expression compared to to changes in the side chain charges at low (I) and high 

(J) expression of CI. 
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Figure S3. Mathematical models. Related to Figure 3.  

(A) Eight configuration states (CS) of the PR promoter.  

(B) Obtaining functional protein concentration (panels b1,b4), fraction of folded protein (panels b2,b3), 

and change in folding energy (panels b2,b3) from GFP expression levels of a mutation at low 

expression of the protein.  

(C) Scheme for predicting double mutants’ GFP expression levels from single mutants’ GFP 

expression levels based on different models.  

(D) Folding-only model.   

(E) Regulation-only model. 

 

Figure S4. Predictions of double mutants based on folding-only or regulation-only model. 

Related to Figure 3.  

(A and B) Observed versus predicted GFP expression levels for the folding-only (A) and regulation-

only (B) models. RMSD: root-mean-square-deviation from the predicted to the observed data.  

(C – F) Binned median target gene expression levels (C, E) and epistasis scores (D, F) for the folding-

only (C, D) and regulation-only (E, F) models. Mutations were sorted into 5 equally populated bins by 

their single mutant phenotypes as in Figure 3J,K. 

 

Figure S5. Epistasis pattern predicted from different models. Related to Figure 3.  

(A – D) Epistasis versus GFP expression levels for observed data (A), predicted from full model (B), 

folding-only model (C) and regulation-only model (D).  

(E – G) Epistasis scores at the two expression levels of CI protein for full model (E), folding-only 

model (F) and regulation-only model (G). Two-sample Kolmogorov–Smirnov test was performed for 

cumulative distributions of epistasis scores at the two expression levels of CI protein.  

 

Figure S6. Observed versus predicted expression level-dependent changes in epistasis. 

Related to Figure 4.  

(A) Histogram of the model-predicted epistasis score distributions at the two expression levels of the 

protein. The grey dotted lines mark the center bin with the epistasis score thresholds of -0.25 and 

0.25; and the black dotted lines mark the center three bins with the epistasis score thresholds of -0.75 

and 0.75.  

(B and C) Distribution of the observed epistasis scores grouped by the model-predicted classes of 

epistasis scores, with classification threshold of -0.25 and 0.25.  

(D and E) Distribution of the observed epistasis scores grouped by the model-predicted classes of 

epistasis scores, with two additional classification thresholds, between -0.75 and 0.75 (D) and 

between -0.1 and 0.1 (E). “L” - low expression and “H” - high expression.  

 

Figure S7. Concentration-dependent genetic interactions in the yeast fitness landscape. 

Related to Figure 5.  

(A – C) Concentration-dependent mutation effects and epistasis in a “decreasing” expression-fitness 
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function(Keren et al., 2016).  

(D – L) Concentration-dependent epistasis for three common expression-fitness functions with stable, 

marginally stable and unstable proteins.  

 

Figure S8. Unpredictable double mutant phenotypes. Related to Figure 6.  

(A) A measured fitness effect can be caused by two different changes in protein concentration in a 

‘peaked’ fitness landscape when the WT protein is expressed at the fitness optimum.  

(B) Only very small changes in fitness can be mapped to either increased or decreased fraction of 

folded protein, due to the limit of fraction of folded protein (maximum equals to 1). For example, a 

mutant with the fitness effect of -0.02 (ωA) can be caused by two different mutations (A1 and A2) that 

cause changes in the free energy of protein folding (ΔΔGF,A1 or ΔΔGF,A2) and so two different changes 

in protein concentration. In contrast, larger fitness changes can only be caused by one change in free 

energy of folding. For example, a mutant with a fitness effect of -0.05 (ωB) can be caused by either a 

5-fold increase or decrease in the functional protein concentration. However, a 5-fold increase in 

concentration cannot be achieved by a change in folding because it would require more than 100% of 

the protein to be folded. Therefore, a mutant with a fitness effect of -0.05 can only be caused by a 

decrease in protein stability (mutant B1).  

(C) Combining two mutations of known fitness can lead to two possible double mutant outcomes and 

either positive or negative epistasis. For the case of A2 + B1, mutant A2 is detrimental in the wild type 

background (ωA2=-0.02), but beneficial at the mutant B1 background (ωA2B1- ωB1= -0.02 –(-0.05)= 

0.03). The interaction between mutant A2 and B1 is. Therefore an example of sign epistasis. The 

possible outcomes are up to 4 if the fitness landscape is not symmetrical.  

 

Figure S9. Fluorescence-activated cell sorting (FACS). Related to STAR Methods.  

(A and B) An example (High expression, replicate 3) of the gating strategy for FACS.C. FACS 

recordings from each biological replicate performed on different days. GFP_index is used to quantify 

variation in fluorescence readings between batches.  

 

Figure S10. Protein quantification. Related to STAR Methods.  

(A) Distribution of fluorescence signal of cells expressing C-terminal GFP-tagged CI at high and low 

expression levels.  

(B) Fluorescence linearly correlates with the number of molecules of equivalent soluble fluorochrome 

(MESF) from GFP beads.  

(C) Relative fold-change of soluble CI protein concentrations at high versus low expression levels. 

Error bars denote standard error of the mean.  

 

Figure S11. Filtering of sequencing data. Related to STAR Methods.  

(A and B) Sequencing data was filtered to only retain genotypes with at least 100 read counts (red 

line) in all three biological replicates for both low (A) and high (B) expression datasets. Each smooth 

scatter panel shows the relationship between enrichment scores (Sv,o1 for Output1 and Sv,o2 for 
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Output2) and input read counts for each replicate. The top density plot shows the input count 

distribution for each replicate.  

(C and D) Only variants with propagated mean enrichment score standard errors smaller than 1 (red 

line) were retained.  

 

Figure S12. Converting enrichment scores to GFP expression.  Related to STAR Methods.  

(A – C) Relationship between GFP signals either with Output1 enrichment scores (A), with Output2 

enrichment scores (B), or with transformed Output2 enrichment scores (C) for the individually tested 

variants (n=23).  

(D and E)  Relationship between Output1 and Output2 enrichment scores (D) or transformed Output2 

enrichment scores (E) for all single nucleotide variants (n=531).  

(F and G) Comparisons of individually tested mean GFP signals with the predicted mean GFP signals 

from Output1 and Output2 enrichment scores (F) or with Output1 and transformed Output2 

enrichment scores (G) (n=23). All error bars denote standard error of the mean. RMSD: root-mean-

square-deviation between the predicted and observed data, after averaging the replicates. 

 

Figure S13. Correcting for technical biases.  Related to STAR Methods.   

(A) Relationship between predicted GFP expression for biological replicates for all single nucleotide 

variants (n=531) before (gray) and after (blue or red) transforming the replicate 1 and 3 data to the 

reference replicate 2 (see Methods).  

(B and C) Density plot of GFP expression before (B) and after (C) correcting for technical biases by 

transforming replicates 1 and 3 to the reference replicate 2 for all single nucleotide variants (n=531).  

(D) Smooth scatter showing the relationship between the mean GFP signal of all amino acid 

genotypes (n=888) before and after scaling to the detection range (see Supplementary Methods).  

 

Figure S14. Mathematical modelling. Related to STAR Methods.    

(A) Relationship between free CI dimer concentration and total CI concentration in the cell in Ackers’ 

model.   

(B – D) Parameter search for the line intercept that best describes the relationship of GFP at low and 

high expression for the folding-only model. Dashed lines in (B) and (D) mark equal GFP level at the 

two expression levels. Solid lines in (B) mark the range of the intercepts searched for the best fit. Red 

dashed line in (C) shows the best fit (the smallest SSDC).  

(E) Projection of individual data points from observed GFP expression levels at low and high CI 

expression to the model-predicted curve. 
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STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Ben Lehner (ben.lehner@crg.eu) 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Microbe strain and growth conditions 
 
E.coli BW27783 MK01 strain (kindly provided by the M.Isalan lab), modified to homogenously express 
arabinose-induced genes (Kogenaru and Tans, 2014) was used to express the mutant library. A 
single colony of the E.coli BW27783 MK01 strain was picked Luria-Bertani (LB) agar plate, grown 
overnight at LB liquid medium supplemented with chloramphenicol to 14μg/ml concentration at 37°C. 
The 500μl overnight growth media with cells mixed with 500μl of 50% glycerol were stored at -80°C 
freezer. For experiments, cells were always grown at 37°C in LB liquid medium supplemented with 
appropriate antibiotics. For specific experimental growth conditions, please refer to the method details 
in the following section.  
 

METHOD DETAILS 

Experimental Methods 

Mutant oligonucleotide library synthesis and amplification 
 
A 250-nucleotide-long oligonucleotide library was synthesized by TriLink BioTechnologies. Library 
oligonucleotides contain a 177-nucleotide-long sequence of the CI Helix-Turn-Helix domain  (52th-
210th nucleotide bases, based on CI ORF GeneID:3827059), “doped” at each position with 0.4% of 
each of the three non-reference nucleotides. The “doped” region is flanked by invariant sequences 
corresponding to the wild type sequences of immediate upstream (36 nucleotide bases) and 
downstream (37 nucleotide bases) of the doped region and used as constant overhang regions for the 
PCR primers to bind. The designed oligonucleotide sequence is:  

5’CCATTAACACAAGAGCAGCTTGAGGACGCACGTCGCcttaaagcaatttatgaaaaaaagaaaaatgaacttggc
ttatcccaggaatctgtcgcagacaagatggggatggggcagtcaggcgttggtgctttatttaatggcatcaatgcattaaatgcttataacgcc
gcattgcttgcaaaaattctcaaagttagcgttgaagaatttAGCCCTTCAATCGCCAGAGAAATCTACGAGATGTATG 
3’  

Upper case indicates the constant regions and lower case the “doped” sequence.    
The ‘doped’ library was dissolved in 500ul MilliQ water as a stock solution, and 10μl of the stock 
solution was further diluted in 500ul of MilliQ water as a working solution. The working solution 
oligonucleotide concentration was estimated to be 390ng/μl based on NanoDrop (Thermofisher 
Scientific) measurement of ssDNA concentration. Next, the working solution ‘doped’ library was 
further diluted by a factor of 100, and a total of about 40ng was used as the template to synthesize 
the complementary strand as well as to be amplified. Polymerase chain reaction (PCR) was 
performed using Phusion high fidelity PCR kit (Thermo Scientific) with primers that bind to the 
constant regions of the ‘doped’ library oligonucleotide (Table S1). Each 50μl PCR reaction consisted 
of 10μl of the ‘doped’ library oligonucleotide as the template, 10μl of 5X Phusion HF reaction buffer, 
1μl of 10mM dNTP (NEB), 2.5μl of 10μM forward and reverse primers each, 0.5μl of Phusion 
polymerase and 12.5μl MilliQ. PCR reactions followed the manufacturer’s instruction for a standard 
protocol.18 PCR cycles were performed to minimize incorporation of PCR errors to the library. PCRs 
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were performed with annealing temperature at 55°C and extension at 72°C for 30 seconds. The 
fragment with the correct size (230 nucleotide bases) was visualized and retrieved using the 2% size-
select E-gel purification system (Invitrogen). To achieve optimal ligation efficiency, the size-selected 
PCR fragment was further purified with the MiniElute PCR purification kit (QIAGEN) to remove excess 
salt. The Gibson assembly (GA) system was used to ligate the PCR fragments to the modified 
plasmid backbone (see below) following the standard GA protocol.  

Plasmid constructs and the expression of the mutant plasmid libraries 
 
The CI open reading frame (GeneID:3827059) was cloned into the bacterial expression vector 
pBADM-11 (obtained from CRG biomolecular screening & protein technologies unit), between the 
arabinose-inducible promoter pBAD and three stop codons in all three reading frames (“tagttaagtga”), 
followed by the strong synthetic bidirectional terminator L3S2P21(Chen et al., 2013). The PR 
promoter (that overlaps with OR3, OR2 and OR1 repressor binding sites) followed by the RBS- GFP 
(LVA) ORF(Andersen et al., 1998) was cloned downstream of the L3S2P21 terminator. Three stop 
codons in all three reading frames (“tagttaagtga”) were cloned immediately downstream of the GFP 
ORF and upstream of the pBADM-11 intrinsic rrnB_T2 terminator.  
The two plasmid constructs (pCIPR plasmids) used in our experiments—the construct expressing CI 
to a high concentration (pCIPR-High) and the construct expressing CI to a low concentration (pCIPR-
Low)—differed in the DNA sequences between the predicted strongest ribosome binding sequence 
(RBS) and the ATG start codon of the CI gene. In pCIPR-High, the start codon is immediately after 
the RBS. In pCIPR-Low the start codon is 82 nucleotides downstream of the RBS.  
 
The pCIPR-High and pCIPR-Low plasmids were linearized by removing the coding region of the CI 
helix-turn-helix motif (HTH) domain that contains the ‘doped’ sequence. The doped oligonucleotide 
library and the linearized plasmids were assembled using the GA system (master mix provided by 
CRG biomolecular screening & protein technologies unit) following the standard protocol. The 
assembly reactions were dialysed using 0.025um VSWP membrane filters (Merk Millipore Ltd) and 
electroporated into the high efficiency commercial NEB10β competent cells (NEB, C3020K). After 
recovery in 500μl Super Optimal broth with Catabolite repression (SOC) culture media at 37°C for one 
hour, an aliquot of the cells was plated on Luria-Bertani (LB) agar plate with 100μg/ml ampicillin to 
examine the transformation efficiency, and the rest was diluted 1 in 200 in fresh Luria-Bertani 
(LB) broth with 100μg/ml ampicillin for overnight growth. About 780,000 independent transformant 
colonies were obtained for the mutant plasmid library construction. Plasmids were purified using the 
Qiagen Midiprep kit (cat.12143) and the purified plasmids were then used as the mutant plasmid 
library.  

Making highly efficient electro-competent cells  
 
We chose the E.coli BW27783 MK01 strain (kindly provided by the Isalan lab)(Kogenaru and Tans, 
2014), modified to homogenously express arabinose-induced genes, to express the mutant library. A 
single chloramphenicol-resistant colony of was picked into 4ml LB medium with 2.8μl of 20mg/ml 
chloramphenicol and let grow for 3.5 hours at 37°C. 2ml of this pre-culture bacterial media was then 
diluted into 250ml of pre-warmed 2 �Ty media with 175μl 20mg/ml chloramphenicol for 2 hours and 
10 minutes and ensured that the OD600 did not exceed 0.6. The culture was cooled down on ice for 5 
minutes, divided into four 50ml falcon tubes and centrifuged at a speed of 4000rpm for 5 minutes at 
4°C . The cell pellets were suspended in 50ml cold Milli-Q water in each of the four falcon tubes and 
then centrifuged again at a speed of 4000rpm for 5 minutes at 4°C. After that, the cell pellets were 
suspended in 50ml cold Milli-Q water in two falcon tubes, and the centrifugation step was repeated as 
before. A final wash of cell pellets was performed in cold 10% glycerol. After centrifuging for 7 minutes 
at 4°C and 4000rpm, the supernatant was shaken away and the cells were re-suspended in their own 
juice.  
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Expressing the mutant library and fluorescence-activated cell sorting (FACS)  

Sample preparation 
 
0.5μl of 200ng/μl pCIPR plasmids were transformed into 25μl electrocompetent cells made on the 
same day, inside a 0.1cm-gap cuvette (Bio-Rad) using the Gene Pulser XcellTM electroporation 
system (Bio-Rad), with the pre-set protocol for E.coli transformation. Cells were recovered in SOC 
culture media at 37°C for one hour, and an aliquot of the cells was plated on LB agar plate with 
100μg/ml ampicillin to examine the transformation efficiency. One transformation with this step 
produced millions of transformants without creating a bottleneck. Cells were grown overnight in 25ml 
LB medium with 100μg/ml ampicillin. An aliquot of the overnight culture was diluted 1 in 100 into LB 
media containing 100μg/ml ampicillin, 0.4% glucose and 0.2% arabinose and grown at 37°C for 2.5 
hours to reach an OD600 of about 0.7. The bacteria culture was further diluted 1 in 5 with fresh 
medium (same composition) and the cells grown for another hour, after which the OD600 was about 
0.9. As a control for no CI induction (no repression of the target gene GFP), cells were grown in the 
LB medium without arabinose but with glucose. All experiments included cells with plasmids 
containing the wild type CI genotype (positive control) and cells containing an empty pBADM-11 
plasmid (to quantify cell autofluorescence) in addition to the cells carrying the mutant library. After the 
induction of CI expression, cells were immediately diluted 1 in 500 into Phosphate buffered saline 
(PBS) and put on ice before FACS.  

Sorting  
 
Sorting was performed at the CRG FACS core facility. A FACSAria II SORP sorter along with the 
FACSDiva Version 6.1.2 software was used to sort the cells. Bacterial cells were selected based on 
side scatter (SSC) and forward scatter (FSC), and gate selection was based on FITC-A fluorescence 
filter for GFP (Figure S9A). Cells were sorted into three gates: the near neutral gate was defined as 
including 90% of the matching wild type population. The completely detrimental gate included 90% of 
non-repressed high GFP population (no CI induction). The intermediate population between the two 
populations mentioned above (about 3~4% of all the library population was in this gate) was also 
collected (Figure S9B). Purity of sorting was examined by passing the sorted cells through the FACS 
again immediately after sorting, and recording the population proportions belonging to the sorted gate. 
At least 30 million cells were sorted per biological replicate.  

Post-sorting  
 
Sorted cells were kept on ice in PBS in 15ml falcon tube each. They were centrifuged at 4000rpm at 
4°C for 30 minutes. The supernatant was removed carefully, and the plasmid-prep was performed 
directly form the cell pellets. Plasmids from the sorted cells (together with the unsorted input cells) 
were extracted immediately with the QIAprep Spin Miniprep kit (QIAGEN). The mutagenized region 
was amplified using barcoded PCR primers (Table S1) for 25 cycles using hot start Phusion 
polymerase (Thermo Scientific) in 50μl reactions, following the manufacturer instruction. PCR 
products were purified using the E-gel 2% size-select system (Invitrogen) to remove smaller 
fragments. In order to produce three full biological replicates, the procedure described up to this -from 
transformation of the mutation plasmid library to cell sorting and plasmid extraction- was performed 
three times on three different days (Figure S9C). 
 
Concentration of each purified PCR product was measured on NanoDrop (Thermofisher Scientific). 
Equimolar quantities of three independent amplifications of the input library (Input) and equimolar 
quantities of three output replicates from near neutral population (Output1) were pooled together in 
one Eppendorf tube (Sample1). Equimolar quantities of three output replicates from intermediate 
population (Output2) were pooled together as a separate sample in a different Eppendorf tube 
(Sample2). The two samples were sent to EMBL Genomics Core Facility where two PCR-free 
sequencing libraries were prepared and sequenced on Illumina HiSeq2000 platform. The PCR-free 
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sequencing library Sample1 was run on two lane of an Illumina HiSeq 2500 for each CI concentration 
experiment. The PCR-free sequencing library Sample2 was multiplexed with other samples to about 
10% of one lane loading, considering the small size of the cell population.  

Verification of mutational effects  
 
22 genotypes (Figure S1C,D and Table S2) were selected based on their enrichment scores and 
reproducibility (Standard error of the mean enrichment scores <1, see Data analysis section) at both 
CI concentrations for re-testing. Individual genotypes were constructed using the NEB Q5 site-
directed mutagenesis kit (NEB cat. E0554S) with the wild type pCIPR-High and pCIPR-Low plasmids 
as templates. After verifying the sequences by Sanger sequencing, we picked four colonies from each 
genotype to examine their target gene GFP expression levels (Figure S1C, D). The experiment was 
performed in one batch on the same day so that the results from this experiment could be used as a 
confirmation set to which other FACS experiment sets can be mapped. LSR Fortesta florescence 
analyser was used at the CRG FACS Core facility.  
 
GFP signal and the shape information of 10,000 cells per biological replicate were recorded, and the 
“.FCS” files from the recordings were analyzed using the FlowCore package in R. Cells were filtered 
based on SSC and FSC, and the first 3,000 cell recordings were discarded to avoid cross-well 
contamination. The mean output GFP signal (in AU, arbitrary units) from about 5,000 cells in each 
biological replicate of individual variant was calculated after the filtering process. The mean GFP 
signal and standard error of the mean for each variant were obtained from each biological replicate.  

Quantification of CI protein expression  
 
The relative amount of CI protein at the two expression levels was quantified by tagging CI with GFP 
at its C-terminus with the flexible linker amino acid sequence GSAGSAAGSGEF (Waldo et al., 1999). 
The PR-GFP sequences were removed from the original pCIPR-High and pCIPR-Low plasmids to 
make plasmids pCIGFP-High and pCIGFP-low. Fluorescence from CI-induced cells was analysed 
using a LSR Fortesta florescence analyser at the CRG FACS Core facility (Figure S10A). In the same 
experiment, GFP calibration beads (CloneTech) were used to calibrate and obtain exact molecule 
numbers based on the GFP signal (Figure S10B, C). For quantification, mean GFP signals and 
standard errors of were calculated from four biological replicates.  

Data analysis 

From sequencing data to target gene expression 
 
Our data analysis pipeline consists of three main parts: 1) Filtering. 2) Mapping enrichment scores to 
the target gene (GFP) expression levels. 3) Correcting for the batch effects (Figure S9C) and the 
detection limits set by the experiment. The processed final datasets for the analysis were organised 
both on nucleotide level and amino acid level. Even though our conclusions were mainly based on 
amino-acid level mutational effects, the dataset with nucleotide-level mutational effects was needed 
as reference.  
 
The analyses from sequencing data to GFP expression level were all performed on the nucleotide-
level, and the amino-acid level mutational effects were examined based on the processed nucleotide-
level datasets. Whenever involving combining replicates (at the level of enrichment scores, predicted 
GFP singles at the nucleotide level and at amino acid level), the random error model was used.  

From Illumina sequencing reads to variant counts  
 
To extract variant counts from the raw sequencing data, we adapted the pipeline developed by our 
group in a previously published project (Julien et al., 2016). Specifically, the raw sequencing data was 
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demultiplexed with the SABRE software (https://github.com/najoshi/sabre) and paired reads were 
merged with the PEAR software (Zhang et al., 2014) with parameters set not to allow any 
mismatches in the overlap regions. Reverse complementation of merged sequences was performed 
when necessary with the fastx_reverse_complement tool (http://hannonlab.cshl.edu/fastx_toolkit/). 
Then the primer sequences were trimmed using the seqtk tool (https://github.com/lh3/seqtk). 
Finally, the number of occurrences of each variant was counted with fastx_collapser 
(http://hannonlab.cshl.edu/fastx_toolkit/) and a custom python script(Julien et al., 2016).  

Calculating enrichment scores and filtering 
 
Variants up to 2-Hamming-distance nucleotide changes from the wild type sequence with at least 100 
read counts in all three input replicates were selected for further analysis (Figure S11A,B). The 100 
read count threshold included all the 1-Hamming-distance nucleotide changes (n=531) but only about 
11% (n=10,862 for low expression dataset) and 7% (n=3,686 for high expression dataset) of all the 2-
Hamming-distance nucleotide changes observed. This restriction was necessary to obtain the 
confident variant counts. The threshold was chosen based on the logic that each bacterial cell be 
expected to carry hundreds of plasmid copies (pUC replication origin). Considering experimental 
steps of plasmid extraction and PCR amplifications until obtaining read counts from Illumina 
sequencing, we reasoned that variants observed less than 100 read counts were likely to be from too 
few cells, resulting in unreliable enrichment scores for the following steps.  
 
Enrichment scores for each variant v from each experimental replicate i (REPi), for each sorted cell 
output j (Oj with O1 as near neutral fraction and O2 as partially detrimental fraction) were calculated 
as follows:  

 S�,��,���� � log2 � 	�,��,����
�.
		
,��,����
�.	 
 log2 � 	�,���
,����
�.

		
,���
,����
�.	 (1) 

With C as sequencing read counts, v as variant, wt as wild type. A pseudo count of 0.5 was added to 
avoid log 0. Poisson-based error for each variant for each replicate for each output (SEv,Oj,REPi) was 
also calculated using the formula below: 

 SE�,��,���� � � �
	�,���
,����
�.  �

		
,���
,����
�.  �
	�,��,����
�.  �

		,��,����
�. (2) 

 
In order to merge scores over replicates for each output and for each variant, and to be able to filter 
variants based on the standard errors of the mean, a random-effect error model as proposed by 
Rubin et al for this type of data analysis (Rubin et al., 2017) was used. 
 
The details are as follows:  

For the first iteration, for each output, an initial error  ����,��,�
�
 for each variant was calculated based 

on its standard deviation from the unweighted mean.  
 

 S��,��,�  � ∑ ��,��,����������
�  (3) 

  SE��,��,�
� � �

��� � ∑ �S�,��,���� 
 S��,��,� ������  (4) 

The initial weighted mean enrichment score for each output was calculated as the follows:  
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S��,��,� �    ∑ ���,��,����� � �� �,��,�� 
 ���,��,���� �!��" ����  
∑ # �� �,��,��  
 ���,��,���� � $������   (5) 

 
For each iteration k, the standard error was calculated as follows: 

  SE��,��,%
�
� �  SE��,��,% � ∑ # �� �,��,� � 
 ���,��,���� � $������ � #��,��,���� � �&�,��,� $ �

∑ # �� �,��,� � 
 ���,��,���� � $������  �∑ � ��� �,��,� � � ���,��,���� � �������
∑ � ��� �,��,� � � ���,��,���� � �������

 
(6) 

After 50 iterations (k=50), the final mean enrichment score and standard error for each variant for 
each output were calculated as shown in equations (7) and (8) respectively. 

  S��,�� �    ∑  ���,��,����� � �� �,��,�� � 
 ���,��,���� �!��" ����  
∑ # �� �,��,�� � 
 ���,���,��� � $������   (7) 

  SE��,�� � �∑  � SE��,��,� 
�   SE�,��,���� �������� 	��.

 (8) 

In order to estimate the overall errors of enrichment scores for each variant and to filter only the 
confident data for the following data analysis, the estimated errors from Output1 ( ��� �,'� ) and Output2 

( ����,'� ) were combined with the following formula: 

  SE��,(�
(� �  �SE��,(�
�   SE��,(�

���.
 (9) 

Variants with  ����,'�
'� >1 were removed for downstream analyses (Figure S11C, D). 

Mapping enrichment scores to GFP signal 
 
In order to calculate GFP signals from enrichment scores, we first examined the relationships 
between GFP signals and enrichment scores from individually assayed confirmation data set (Table 
S2). As designed by the experiment, the smaller enrichment score from the Output1 Sv,o1 was, the 
higher GFP signal (more detrimental) of a variant was (Figure S12A). Enrichment scores from the 
Output2 Sv,o2  (the intermediate fraction) did not relate monotonically to the mean GFP signal, 
because variants enriched in Output2 (Sv,o2) were depleted for both strongly detrimental and near 
neutral variants (Figure S12B).  
 
To examine the possibility of predicting GFP signals with a linear combination of the two enrichment 
scores for each replicate from each expression level experiment, we built linear models to predict the 
mean GFP signals with Sv,o1,REPi and Sv,o2,REPi with the confirmation dataset. The calculated GFP signal 
from the mean enrichment scores predicted the individual variants’ GFP signals well (Figure S12F). 
However, the predictions were not completely linearly related with the observed GFP signals. 
 
In order to improve the GFP signal predictions based on the enrichment scores, for each biological 
replicate, we transformed each Sv,o2,REPi to Sv,o2,trans, REPi based on its relationship with Sv,o1,REPi such 
that variants predicted to be detrimental by Sv,o1,REPi would have higher Sv,o2,trans, REPi  and variants 
predicted to be near neutral by Sv,o1,REPi would have lower Sv,o2,trans, REPi (Figure S12D, E).  
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The logic behind this transformation was as follows: 1) A potentially beneficial mutation was expected 
to be enriched in Output1 and depleted in Output2 (Sv,o1,REPi > 0 and Sv,o2,REPi < 0). We kept the 
Output2 score as it was. 2) An intermediately detrimental mutation was expected to be enriched in 
Output2 (Sv,o2,REPi > 0) regardless of its enrichment score in Output1. We kept its enrichment score in 
Output2 as it was as well. 3) A very detrimental mutation was expected to be depleted both in Output1 
and Output2 (Sv,o1,REPi < 0 and Sv,o2,REPi < 0). In order to distinguish Sv,o2,REPi of these variants from that 
of potentially beneficial mutations (the first case, where Sv,o2,REPi is also smaller than 0), we 
transformed Sv,o2,REPi to a positive value and bigger than the intermediately detrimental variants’ 
Sv,o2,REPi . This way, a transformed Sv,o2,trans, REPi was expected to be bigger for more detrimental 
mutations (Figure S12C). To avoid influence by extreme outliers, 95th quartiles (Q) were used as 
thresholds for detrimental mutations (Sv,o1,REPi < Q(Swt_syn,o1,REPi, 0.95)) and as an approximate for the 
maximum Sv,o2,REPi before transformation. To summarize, the equation follows:  

 S�,(�
����,���� � ���
��  if �S�,(�,���� �  �S)*_,-�,(�,����, 0.95& & S�,(�,���� � 0&,Q�S(�,����, 0.95&  abs�S�,(�,����&,else,S�,(�,����

- (10) 

A linear model was built again to predict the mean GFP signals for each expression level experiment 
with the mean enrichment scores �.�,'� and �.�,'�./012using the confirmation dataset. Inverse of the 

variance was used as weights. This linear model improved the prediction of GFP signal in the low CI 
expression dataset (Figure S12G). For the high expression dataset, the �.�,'�./012 coefficient was not 

significant (Table S3, Figure S12G) and including the Sv,o2_trans,REPi did not improve logged GFP signal 
(as an output of mutational effects, denoted O) Ov,REPi predictions (note R2  and the median RMSD did 
not change in the predictions for high expression dataset, Figure S12G). Therefore, we set 
Sv,o2_trans,REPi = 0 when calculating signals and the errors for the high CI expression dataset in the 
following equations to avoid inflating the errors of the estimation (refer to equation (12)). 

 O�,���� � log��GFP�,����& � α  β · S�,(�,����  γ · S�,(�
���� ,���� (11) 

Ov,REPi above is the output GFP signal in log scale for each variant in each of the three biological 
replicates i and the coefficients α, β, γ (Table S3) derived from the linear model trained with the 
confirmation dataset.  

 
A measurement error for the log GFP signal (OEv,REPi) for each variant v in each replicate i and for 
each CI concentration (high and low) was calculated with the following formula: 

 OE�,���� � 7 β� · SE�,(�,�����  γ� · SE�,(�
����,�����2 · β · γ · cov�S�,(�,����, S�,(�
����,����&βE� · S�,(�,�����  γE� · S�,(�
���� ,�����  αE�
 (12) 

Where βE2, γE2, αE2 are squares of the standard errors of the estimated α, β and γ coefficients 
respectively, and cov(Sv,o1,REPi, Sv,o2,trans,REPi) is the covariance between Sv,o1 and Sv,o2,trans for each 
replicate (Table S4).  

Correcting technical biases 
 
Each biological replicate from FACS sorting on different days had different ranges of GFP expression 
levels (GFP index, Figure S9C) and these biases were reflected on the estimated Ov,REPi (Figure 
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S13A,B). In order to correct these technical biases, one replicate from each CI concentration 
experiment was set as reference, and the other replicates were linearly mapped to the same range as 
the reference replicate (i.e., replicate 2 as the reference).  

 O�,����_� � α1  β1 · O�,���� (13) 

 O�,����_� � α3  β3 · O�,���� (14) 

In the function above, the coefficients α1 and β1 derived from mapping the line defined by replicate 1 
wild type <3.,456� and weighted means of the nonsense mutations’ <�1'1,456� to the line defined by 

replicate 2 wild type <3.,456� and weighted means of the nonsense mutations’ <�1'1,456� (Table S5, 
Figure S13A - C). 

 β1 � �7� �,����� �	
,����
�7� �,����� �	
,���� (15) 

 α1 � �7� �,������	
,���� � �7� �,������	
,����
�7� �,����� �	
,����  (16) 

 
The same equations as (15) and (16) applies to coefficients α3 and β3 to map replicate 3 to replicate 
2 by only substituting replicate 1 with replicate 3.  
 
The mean GFP signals <�� and standard errors of the mean <���  over biological replicates were 
calculated using random-effect error model as described in the previous section for combining 
enrichment scores over the biological replicates.  

Calculating mutational effects at amino acid level 
 
In order to examine mutational effects at the amino acid level, the processed data at the nucleotide 
level was converted to the amino acid level.  
 
First, for each replicate, weighted mean GFP signals of all the nucleotide variants encoding the same 
amino acid variants were calculated. The inverse of the GFP signal errors of the nucleotide variants 
were given as weights. Errors from each nucleotide variants were propagated as the error of the GFP 
signals for each amino acid variant in each replicate.  
 
Then, mean GFP signals <�� and the standard errors of the mean <���  over biological replicates at 
amino acid level were calculated based on the random-effect error model as for combining 
enrichment scores and nucleotide level GFP signals over replicates.  

 

Rescaling the mean GFP signals to the detection limits  
 
In the FACS experiments, the detection limit for the lowest GFP signal was equal to the auto-
fluorescence of the bacterial cells not expressing GFP. The auto-fluorescence of the bacterial cells 
was not distinguishable from the cells that repressed the target gene GFP expression completely (CI 
WT high expression) (Figure S9C). The theoretical maximum GFP expression level was equal to that 
of bacterial cells expressing the target GFP without any repressor.  
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However, some variants’ estimated GFP signals from the bulk sequencing data exceeded the GFP 
signal range defined by theoretical maximum and minimum GFP. These GFP signals outside the 
theoretical limits were not likely to be real and they could potentially bias our analysis.  
 
In order to correct this problem, estimated GFP signals from the enrichment scores were rescaled to 
abide to the theoretical maximum and minimum GFP ranges. The lower GFP detection limit was 
determined by the lower limit of 95% confidence interval from the mean CI WT high expression GFP 
level. The upper GFP detection limit was determined by the 95th percentile of the weighted mean GFP 
signals of all nonsense mutations at low expression level of CI. The 95th percentile (or confidence 
interval) rather than the mean WT or nonsense GFP signals were selected as detection limits, so that 
the modes of the mutational effects would not shift after rescaling.  
 
This GFP detection range [4.5,12.8] was first divided into 1000 evenly spaced bins (Ok). Then, given 
the observed mean GFP signal and the standard error of a variant, the probability of the true mean 
GFP signal of the variant falling into each bin was calculated as follows:  

 pr�,% � �!��.�#$��� ���%
��� �& '

�

���8� ��9�.�  
(17) 

Finally, the mean GFP signal of a variant was calculated based on the weighted mean of the GFP 
signals from each bin with the weights given as the probability of the true mean falling into each bin k 
(prv,k), as shown below:   

 O?�,��,:;<�= � ∑#���,����$
∑#���,�$  (18) 

The <��,/>2?0@>A (Figure S13D) was used as the mean GFP signal for each variant in the following 

analysis, denoted as <�� replacing the value before transformation, and the standard error <���  was 
kept the same as before rescaling.  

Folding energy, binding energy and structural analysis 
 
Folding energy prediction and structural analysis were performed based on the 3.909Å x-ray structure 
(PDB 3BDN) of CI dimer bound to an operator site OL1.  
 
To estimate the mutational effects on folding energies and binding energies of CI protein, we used 
FoldX4 software (Schymkowitz et al., 2005). First, BuildModel command was used to build a structural 
model from each single mutation in our experiment. Then, the AnalyzeComplex command (with the 
complexWithDNA option set to true) was used to obtain the absolute energies of protein-DNA 
complex (ΔGCI-OR,FoldX) as well as the protein itself (ΔGF,FoldX) for each mutation. Binding energy of CI 
to DNA (ΔGB,FoldX) was calculated as energy difference between the protein-DNA complex and the 
protein by itself for each mutation. ΔΔG for folding (ΔGF,FoldX) and binding energies (ΔGB,FoldX) for each 
variant were calculated by subtracting folding and binding energies of wild type CI respectively.  

 ∆∆GB,C(<=D � ∆GB,B(<=D 
 ∆GEF,B,B(<=D (19) 

 

 ∆∆GG,B(<=D � �∆G	H���,B(<=D 
 ∆GB,B(<=D� 
 �∆GEF,	H���,B(<=D 
 ∆GEF,B,B(<=D� (20) 

 
Analyses were repeated with PDB structure 1LMB (1 Å x-ray structure of CI N-terminal domain bound 
to OL1) and with 3BDN structure bound to OR1 instead of OL1 (by mutating OL1 sequence to OR1 
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based on PDB 3BDN structure). FoldX4 returned the same ΔΔG with these analyses; therefore, only 
results using PDB 3BDN as a template were shown.  
 
3D structures were visualized and analysed using PyMOL (v1.7.6.0). Amino acid positions were 
classified as core residues if the ratio between solvent exposed area and the total area fell within the 
first quartile of the obtained data based on a PyMOL script (“get_area”, 
https://pymolwiki.org/index.php/Get_Area) with parameters dot_density set as 4 and dot_solvent set 
as 1. Positions were classified as DNA-contacting when the differences in the solvent exposed area 
without DNA and with DNA were greater than 0.1Å2. 

Other features tested for their association with mutational effects 
 
562 amino acid indices taken from the AAindex database (https://www.genome.jp/aaindex/) 
(Kawashima et al., 2007) together with BLOSUM62 matrix scores 
(ftp://ftp.ncbi.nih.gov/blast/matrices/), structural information, and FoldX predicted energy values were 
examined. The top features that correlated with the mutational effects of CI protein were: (1) the 
hydrophobicity index (Zaslavsky et al., 1982); (2) the number of negative charges introduced by a 
mutation (Cherstvy, 2009); (3) the amino acid substitution matrix BLOSUM62 (Henikoff and Henikoff, 
1992); (4) changes in the protein folding energy; (5) changes in the protein-DNA binding energy 
predicted by FoldX (Schymkowitz et al., 2005) together with the structural features of mutations (i.e., 
at the core, interface with DNA or at the solvent-exposed positions).  

Mathematical model 
 
Our aim was to build a mathematical model that captures the most important features of the system 
that apply to all mutations.  The model propagates the effects of mutations on the folding of the 
lambda repressor to changes in expression of the target gene through the well-described regulatory 
model of the PR promoter.  The model makes the following assumptions: 1) Mutations change the 
free energy of protein folding so altering the fraction of folded protein; 2) the fraction of folded protein 
is independent of the protein concentration; 3) changes in protein folding free energy are additive for 
all mutations.  In reality, all of these assumptions may be violated for some mutations.  For example, 
some mutations will also affect the binding affinity of the lambda repressor to the DNA operator sites 
or alter transcription or translation.  Others may result in protein aggregation.  Moreover, the fraction 
of folded protein may not be independent of concentration, for example at very high expression levels 
because of chaperone titration.  Finally combining mutations in structurally contacting or indirectly 
energetically-coupled residues may result in non-additive changes in free energy.  However, our aim 
was to test whether the simplest possible model of the system captured the overall changes in 
mutation effects and changes in the strength and sign of genetic interactions as the expression level 
changed.  We of course acknowledge that some mutations will not meet these assumptions and these 
exceptions likely contribute to some of the unexplained variance in our data. 

Regulatory interaction model of the CI-repressor system 
 
Ackers’ 8-configuration model (Ackers et al., 1982) was used to predict the relationship between the 
total amount of CI protein and the expression levels of its repressed gene. As in our experiment, the 
CI regulatory interaction system in Ackers’ model involves three operators (OR1, OR2 and OR3), 
resulting in eight possible configuration states (CS) in which the CI dimer can bind to the operators 
(Table S6). Based on the model, each configuration state causes the downstream promoter to be in 
either an ON or OFF state (Figure S3A). Only two configuration states fail to repress expression of the 
target gene: when the CI dimer is not bound to any operators (CS1) and when CI dimer is only bound 
to OR3 (CS2). The probability of repressing the target gene expression is the sum of the probabilities 
of the six remaining configuration states that result in the OFF state of the promoter. The likelihood of 
each configuration state is a function of the binding energies and the free CI protein dimer 
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concentration when the number of OR binding sites is fixed. In Ackers’ model, the number of OR sites 
is equivalent to that found in an average lysogen (bacteria that carries the phage genes integrated in 
its genome) with the ORs integrated into its genome (Ackers et al., 1982).  
 
The probability that each of the eight configuration state (AIJK) to occur is:  

 f	�� � ��∆)*�� �+⁄ �L	H�M-�
∑ ��∆)*�� �+⁄ �L	H�M-��  (21) 

 
Where ∆BIJK is the total free energy of lambda repressor dimers in the respective configuration i; the 
exponent Ni is the total number of the lambda repressor dimers in the corresponding configuration i; 
[CI2] is the free dimer concentration; R is the gas constant (R = 1.98×10-3 kcal/M) and T is the 
absolute temperature (310.15 kelvin). 
 
The probability of repression (Ps) is the sum of the probabilities of the configurations in which 
promoter PR is repressed (∑ AIJKK�N�:PQ ). To calculate Ps as a function of the free dimer CI concentration 
[CI2] based on the equation (19) and Table S6, we obtain the following equation:  

 P, � 1 
 f	�� 
 f	�� � 1 
  ��∆)*�� �+⁄ �L	H�M�
 ��∆)*�� �+⁄ �L	H�M�
∑ ���∆)*�� �+⁄ �L	H�M-�!.���

 (22) 

 The target gene expression level (GFP) is modelled to be proportional to the binding probability of the 
RNA polymerase, which is given by one minus the probability of repression by CI (Ps) (equation 21).  

 GFP C P�RS��(< � 1 
 P, 
(23) 

Despite its simplicity, this model has been shown to be predictive of the gene expression levels (Bintu 
et al., 2005). Because bacterial cells displayed auto-fluorescence (GFPauto), this auto-fluorescence 
signal from bacteria needed to be considered when measuring the effects of mutations on GFP levels. 
Therefore, by rewriting the equation (21) by taking into account the auto-fluorescence of the cells, the 
probability of GFP repression can be shown as in the equation (22).  

 P, � 1 
 TB�� TB��
 
TB�/�0� TB��
  (24) 

Both equations (20) and (22) show the probability of repressing the target gene, with equation (22) as 
a function of the GFP signal and equation (20) as a function of the free CI dimer concentration. By 
combining equation (20) with equation (22), we obtain an equation that describes the relationship 
between the free CI dimer concentration [CI2] and the GFP signal as shown in the following equation:  

 1 
  P, � GFP 
 GFP;UF(GFPV;W 
 GFP;UF(
� e�∆T*�� �*⁄ � DCI�G   1∑ �e�∆T*�� �*⁄ � DCI�GR��P���

 (25) 

By rewriting the equation (23), we can show the GFP signal as a function of free CI dimer 
concentration:  
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 GFP � �#TB�/�0� TB��
 $����∆)*�� �+⁄ �L	H�M
 �! "
��∆)*�. �+⁄ �L	H�M� 


 ∑ ��∆)*�� �+⁄1��� �L	H�M�

 ∑ ��∆)*�� �+⁄2��� �L	H�M
�  

 GFP;UF( 
(26) 

 
The equation (24) allows us to calculate the GFP signal for each variant from a known free CI dimer 
concentration. In order to calculate [CI2] from equation (24), uniroot function was used with R script to 
find a unique root of equation (24) that was within the range of 10-40 and 10-3 (M).   
 
Next, the relationship between the total CI concentration [CIT] and the free dimer concentration [CI2] 
was evaluated, in order to model the relationship between the GFP signal and total CI concentration. 
This is because the total protein concentration in the cells but not the free dimer concentration of the 
protein is the one that can be experimentally measured and manipulated. The total lambda repressor 
concentration in the cell [CIT] is the sum of the free monomer concentration [CI] plus two times the 
concentrations of the free dimer [CI2] plus two times the concentration of the dimers bound to 
operators [OR]. Compared to the original Ackers’ model, in our experimental system, each bacterial 
cell was expected to carry up to hundreds of folds more operator sites, the same fold changes in CI 
protein coding region and the target gene. Given the same fold changes in all the functional blocks in 
this model, we simply kept the same parameters from original model and mapped our experimental 
system to the original model system.    

 DCI*G � DCIG  2 � DCI�G  2 � DORF(F;<G � ∑ �Ni � f	���P���  (27) 

The concentrations of free monomer [CI] and free dimer [CI2] follow the equilibrium:  

 DCI�G J Ka � DCIG� (28) 

By combining the equations (25) and (26), we can describe the relationships between [CIT] and [CI2] 
as follows:   

  DCI*G � �DCI�G K;⁄ ��.  2 � DCI�G  2 � DORF(F;<G � ∑ �Ni � f	���P���  (29) 

By further substituting ∑ �MN � AIJK�PK��  from the equation (27) with the equation (19), we obtain the 
following equation:  

 DCI*G �K;�. � DCI�G�.  2 � DCI�G 
��L��M��∑ ��∆)*�� �+⁄2��� 
��∑ ��∆)*�� �+⁄1��� 
�� ��∆)*�. �+⁄ !

∑ ��∆)*�� �+⁄2��� �L	H�M
∑ ��∆)*�� �+⁄1��� �L	H�M�
 ��∆)*�. �+⁄ �L	H�M�  
(30) 

The equation allows us to calculate [CIT] from [CI2]. [CI2] can be calculated by finding the unique root 
from the equation (24) from the known GFP signal as described earlier. Given the complexities of 
both equations (24) and (28), the calculations were performed in two steps according to the two 
equations. For the following process, for ease of reference, we denote the process of calculating total 
protein [CIT] for each variant from its target GFP signals f’Ackers: 
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 DCI*G � f ZS:%��, �GFP� (31) 

The reverse process to calculate GFP signals from the total protein [CIT] involves two steps: 1) 
inversing equation (28) to calculate the corresponding [CI2]; 2) calculating GFP with equation (24) with 
[CI2] from the previous step.  

 
Inversing and finding the exact root of equation (28) is mathematically impossible. Therefore, an 
approximate solution was found based on a local polynomial regression (loess function with R, span 
parameter 0.3) describing the relationship between [CI2] and [CIT] based on equation (28) (Figure 
S14A).  
 
Based on equation (24), GFP signal was calculated by inputting [CI2] from the previous step. We 
denote the process as fAckers, which is the inverse of equation (29) for the ease of future reference. 

 GFP � fS:%��, �DCI*G) (32) 
 

 

The parameters were kept as they were originally used in the model by Ackers (Ackers et al., 1982) 
(Table S7) that were experimentally determined.  

 
Two additional parameters (GFPmax and GFPauto) were specific to our experiment and not described in 
the original model by Ackers. For modelling, the maximum GFP signal GFPmax was defined as the 
weighted mean GFP signals of all single nonsense mutations with weights given as the inverse of the 
variance (3470.67 AU, or 11.76AU in log2 scale) based on the CI low expression dataset. The 
minimum GFP signal GFPauto, corresponding to the cellular auto-fluorescence GFP signal, was found 
through parameter search as follows. To start with, two constraints for GFPauto were considered: first, 
based on the regulatory interaction model, repression of the target gene expression can never reach 
100% even though it can infinitely approach this level.  

In other words, the GFPauto cannot be set to be the same as the GFP signal from the wild type protein 
at high expression. Second, GFPauto should allow the calculated ratio of wild type [CIT] between high 
and low expression levels based on equation (29) f’Ackers to agree with experimentally quantified ratio 
(15:1, see protein quantification section, Figure S10). We performed the parameter search for GFPauto 
that allowed the ratio of calculated wild type [CIT] at two expression levels to be 15:1 based on the 
model calculation as shown below:  

 OCI*,EF,[�\]POCI*,EF,^(EP  � fQS:%��,�GFPEF,[�\]&fQS:%��,�GFPEF,^(E & �  15  (33) 

GFPauto was estimated to be 23.24AU (4.54AU in log2 scale) to meet the condition set by equation 
(31).  

Estimating the functional protein concentration for all variants 
 
An estimate of wild type CI protein concentration [CIT,wt] in each of the two experiments can be 
obtained by inputting GFPwt,High and GFPwt,Low values into f’Ackers function. The same way, the total 
protein concentration of a variant [CIT,v] can be derived for each experiment with the f’Ackers function. 
Differences between [CIT,v] and [CIT,wt] were assigned to differences in their functional protein fraction 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/578419doi: bioRxiv preprint 

https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/


rather than changes in the total expressed protein amount. This is based on the assumption that the 
mutations with one or two amino acid alterations affected GFP levels mostly through changing the 
fractions of natively folded protein (fN).  
 
In order to calculate the fraction of correctly folded protein for each variant (fN,v), knowledge of the 
total expressed protein concentration [CIE] for each experiment was needed. Based on the calculated 
[CIT,wt] at both low and high expression levels and the information that the fraction folded of the wild 
type protein is 0.9913 (see the next section), the total expressed protein concentration in the cell can 
be calculated by multiplying the concentration of functional wild type CI protein by 1/0.9913 (Table 
S8).  
 
The fraction of natively folded protein for a variant v (fN,v) was calculated as the ratio of [CIT,v] (that is 
calculated based on f’Ackers (GFPv) ) over total expressed CI [CIE] (as a parameter calculated based on 
f’Ackers (GFPwt), Table S8 ): 

 fR,� � _	H+,�`
L	H�M  (34) 

Thermodynamics of CI folding model 
 
CI has been shown to follow a two-state model of protein folding(Huang and Oas, 1995) that can be 
described with the following equation: 

fR � fC(<=��\�∆GB� � e�∆T3�·*  1  e�∆T3�·*   (35) 

With fN as the fraction of natively folded protein, ΔGF as the total free energy of the protein folding. R is 
the gas constant (R = 1.98×10-3 kcal/M) and T is the absolute temperature of our experimental setting 
(T=310.15 kelvin, 37°C).  
 
Rewriting the equation (33), we obtain: 

 ∆GB � fQC(<=��\�fR� � 
R � T � ln � fR1 
 fR
	 (36) 

The equilibrium between the concentration of unfolded and native CI protein follows the equation 
below: 

 CIb J CIR (37) 

Equation (35) is governed by an equilibrium constant Kfold whose value is known to be 114 for the wild 
type CI protein(Parsell and Sauer, 1989)  :  

 KC(<= � DCIRGDCIbG � fR1 
 fR
 � e�∆T3�*  (38) 

By solving equation (36) with Kfold = 114, we obtain the wild type CI fN = 0.9913 which was used to 
calculate the total protein concentration in the cells (Table S8), as shown in the previous section.  

 
The folding energy of a double missense mutation (AB) can be predicted by adding the folding 
energies of the two single mutations (A and B) that together make the double mutation (AB).    
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 ∆GB,SG,���=�:F � ∆GB,S  ∆GB,G 
 ∆GB,EF (39) 

Combining thermodynamics of the CI folding model with the regulatory interaction model of 
CI-OR system 
 
To predict GFP signal of a mutation A from ΔGF values of the mutation, the output of ffolding function 
was added to fAckers function: 

 GFPS � fS:%��,�fC(<=��\�∆GB,S& � DCI�G& (40) 

 ∆GB,S � fQC(<=��\ TfQS:%��,�GFPS�DCI�G U 
(41) 

Comparing four different sub-models for the effects of mutations 
 
To evaluate the importance of (a) protein folding and (b) CI-concentration-dependent repression of 
the target gene expression independently as well as in combination, we generated and compared four 
models (Figures 3, S3). The four models are based on four different assumptions. The first model is 
the log-additive model where changes in the target gene expression levels are simply additive in the 
log scale (Figure S3C). The second model is the full model that incorporates the effects of mutations 
both at the level of protein folding and at the level of regulatory interaction of CI-OR system on the 
target gene expression (as shown in equations (37–39), Figures 3A, S3B,C). The third model is a 
protein folding-only model that incorporates the thermodynamics of protein folding but not the 
regulatory interaction model (it assumes a linear relationship between target gene expression and 
functional CI concentration). Therefore, the protein folding energies are additive features of this model 
(Figure S3B-D). The last model is the regulation-only model that incorporates the regulatory 
interaction model but not the thermodynamics of protein folding (it assumes a linear relationship ΔGF 
and fN). Therefore, the functional protein amount is the additive feature of this model (Figure S3 
B,C,E).  
 
 Depending on the model evaluated, the functions linking the target gene GFP expression level to 
[CIT], or [CIT] to ΔGF can be different. The details of each model are explained below.  

1) Log-additive model 
 
Consistent with extensively used null models where the effects of mutations are log-additive, this 
model predicts the log GFP signal of a double mutation AB relative to the wild type to be the sum of 
the log GFP signals of each of the two single mutations relative to the wild type: 

 log��GFPSG,���=�:F�=& 
 log��GFPEF�� �log��GFPS� 
 log��GFPEF�&  �log��GFPG� 
 log��GFPEF�& 
 

(42) 

Therefore,  

 log��GFPSG,���=�:F�=& � log��GFPS�  log��GFPG� 
 log��GFPEF� 
(43) 

2) Full model 
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To predict the GFP expression levels of a double mutation, we first estimated the ΔGF of the 
corresponding single mutations using equation (39). The ΔGF,AB of the double mutation was calculated 
with equation (37) and then converted to an expected GFP signal using equation (38).  

3) Folding-only model 
 
This model assumes that the GFP expression levels are linearly responsive to the fraction of natively 
folded protein fN. That is, this model replaces fAckers with a linear transformation between GFP signal 
and fN (Figure S3E). At the same time, this model includes the nonlinear relationship between fN and 
ΔGF that was introduced by the thermodynamics model of protein folding. Thus, for a mutation A, the 
relationship between GFP signal and the fraction of folded protein fN was given by a modified version 
of fAckers, which we call fmodel3. 

  log��GFPS � � fV(=�<� �log��DCI*,S G&� �  α   β � log��DCI*,S G& (44) 

 

  log��DCI*,S G& � fQV(=�<��log��GFPS �& � log��GFPS � 
  α β  

(45) 

The output of fmodel3 can then be introduced into f’folding (equations 34 and 37).  

 ∆GB,S � fQC(<=��\ TfQV(=�<��GFPS�DCI�G U (46) 

 GFPS � fV(=�<��fC(<=��\�∆GB,S& � DCI�G& (47) 

The α and β parameters from fmodel3 (equation (42)) determine the linear relationship between the 
functional repressor concentration and GFP expression levels (α is the intercept and β is the slope). 
Also, the parameters [CIE,low] and [CIE,high] (Table S8) were kept the same as in the other models. 
 
Comparing the mutational effects at two expression levels based on equation (42), we obtain the 
following equation:  

 log��DGFPS,]�\] G& 
 log��DGFPS,<(E G& �  β � log� TDCI*,S,]�\]GDCI*,S,<(EGU 
(48) 

The ratio of [CIT,A] at two expression levels was set as the constant 15 (as defined by wild type 
protein, see the previous section). Equation (46) therefore can be re-written as follows: 

 log��GFPS,]�\] & � β � log��15�  log��GFPS,<(E & (49) 

By substituting β×log2(15) with a coefficient C, we can rewrite equation (47) as follows:   

 log��GFPS,]�\] &  � C  log��GFPS,<(E & (50) 

From equation (48), we can see that GFP signal at the two CI expression levels is linearly related with 
the fixed slope of one in the log space. Parameter search was performed to find the coefficient C that 
best described the observed relationships between GFP signals at low and high expression levels of 
CI. In detail, we firstly sampled a hundred log2(GFPv,low) values ranging between log2(GFPwt,low) = 7.23 
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and log2(GFPmax) = 11.76. Then, a range of intercept C between -3.3 and -1.3 with the step of 0.03 
was used to calculate the corresponding log2(GFPhigh) for each log2(GFPlow)  (Figure S14B-D). The 
value C =-2.07 was selected that resulted in the smallest sum of the squared distances from the 
observed data points to the line defined by simulated relationship between GFP signals at two 
expression levels (Figure S14C). Based on C=β×log2(15), we further calculated β = -0.52.  

 
The coefficient α was calculated by placing the values β and the wild type CI low expression data 
[CIE,low] and log2(GFPwt,low) to equation (42) and rewritten as below: 

 α � log��GFPEF,<(E & 
  β � log��fR,)* � DCI�,<(E G& (51) 

With VWX��BYZ3.,@'3 & � 7.23 as observed in the experiment, β = -0.52 as calculated above, and the 
known parameters fN,wt = 0.9913 and [CIE,low] = 5.5×10-8, we obtained α = -17. 

 
To estimate the GFP signals of a double mutations with the folding-only model, we first estimated the 
ΔGF,A and ΔGF,B of the corresponding single mutations using equation (44). Double mutants’ ΔGF,AB 
was calculated using equation (37). ΔGF,AB of the double mutant was then converted to an expected 
GFP signal using equation (45) (Figure S3B,C).  

4) Regulation-only model 
 
This model assumes that the fN of a protein is linearly related to its ΔGF. That is, this model replaces 
ffolding with a linear transformation between fN and ΔGF. At the same time, this model includes the 
nonlinear relationship between fN and GFP expression levels from Ackers’ model. 
 
Because of the assumed linear relationship between fN and ΔGF, the effects of mutations are additive 
in fN space making ffolding unnecessary in this model at all (Figure S3B,C). To estimate the GFP 
expression levels of a double mutant with the regulation-only model, we first estimated the functional 
protein concentration of the corresponding single mutants using f’Ackers (GFP). The expected functional 
protein concentration of the double mutant was then given by the following equation. 

 DCI*,SG G  � DCI*,S G  DCI*,GG  
 DCI*,EF G (52) 

The expected GFP signal for this double mutant was calculated using fAckers ([CIT,AB]), as shown in 
equation (30) (Figure S3B, C).  

Simulating mutational effects and genetic interactions based on the model 
 
To test to which extent each model can explain 1) the double mutational effects given the single 
mutational effects 2) the relationship between the mutational effects at the two protein concentrations 
3) the pair-wise genetic interactions at both protein concentrations, we simulated mutational effects 
and their interactions based on each model to compare with our data.   

Simulating the mutational effects based on the model 
 
We sampled 100 ΔGF values equally spaced between -3kcal/mol and 3kcal/mol, and estimated their 
GFP signals at high and low CI concentrations using each of the four sub-models described above. 
For a given model, plotting the GFP signals predicted for the high CI concentration case against the 
GFP signals predicted for the low CI concentration case resulted in a curve (or a line) (Figure 3E). 
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To test how well each model explained the observed protein concentration dependent mutational 
effects, we used the Princurve package(Hastie and Stuetzle, 1989) in R to calculate the sum of 
squared distance from the curve (SSDC) between every experimental data point and the line or curve 
described by the model (Figure S14E).  
 
To predict the ΔGF for a specific variant, we first projected each data point in the log GFP (high CI 
concentration) vs. log GFP (low CI concentration) scatter plot to the nearest point in the model curve 
(line, in the case of folding-only model) (Figure S14D, E). The projected GFP signal corresponds to a 
single ΔGF of each variant based on the model. This correction allowed us to estimate a single ΔGF 
using the GFP value for both the high and the low CI concentrations. Finally, this estimated ΔGF 
(functional protein concentration [CIT], in the case of regulation-only model) of a variant was used in 
the following processes for predicting double mutational effects and to predict the epistasis patterns. 

Comparing model predicted and observed double mutational effects 
 
The percentage of variance explained (PVE) for the mean GFP expression levels of the double 
mutation was calculated as follows: 

 PVE � �1 
 SS��,SS*(F;<
	 � 100 (53) 

 
Where SSres is the residual sum of squares between the model-predicted versus the observed GFP 
expression levels and SSTotal is the variance in the observed data.  

Predicting pair-wise genetic interactions with each sub-model  
 
Epistasis was defined as the difference between the GFP expression levels of a double mutant based 
on the model (full model, folding-only model and regulation-only model) and the log-additive model 
(equation (41)), as shown in the equation below (Figure 2F).  

 Epistasisc(=�<_� � log��GFPSG,<(\�;==�F���& 
 log��GFPSG,c(=�<_�& (54) 
For a given double mutant, we first predicted the ΔGF values (full model and the folding-only model) or 
fN (regulation-only model) of the corresponding single mutants, as stated above. We then used each 
model to convert the double mutant’s predicted ΔGF or fN value back into the GFP signal. This 
predicted GFP signal was compared with the expected GFP signal based on the log-additive null 
model (equation (41)). The genetic interaction patterns were further compared to the experimental 
observation (Figures 3G, H, J, K and S4, S5).  
 
The summary of the modelling mutational effects based on each model was illustrated as a cartoon in 
the Figure S3A–C.  

Toy models of three protein expression–fitness relationships 

Three most common fitness-protein concentration relationships were modelled based on the fitness 
effects of changes in protein concentrations in yeast (Keren et al., 2016). 

Fitness increases with lower protein concentration: 

 ωH � DproteinG�0.1  DproteinG� (55) 

Fitness with optimal protein concentration: 
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 ω� � 1.2 � DproteinG�0.1  DproteinG� � 1�1  0.1 � DproteinG� (56) 

Fitness decreases with higher protein concentration: 

 _d � 11  0.1 � D`aWbcNdG� (57) 

 
These functions were integrated into the full model (sub-model 2) in place of fAckers to build three new 
models linking fitness to changes in protein folding energy ΔGF. Note that because ffolding was left 
untouched, all these three new models assumed a two-state protein folding kinetics as for CI protein. 
Mutational effects and pairwise genetic interactions were analysed at two simulated protein 
concentrations (high and low) based on these models. For both ‘Increasing’ and ‘Decreasing’ fitness 
landscapes, the two wild type protein concentrations in each simulation were selected so that one wild 
type protein concentration would be abundant enough to be robust to mutational effects and the other 
one would be sensitive to the mutational effects. For the ‘Peaked fitness landscape’, the two protein 
concentrations were selected so that the fitness effects would be the same but the protein expression 
levels at ‘Low’ would be below the optimal protein concentration and at ‘High’ would be above the 
optimal protein concentration.  
 
We evaluated the effects of 50 mutations with ΔΔGF evenly spaced between -1kcal/mol and 
+5kcal/mol in four different wild type proteins with different protein folding energies: (1) very stable 
wild type protein (ΔGF,wt = -3kcal/mol); (2) stable wild type protein (ΔGF,wt = -1.6kcal/mol); (3) 
marginally stable wild type protein (ΔGF,wt = -1kcal/mol); (4) unstable wild type protein (ΔGF,wt = 
0kcal/mol) (Figures 5A – H, S7). The effects on fitness of all the pairwise combinations of mutations 
were also evaluated assuming that the effects of mutations are additive in ΔΔGF space. 
 
Epistasis was quantified as the difference between the “observed” double mutational effects 
(calculated by adding the ΔΔGF of the single mutations, as described above) with the expected effects 
(calculated by adding up single mutational effects based on the log-additive null model): 

 �`NebfeNe � <gecahcieK.1>22 
 �j`ckbcieK.1>22 (58) 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Statistical details of experiments including the statistical test used, the exact number of the data 
points, mean values, standard errors of the mean (SEM), and 95% confidence intervals, p-values can 
be found in the figure legends and results. As described in the Data Analysis section of the STAR 
Methods, data with low reproducibility from the three biological replicates (SEM>1 for the predicted 
mean GFP) were excluded from subsequent analyses.  

DATA AND SOFTWARE AVAILABILITY 
 
Processed data used for the analysis is available as supplementary data file Data S1. Raw “Illumina 
sequencing” data and the processed count data files that support the findings of this study have been 
deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession 
number GSE122806 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122806) with reviewer 
token szgxsmygbxylhaz. Scripts are available from GitHub (https://github.com/lehner-
lab/concentration_epistasis_CI).  
 

 

Supplemental tables 
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Tables S1 – S8. Related to STAR Methods. 

 

Supplemental Information titles  

Data S1. Processed final data table for all single and double amino acid mutations analyzed in this 
study.  
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