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Abstract 

Human memory for recent events is believed to undergo reactivation during sleep. This 

process is thought to be relevant for the consolidation of both individual episodic memories 

and gist extraction, the formation of generalized memory representations from multiple, 

related memories. Which kinds of gist are actually enhanced, however, is the subject of 

less consensus. To address this question, we focused our design on four types of gist: 

inferential gist (relations extracted across non-contiguous events), statistical learning 

(regularities extracted from a series), summary gist (a theme abstracted from a temporally 

contiguous series of items), and category gist (characterization of a stimulus at a higher 

level in the semantic hierarchy). Sixty-nine participants (30 men, 38 women, and 1 other) 

completed memory encoding tasks addressing these types of gist and corresponding 

retrieval tasks the same evening, the morning after, and one week later. Inferential gist 

was retained over a week, whereas memory for category gist, summary gist, and statistical 

learning decayed. Higher proportions of REM were associated with worse performance in 

a statistical learning task controlling for time. Our results support that REM sleep is 

involved in schema disintegration, which works against participants’ ability to identify 

regularities within temporal series.  

Keywords: sleep and memory, gist extraction, memory reorganization, gist memory, 

memory consolidation 

SIGNIFICANCE STATEMENT To gain the most from our experiences, we extract from 

them the most important elements, or “gist", with sleep believed to facilitate this process. 

However, what is referred to as gist varies considerably across studies. We report 

categorically different mnemonic trajectories of two classes of gist. In particular, we show 

that gist involving synthesis across relational memories is retained over time, whereas 

other gists were subject to substantial decay. Moreover, our evidence supports the idea 

that REM works to discretize, rather than synthesize experiences. Future research should 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/578492doi: bioRxiv preprint 

https://doi.org/10.1101/578492
http://creativecommons.org/licenses/by-nc-nd/4.0/


!  3

test similar constructs in different tasks to determine whether these findings are 

generalizable. Our research suggests that patients with reduced REM sleep may 

experience more interference between similar memories.  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 Introduction 

 To better understand our world, we review the information contents of our 

experiences for patterns, extracting from those experiences the gist, or essential meaning.

1 Fuzzy-trace theory suggests that episodic memory is divided into a detailed memory 

trace, which preserves the form and characteristics of the information, and a gist memory 

trace, which preserves the general idea.1 There are multiple definitions for gist across 

different tasks (e.g., a gist representation of semantic associates in a list in the DRM 

paradigm2; information from the generalized series in transitive inference3; see Box 1). 

“Gist extraction" of this kind can take time, and even sleep to emerge: participants who 

sleep typically demonstrate greater gist memory than those remaining awake for an 

equivalent period. This pattern has been observed in a variety of common paradigms, 

including transitive inference,4 statistical learning,5 and false memory.6 One perspective on 

this gradual emergence of gist is that it reflects the qualitative reorganization of memories 

during sleep, where new memories emerge that were never learned directly7; and several 

researchers have proposed theoretical frameworks that this occurs either during slow-

wave sleep5 (SWS) or rapid eye movement (REM) sleep.8 However, not all "gists" stand to 

benefit from such reorganization. For example, remembering the gist of a photograph 

(such as whether it was taken indoors or outdoors) requires extracting the image’s 

category without necessarily relating the image to others. We therefore asked the 

question: do common sleep mechanisms underlie extraction of various gists, and do the 

various gists benefit differentially? 

 During SWS, slow oscillation field potentials (< 1 Hz) are temporally synchronized 

with thalamo-cortical spindles (7 – 15 Hz) and hippocampal ripples (140-220 Hz).9 This 

process is thought to reactivate memories in the hippocampus, promoting memory 

consolidation.10 Consistent with this "mere reactivation" view, Walker and Stickgold 

proposed that SWS supports veridical memory consolidation that keeps individual 
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memories distinct.8 Under this framework, SWS should preferentially amplify gists internal 

to a stimulus, such as remembering category gist in the example above. In an alternative 

model, the information overlap to abstract (IOtA) theory, Lewis and Durrant propose that 

repeated reactivation of overlapping memory elements leads to strengthening of these 

shared elements.11 Consistent with this theory, duration of SWS correlated with 

improvement in a statistical learning task5 and participants had more slow-wave activity 

after integrating words into an existing vocabulary.12 Under the IOtA account, gist requiring 

memory integration, such as transitive inference (a task requiring the stitching together of 

pair relations to make inferences), should preferentially benefit from SWS. 

 Adding further complexity, Walker and Stickgold proposed cortico-cortical 

processing in association areas during REM might facilitate associative linking in different 

cortical areas.8 In particular, they proposed REM involvement in three forms of memory 

integration, all of which contribute to the construction of higher-order schemas: 

unionization of recent related items, assimilation of new items into established networks, 

and the abstraction of general rules. Along these lines, higher performance in a 

probabilistic learning task predicted that more of the subsequent night would be spent in 

REM sleep,13 suggesting that REM is upregulated and promotes reactivation of the same 

circuits involved in learning. 

 Here, we took the novel approach of juxtaposing the effects of sleep on four gists, 

each reflecting an apparently different gist extraction operation: inferential gist, which 

requires extraction of relations across non-contiguous events; statistical learning, in which 

regularities must be extracted from a series; summary gist (which includes the previously 

mentioned false memory), in which a theme is abstracted from a temporally contiguous 

series; and category gist, requiring characterization of a stimulus at a higher level in the 

semantic hierarchy. We define these four gists in Box 1, and provide a conceptual 

depiction of the tasks we used to measure them in Figure 1. A visual depiction of trials in 
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each task is given in Figure 2. Although the summary gist that we chose in this task is false 

memory, other forms of summary gist may include the semantic summary of a group of 

pictures or a series of objects located in a single picture. We do not claim that these four 

are the only “gists”, but rather that these are a subset we selected for this study. We 

selected these in particular, because they differed across a number of different 

parameters, including temporal continuity and gist extraction of a pattern or a single 

instance. In this study, we could only cover one type of summary gist (commonly referred 

to as false memory), but we predict that other forms of summary gist would act in a similar 

manner, based on the common property of reflecting a high-level summary. We reasoned 

that the role of REM or SWS in gist memory would be best elucidated by comparing the 

effect of these sleep stages on different gists. We anticipated that each gist would either 

increase over time, or decay at a slower rate than our reference measures, detail memory. 

 We also took an individual differences approach: because false memory, transitive 

inference, and statistical learning have all been shown to have sleep effects compared to 

wake, we wanted to probe these effects deeper by looking only at individual differences in 

sleep stages. The IOtA account11 and associative linking during REM theory8 provided 

theoretical frameworks for gist extraction in general that could implicate any of our tasks. 

Therefore, we predicted that participants with either more SWS or REM sleep would have 

better gist memory. Due to a separate line of research proposing that the anterior 

hippocampus is specialized for gist memory and the posterior for detail,14 we also 

collected structural MRI data. We predicted that larger anterior hippocampal volumes 

would be associated with better gist memory. We pre-registered our hypotheses on the 

Open Science Framework (OSF15; see osf.io/kqc7z). Although some of our hypotheses 

were open-ended in that multiple gist measures were related to either SWS or REM, our 

pre-registration did significantly constrain our analysis in preprocessing, included 

variables, and decision rules, among others. 
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Materials and Methods 

Participants 

 104 participants were recruited in Kingston, Canada using posters, Facebook 

advertisements and web posts on Reddit, Kijiji and Craigslist. Participants were required to 

be: between 22-35 years of age (to avoid potential developmental effects); right-handed, 

an English native-speaker, have normal or corrected-to-normal vision and hearing, 

typically sleep at least 5 hours a night, have no contraindications for MRI scanning, have 

no history of neurological disorders, sleep disorders, or recurrent mental illness that 

included medication, and not currently be taking psychotropic medications. 

 Recruits meeting these criteria were invited to undergo a two hour in-person 

screening session in which demographic eligibility was confirmed, and a simulated MRI 

scanner was used to rule out claustrophobia, inability to keep still (operationalized as 

falling below the 95th percentile of low-frequency motion as measured in a reference 

sample), and inability to stay awake for a 20-minute eyes-open resting session. In addition, 

we assessed participants' ability to respond to at least 33% of encoding trials in a 

recognition memory task, to obtain a d-prime of at least 0.1 in a subsequent memory test, 

and to demonstrate acceptable reading comprehension and speed (a TOWRE score of at 

least 26.4 and a Nelson-Denny score of 2). Finally, participants were excluded for multiple 

no-shows, failing to follow instructions, rudeness, and excessive drug use. Participants 

were advised that they would be compensated CAD$20 for their time (or a pro-rated 

amount in the case of early withdrawal). 

 Of the original sample, 69 participants met our criteria and returned to complete the 

full experiment. The average age of participants who did so was 26.83 years (SD = 4.21 

years). They described themselves as men (n = 30), women (n = 38), and other (n = 1). 

We used G*Power 3.1 to calculate a sensitivity power analysis, and found that based on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/578492doi: bioRxiv preprint 

https://doi.org/10.1101/578492
http://creativecommons.org/licenses/by-nc-nd/4.0/


!  8

our sample size of 69 participants and models with 3 predictors, we had 80% power to 

detect a small (0.09) effect size. 

Experimental Design and Statistical Analysis 

 After their screening session, participants wore a sleep EEG device (Sleep Profiler, 

Advanced Brain Monitoring, Carlsbad, CA; see Fig. 3A) for a habituation night, during 

which they became accustomed to wearing and operating it. After the habituation night, on 

the basis of the recorded data, participants received corrective training as necessary. 

Participants conducted an initial study phase during an evening visit, which was 

followed by a test phase (Pre-Sleep test). After sleeping at home while measuring their 

own sleep using a take-home sleep EEG device, they returned the next morning (12 hours 

after their initial session) for another memory test (Post-Sleep test). A week later, they 

returned for a final memory test (Day7). They also completed an MRI session several 

weeks after testing.  

The study session and each test visit included a study or test phase from each of 

four memory tasks (Fig. 2). These included a transitive inference (TI) task (inferential gist), 

a Deese, Roediger and McDermott (DRM) task (summary gist), a visual statistical learning 

(VSL) task (statistical learning), and a word-scene associative memory task (category 

gist). These tasks are described in detail below. After each study and test session, 

participants were encouraged to take a break. In addition, we administered an operation 

span task (OSPAN) at each session to measure participant fatigue. 

As the data collection effort involved collaboration with researchers investigating a 

variety of individual differences within our participant group, our participants also 

completed further experimental sessions involving objectives unrelated to the current study 

goals (to be reported elsewhere).  

 As pre-registered, we excluded data falling three median absolute deviations above 

or below the mean of each variable. To investigate relationships among gist and detail 
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variables, we ran Pearson correlations. To investigate predictors of patterns of change in 

gist and detail over the course of a week, we used multi-level modelling (MLM) 

implemented in the nlme package in R.16,17 Multi-level modelling allowed us to estimate an 

individual change function in each participant, as well as predictors of this change function. 

Therefore, this analysis is especially suitable for looking at individual differences in change 

over time.18 In the models, we estimated each participant’s change over three time points 

at Level 1 and individual differences at Level 2. Our predictors were Time, as well as Level 

2 predictors related to individual differences in sleep and hippocampal volumes. We first 

ran random intercept and random slope models, and if this model did not converge, we ran 

random intercept only models. Time was coded as 0 for Pre-Sleep, 1 for Post-Sleep, and 2 

for Day7. In all multi-level models, we included grand-mean centered hippocampal 

volumes (aHPC and pHPC) or sleep stages (proportion of SWS or REM) as predictors. We 

also included fatigue (OSPAN) as a control variable. Outcome variables were measures of 

gist memory on four different tasks at 3 time points: in the same evening as study (Pre-

Sleep), the next morning (Post-Sleep), and one week later (Day7). To balance control for 

multiple comparisons with experimental power, we selected a 0.05 False Discovery Rate 

for each independent variable.19 Lastly, to investigate whether gist and detail measures 

decayed at different rates, we conducted two MANOVAs. For the AM and DRM tasks, we 

conducted a MANOVA for 3 time points and 3 dependent variables, followed up by 

ANOVAs. For the TI task, we conducted a MANOVA for 3 time points and 2 dependent 

variables, followed up by ANOVAs. 

Test-Retests and Interference 

We took a number of steps to mitigate possible inference across and within our 

tasks. We selected different types of stimuli in different tasks (simple shapes in VSL, 

scenes in the AM task, words in DRM, and complex shapes in TI) to reduce cross-task 

interference. In TI and VSL tasks, participants needed to learn complex relationships 
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among items to be tested at multiple time points. We could not test a different set at each 

time point, as the large number of relationships involved could generate high interference 

and require excessive study time. Instead, for VSL we used one set by Turk-Browne et al.

20 (which we called compound shapes) and generated a distinctive set (which we called 

simple shapes, see osf.io/kqc7z/ in VSL stimuli folder) in a way designed to assess 

possible test-retest effects (see Fig. 1). The compound shapes stimuli were provided by 

the Millisecond Test Library,21 but we changed the colours from red and green to different 

colours for each shape. For TI we used two sets of symbols from collections of abstract 

vector symbols online (which we called circles and transparent shapes). Section A 

(randomly assigned to either compound shapes or simple shapes for each participant for 

VSL and circles or transparent shapes for TI) was tested twice at the Pre-Sleep test, once 

at the Post-Sleep test, and once at Day7. Section B (randomly assigned to either 

compound shapes or simple shapes for VSL and circles or transparent shapes for TI) was 

tested once at each test session. Due to an error, for three participants, more than 7 

sessions were administered. In these cases, we measured only the first administration. 

In the TI task, there were no test-retest effects for premise pairs, first-order 

inferences, or second-order inferences between the two tests at the Pre-Sleep session, ps 

> .407, suggesting any longitudinal trends were unlikely to be attributable to repeated 

testing. Also, both sets of stimuli (circles and transparent shapes) were independently 

above chance for all time points, ps < .001. In the VSL task, simple shapes were also 

above chance at all time points, ps < .001, but compound shapes were not at the Post-

Sleep test, p = .55, or Day7 test, p = .58. The statistical learning task was divided into 

determinstic and non-deterministic sequences, which we will describe in detail in the 

following section. There was a significant test-retest effect in memory for deterministic 

sequences from simple shapes, t(44) = -2.09, p = .043, r = .86, indicating that as 

participants were tested on the material a second time during Pre-Sleep test, their scores 
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improved. There was no significant test-retest effect in memory for deterministic 

sequences from compound shapes, t(24) = 0.883, p = .386, r = .657. There was no 

significant test-retest effect in memory for non-deterministic sequences from simple 

shapes, t(44) = 0.06, p = .951, r = .72 or compound shapes, t(24) = 1.528, p = .140, r = .

742. 

Tasks 

Visual statistical learning (VSL). VSL20 provides a measure of statistical learning, 

which has been defined as implicit learning of patterns that are automatically segmented 

from a continuous environment (such as co-occurring shapes in a sequence22). To 

implement this task, we modified a publicly-shared script (described by Turk-Browne et al.

22) obtained from the Millisecond Test Library.21 During learning, participants were shown 

four blocks of a stream of shapes over 312 trials (each appearing for 400 ms with 200 ms 

post-trial duration) and instructed to press a key whenever a shape repeated. Two blocks 

were shown for each stimulus set, which were interweaved. At test, in each of 64 trials, 

participants were presented with two short series of three shapes familiar from the learning 

phase (each appearing for 400 ms with an inter-series interval of 1s) and instructed to 

select the temporal sequence that seemed more familiar. Some triplets were sequences 

seen in the previous learning task (e.g., ABC), and others were novel sequences (e.g., 

AEG). In our adaptation of this task, half of target triplets involved shapes that always 

appeared in the same order during training (i.e., deterministic sequences; e.g., ABC), 

whereas the rival sequence was never encountered (e.g., BAC). The other half of triplets 

sometimes also appeared in the rival sequence (i.e., non-deterministic sequences; e.g., 

ABC was presented at a 3:1 ratio to BAC). The sequence that was presented more 

frequently was always considered the correct answer. 
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Transitive inference (TI). The TI task4 provides a measure of inferential gist, or the ability to 

make inferences across paired associates that form an implicit hierarchy (e.g., A > B > C > 

D). To implement this task, we again modified a script (described by Frank et al.23) 

obtained from the Millisecond Test Library.24 During study, participants were introduced to 

the hierarchy by being presented with four pairs of symbols (i.e., “premise pairs”; e.g., A 

and B, B and C, C and D, D and E), and asked to guess the winning symbol (e.g., A > B, 

B>C, C>D, D>E; Fig. 1B and Fig. 2B). For each premise pair, the winning symbol was 

counterbalanced on the left and right sides. Participants were instructed to first find the 

winning symbol by trial and error, and then over a number of trials they would be able to 

learn the correct winning symbol with the provided feedback. Participants were given 

feedback for 150ms about the correctness of their guess after each study trial. If the 

participants selected the correct winning pair, green text that said ‘correct’ would appear at 

the bottom of the screen. If they selected an incorrect pair, red text that said ‘incorrect’ 

would appear. Participants indicated their responses by pressing ‘A’ for left-side stimulus 

and ‘L’ for right-side stimulus on a standard keyboard. Items were organized into blocks, 

each block containing 100 trials. Each block presented each of 5 pairs of symbols in 20 

trials (10 trials forward and 10 trials backward) randomly. Items within each block were 

arranged in pseudo random order to avoid revealing the hierarchy. The same premise pair 

was never presented twice in a row, and the neighbouring pairs never followed one 

another (e.g., AB, BC, CD, DE, EF). Participants were trained to a criterion of 0.75 that 

was dynamically evaluated throughout training and calculated at the end of each block. An 

additional block of 20 trials (4 for each pair) was presented in the participants did not reach 

criterion to a maximum of 5 additional blocks. 

 Participants studied two stimulus sets, which were divided by a mandatory 12 

second break with an option to resume anytime thereafter. At test, participants completed 

180 test trials without feedback testing both the original premise pairs as well as inference 
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pairs (e.g., B > D). Participants completed 20 test trials per premise and inference pair: 

these included five premise pairs, two first order inference pairs (B > D and C > E), one 

second order inference pair (B > E), and one non-inference pair (A>F). Test trials 

advanced following a response by the participant. Inference pairs are higher-order 

relationships that must be inferred from the relationships between lower-order 

relationships (e.g., correctly identifying that A > C would require inference from the premise 

pairs A > B and B > C). Correctly inferring such higher order relationships is taken as 

evidence for the formation of a superordinate hierarchy.  

Word-scene associative memory (AM). The goal of the AM task was to provide gist 

and detail memory measures that were internal to an individual stimulus, rather than linked 

across a series or set of items. Our approach was to use single words to cue scene 

associates (i.e., word-scene pairs) that could be characterized in various levels of detail. 

For the encoding task, participants viewed each word-scene pair for 8 s under incidental 

learning instructions designed to bind the word cue and picture associate: in particular, to 

decide whether the “name” each room had been given could plausibly have been assigned 

based on an object found in that room. A 0.5 s ISI separated each trial. After the encoding 

task was complete, we probed four measures of memory for each studied item: super-

category (general semantic category of scene, e.g., “hotel”), category (room type within 

category, e.g., “lobby”), instance (specific exemplar of a lobby), and detail (exact contents 

of the scene). During test, participants were cued with the word associate for 1 s, then 

answered a cascade of two-option forced-choice questions about its associate, deciding 

on whether it is a word associated with a noise or room image, super-category, category, 

instance, then details. Super-category and category levels for each probe were presented 

both verbally and visually: e.g., house, restaurant and school icons. Instance was tested 

by presenting two scenes from the same category and details were tested by presenting 

two arrangements of the same scene with different details. In the instance probe, all 
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options were shown using a variant of the images that excluded the feature to be 

assessed in the final “detail” probe, so as not to reveal the correct answer in that final 

stage. Importantly, there was only one encoding trial, so higher-level categorical 

representations would have to be inferred from the same representation that contains the 

instance itself. Each probe in this series of four probes was presented for 3.5 s with a 

pause of 0.3 s between each probe, and a 1 s ISI between each trial. For each multiple-

choice question, even if participants responded to the previous level incorrectly, lures were 

selected within the correct answer to the prior probe (e.g., if the correct super-category of 

an associate to a word was “house”, the options for the category probe would be 

bathroom, bedroom and kitchen). This was in order to account for possible independence 

between these memory types, for instance participants might remember a detail 

arrangement but not the scene’s category.  

Scene associates belonged to three super-categories (e.g., house, restaurant, 

school), which were all divided into 3 categories (e.g., bathroom, bedroom and kitchen for 

the ‘house’ category). Each category contained 3 instances (e.g., the room-type category 

kitchen contains 3 separate kitchens). Finally, each instance contained 3 detail variants. 

One detail image was the one originally studied and the other two have been edited to 

replace one object with a novel object. During each of the three test sessions, we tested 

participants on three previously-untested super-categories to avoid test-retest effects. 

Deese, Roediger and McDermott (DRM). The DRM task provides a measure of 

summary gist, the ability to extract meaning common to a set of related items. The 

difference between summary gist and inference gist is described by Stickgold and 

Walker25 as being akin to the difference between sets and relations, respectively. To 

implement this task, we again modified a publicly-shared script obtained from the 

Millisecond Test Library.26 During study, participants were asked to learn 27 lists of 14 

related words each. Words were presented with a stimulus onset asynchrony of 1.5 
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seconds, with each list separated by 6 s break during which participants were asked to 

solve simple math problems. During test, participants were presented with 27 target words 

(old words from the study list), 9 critical lures (related words associated with the theme of 

each word list) and 36 unrelated lures (new words from an unstudied category). These 

words were presented one at a time in random order and trials only progressed when 

participants made a response, selecting among ‘remember’, ‘related’, or ‘new’. 

In analysis of this task, our goal was to derive gist and detail measures from the 3x3 

matrix of old, related and new responses to old, related, and new items. Stahl and Klauer 

used response rates to model group estimates of gist and detail27; however, this approach 

failed when running models for individual participants. We instead modelled summary gist 

using a d’-based analysis, drawing inspiration from Dandolo and Schwabe,28 who 

described two relevant models. An “Old Distinct” model expects old memory 

representations to be distinct from both related and new ones, indicating a precise detailed 

memory; and an “Old and Related Similar” model expects old and related memory 

representations to be quite similar, while being distinct from new items (suggesting that 

gist has been encoded but detail has not). Because one model captures only detail, and 

the other only gist, the two are orthogonal. We adapted this framework to our task: in the 

“Old Distinct” model, hits were the proportion of old responses to old items, and false 

alarms were the proportion related responses to old items (we refer to this model as word 

detail). In the “Old and Related Similar” model, hits were the proportion of old or related 

responses to old or related items, and false alarms were the proportion of new responses 

to old or related items (we refer to this model as summary gist). To assess the latter model, 

we collapsed old and related rows and columns from our 3x3 matrix, yielding a 2x2 matrix 

of old+related and new responses to old+related and new items for each participant. 

Finally, we replaced all values of 0 and 1 in the resulting 2x2 matrix with 0.00001 and 

0.9999 in order to avoid hit or false alarm rates of 0 or 100%. Then, we calculated d’ 
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values for both the “Old Distinct” (memory for individual words) and “Old and Related 

Similar” (summary gist) models. 

Operation span (OSPAN). Lopez et al. found that the simulated flight performance 

of sleep-deprived Air Force pilots was predicted by OSPAN.29 Hence, it is often used as a 

suitable proxy for performance-related fatigue. Here, we used the OSPAN task to measure 

and control for variability in participant alertness across each test phase, using a task 

described by Unsworth et al.30 and obtained from the Millisecond Test Library.31 The task 

consisted of 5 practice letter questions, 15 practice math questions and 15 testing trials. 

Practice trials had no time limit and featured a 0.5s ITI. For practice letter questions, three 

to seven letters were shown in series on the screen. Each letter was presented for 1 

second with a 200ms ISI. After presentation, participants were asked to enter the letters 

that they had seen in the correct sequence on the onscreen keyboard. Participants 

received feedback on their answers for 2 seconds. For practice math questions, 

participants were asked to complete math operations (e.g., (1*2)+1). They were instructed 

to complete the math problem as quickly as possible. Once they had an answer, they 

clicked the button to progress to the next screen. A possible answer was displayed on 

screen and participants were asked to indicate whether the answer is ‘true’ or ‘false’. 

Practice trials were used to calculate the mean time that it takes a participant to solve 

math problems. For test trials, letter and math questions were intermixed, and there was a 

limit of the participant’s average math problem time plus 2.5 SDs before the trial 

progressed on its own (to discourage letter rehearsal). Each test block consisted of both 

letter and number trials. There were three blocks of each of the five set sizes (i.e., there 

were three repetitions of 3, 4, 5, 6, and 7 letter and number sizes). The shortened OSPAN 

consisted of five practice letter questions, five practice math questions and one block of 

each of four set sizes (i.e., one repetition of 3, 4, 5, and 6 letter and number sizes).  

Apparatus 
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 Participants completed three sessions individually in a testing room. One task was 

executed using MATLAB with Psychtoolbox32 and SuperPsychToolbox.33 The remaining 

three tasks (OSPAN, DRM, VSL, and TI) were executed using Inquisit (Version 5.0.6.034). 

For sleep stage measures, we used the Sleep Profiler, a single-channel 

electroencephalography (EEG) device worn on the forehead that records at 256 Hz from 

three sensors at approximately AF7, AF8, and Fpz35 (Sleep Profiler Scoring Manual, 

2015). We chose to use the Sleep Profiler over a full polysomnography net (PSG) because 

it enabled us to measure more naturalistic sleep, since it is designed to be used 

independently by participants at home, whereas PSG measurement typically requires that 

participants sleep in a sleep lab. Use of Sleep Profiler devices also allowed us to collect 

more data, since they do not require time-intensive monitoring or manual sleep-staging. 

The device applies a 0.1 Hz low-frequency filer and a 67 Hz high-frequency filter. Expert 

review of Sleep Profiler data and concurrently-collected data from a PSG (which is broadly 

regarded as a “gold standard” for sleep data collection) has previously resulted in strong 

agreement for total sleep time (ICC = 0.96) and REM sleep (ICC = 0.92), and poorer 

agreement for Stage 1 (ICC = 0.66) and Stage 3 (ICC = 0.67).28 Agreement for Stage 3 

increased when combined with Stage 2 into a non-REM (NREM) measure (ICC = 0.96). 

 The Sleep Profiler system also features automated sleep-staging software, which 

we manually validated using a subset of raw sleep data (described below) gathered using 

our Sleep Profiler. Briefly, as described by Levendowski et al.,36 the software first rejected 

30-second epochs where the absolute amplitude was ≥ 500 µV, applied a notch filter, and 

then an infinite impulse response band pass-filter to obtain 16 Hz samples of the power 

values for delta (1-3.5 Hz), DeltaC (delta power corrected for ocular activity), theta (4–6.5 

Hz), alpha (8–12 Hz), sigma (12–16 Hz), beta (18–28 Hz), and EMG bands (> 40 Hz with 

a 80 Hz, 3 dB rolloff). Another set of power values was derived after application of a 0.75-

Hz high-pass filter. Both filtered and unfiltered power spectra were used to stage sleep. If 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/578492doi: bioRxiv preprint 

https://doi.org/10.1101/578492
http://creativecommons.org/licenses/by-nc-nd/4.0/


!  18

at least 15 s of valid data was available, AF7-AF8 channels were used for scoring, 

followed by AF7-Fpz and AF8-Fpz. When either of the latter were used, power spectra 

were increased to compensate for signal attenuation due to shorter interelectrode 

distances.  

 Power spectra averaged from 16 to 4 Hz were used to detect sleep spindles, which 

were characterized by spikes in absolute and relative alpha and sigma power that met 

empirical thresholds. Spindles were at a minimum 0.25 Hz in length with no maximum. To 

reduce misclassifying spindles, beta and EMG power bands had to be simultaneously 

surpassed relative to the alpha and sigma power.  

MRI data acquisition 

The day prior to each participants’ MRI scan, they completed a biofeedback session 

in the simulated MRI scanner to become better habituated to an MRI-like environment and 

learn to reduce their head movement (and thereby improve the signal quality of their brain 

images sampled the next day). During the biofeedback session, participants viewed a 45-

minute documentary with a live readout of their head motion overlaid. When their head 

motion exceeded an adaptive threshold, the documentary was paused for several seconds 

while static was played on the screen along with a loud, unpleasant noise. Following the 

documentary, a brief memory test was administered outside of the mock scanner to ensure 

participants were paying attention to the film content rather than just their motion (not 

analyzed here). 

The next day, we used a whole-body MRI scanner (Magnetom Tim Trio; Siemens 

Healthcare) to gather a variety of image sequences over the course of a 1.5 hour scan. As 

described in our pre-registration, our hypotheses in the current study related specifically to 

the medial-temporal lobe anatomical analyses. To assess these predictions, we gathered 

high-resolution whole-brain T1-weighted (T1w) and T2-weighted (T2w) anatomical images 

(in-plane resolution 0.7 x 0.7 mm2; 320 x 320 matrix; slice thickness 0.7 mm; 256 AC-PC 
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transverse slices; anterior-to-posterior encoding; 2 x acceleration factor; T1w TR 2400 ms; 

TE 2.13 ms; flip angle 8°; echo spacing 6.5 ms; T2w TR 3200 ms; TE 567 ms; variable flip 

angle; echo spacing 3.74 ms) and an ultra-high resolution T2-weighted volume centred on 

the medial temporal lobes (resolution 0.5 x 0.5 mm2; 384 x 384 matrix; slice thickness 0.5 

mm; 104 transverse slices acquired parallel to the hippocampus long axis; anterior-to-

posterior encoding; 2 x acceleration factor; TR 3200 ms; TE 351 ms; variable flip angle; 

echo spacing 5.12 ms). The whole brain protocols were selected on the basis of protocol 

optimizations designed by Sortiropoulos et al..37 The hippocampal protocols were 

modelled after Chadwick et al..38  

Hippocampal volumes 

As noted in our pre-registration, we did not have any specific hypotheses regarding 

laterality for hippocampal variables. Therefore, before beginning data analysis, we decided 

to perform a Pearson’s correlation of aHPC and pHPC volumes across hemispheres. If the 

correlations were greater than 0.9, we would merge the volumes across hemispheres. 

Otherwise, we would run them separately in our models. aHPC volumes across 

hemispheres had a correlation of 0.686, and pHPC volumes across hemispheres had a 

correlation of 0.458. Therefore, we analyzed left and right hippocampal volumes 

separately in all of our models, investigating only either left or right hippocampal volumes 

in any given model. 

The ultra-high-resolution T2w 0.5mm isotropic medial temporal lobe scans were 

submitted to automated segmentation using HIPS, an algorithm previously validated to 

human raters specialized in segmenting detailed neuroanatomical scans of the 

hippocampus.39 Three independent raters (including one of the authors) were trained on 

segmenting the hippocampus at the uncal apex into aHPC and pHPC segments, and 

achieved a Dice coefficient of absolute agreement of 80%. Two of these raters (including 

one of the authors) independently segmented all participants in this study using the 0.5mm 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/578492doi: bioRxiv preprint 

https://doi.org/10.1101/578492
http://creativecommons.org/licenses/by-nc-nd/4.0/


!  20

T1w scans. The T2w medial temporal lobe scans were registered to the T2w whole-brain 

scans, which were in turn registered to the T1w whole-brain scans, and the combined 

transform was used to place the rater landmarks on the detailed medial temporal lobe 

scans. All voxels belonging to the hippocampus posterior to this coronal plane containing 

this point were classified as posterior hippocampus (pHPC), whereas all points anterior to 

and including this plane were classified as anterior hippocampus (aHPC). Finally, the total 

number of voxels in each subregion was multiplied by the volume of each voxel to obtain a 

total aHPC and pHPC volume. These steps were followed separately in each hemisphere. 

Freesurfer segmentation of the T1w and T2w brain data (v6.040) was used to compute 

Estimated Intracranial Volumes, which in turn were used to control for effects of overall 

head size in the hippocampus volume vectors. 

Sleep Profiler validation 

 We selected a random subset of ten participants and used their raw sleep EEG 

data for validation of the Sleep Profiler auto-staging. Two independent raters rated the 

data and we took the average of their ratings. Prior to scoring, we pre-registered on OSF 

that if intra-class correlations (ICCs) were good (between 0.75 and 0.9) or excellent (over 

0.9) for SWS, REM sleep, and TST41, we would use the sleep stage values derived from 

the automated scoring system. If they were below 0.75, then we would manually score the 

sleep data. We used an ICC measure that estimates the degree of consistency across 

measurements rather than absolute values.42  

ICCs between the automated scoring system and two independent raters, as well 

as inter-rater ICCs, are given in Table 1. Human rater agreement with one another was 

excellent for TST and REM, whereas their agreement with the algorithm was lower, at a 

level closer to 0.8 (good). Human rater agreement with the algorithm was also good for 

SWS, whereas SWS agreement among human raters was only moderate. Having 

observed consistently good algorithm classification performance (with all ICCs above a 
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cutoff of 0.75), we therefore used the sleep stage values derived from the automated 

scoring system for all of our analyses. We did, however, perform a manual quality control 

inspection of the sleep data to remove 1) any recordings that contain no SWS or no REM, 

2) partial recordings that did not contain the full night of sleep, and 3) recordings where a 

participant’s total sleep time was less than 50% of how much they typically reported 

sleeping on weekdays. This resulted in the omission of data from four participants. 

RESULTS 

 The goal of our study was to investigate the influence of sleep, including specific 

sleep stages, on different forms of gist, juxtaposing those requiring rule extrapolation from 

relations against those requiring gist extraction from sets. We approached this question 

both within-subjects – evaluating relative change in memory over time – as well as 

between-subjects, evaluating the predictive power of sleep variables over gist extraction. 

We began our between-subjects analysis by investigating correlations among our memory 

variables to identify possible correspondence among memory types. We then compared 

gist and detail memory variables within the same tasks using a MANOVA. Afterwards, we 

investigated patterns of change in gist and detail memory as a function of time and sleep 

stages. As pre-registered, we also ran a version of the model incorporating hippocampal 

volumetric predictors, but as these were not predictive of memory performance, we re-ran 

our model without a hippocampal factor and present it in this form for simplicity. We 

investigated models with both interactions over time, as well as models controlling for time. 

Descriptive sleep statistics are given in Figure 3B. Before addressing our research 

questions, we first discuss baseline models. 

Memory predictors 

 We analyzed only variables in which participants achieved above-chance and off-

ceiling performance as of Pre-Sleep, to ensure that our measures were sensitive to 

change in both a positive and negative direction. Memory accuracy for all variables at Pre-
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Sleep is given in Table 2. One-sample t tests showed that all of the outcome variables in 

AM, TI, and VSL were significantly above chance and below ceiling as of Pre-Sleep, all ps 

< .001. In the DRM task, one-sample t tests showed that memory for summary gist was 

above chance for Pre-Sleep, t(69) = 2.960, p = .004. However, at Post-Sleep and Day7, 

summary gist was not significantly above chance. Word detail memory was not above 

chance for any time points, so we excluded this variable from subsequent analyses. 

To explore possible relationships and redundancies among our behavioural memory 

measures, we inspected a correlation matrix, focusing on relationships involving measures 

from the same task (Fig. 4A), and to a more limited extent, across tasks. Because the goal 

of this step was to limit our predictors rather than form inferences about tasks, we did not 

apply multiple-corrections comparisons in this step. As there were strong correlations in all 

tasks, to simplify our analyses, we combined gist measures within our tasks: first-order 

and second-order inference memory into an inferential gist measure; non-deterministic and 

deterministic sequence memory into a statistical learning measure; super-category and 

category into a category gist measure. As a result of this step, the remainder of our 

analyses concerned only four variables: summary gist, category gist, inferential gist, and 

statistical learning. Memory performance for all gist variables at Pre-Sleep is given in 

Figure 4B. 

Special consideration is owed to collapsing of the VSL task. Fuzzy Trace Theory, 

one of the prominent frameworks distinguishing between gist and detail memory, defines 

detail as information that was tested in the exact form it was learned.1 Given this definition, 

we initially felt deterministic sequence memory could be considered a detail measure and 

non-deterministic sequence memory a gist measure, which is the framework we followed 

in our pre-registration. However, as both deterministic and non-deterministic sequences 

require extracting patterns from a sequence, and as we found them both to be correlated 

in the analysis above, we feel they are both better-represented as gist measures. Non-
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deterministic sequences additionally require participants to sift through more noise than 

deterministic sequences, so can be considered higher on a hierarchy of gist. A better detail 

measure for the task would have been a measure of participants’ memory for individual 

shapes (not measured in the current analysis). 

Hence, we were left with four putative detail memory predictors: “instance” and 

“detail” probes in our AM test (scene-cued object recognition), memory for premise pairs 

(TI recognition of explicitly studied shape relations), and individual word recall (DRM). As 

we excluded individual word recall from analysis due to low performance (as discussed 

above), We were left with the AM and TI measures only. We performed MANOVA analyses 

to assess divergence of gist and detail over time for these two tasks. Category gist 

decreased by 22%, whereas instance memory (AM) decreased by 15%, and detail (AM) 

by 6%. For AM, there was a significant MANOVA for Time differences across category gist, 

instance and detail memory, F(2,182) = 13.176, p < .001, η2 = 0.179. Follow-up ANOVAs 

indicated significant decay rates in category gist, F(2,182) = 38.721, p < .001, and 

instance memory, F(2, 182) = 28.496, p < .001, but not detail memory, although a trend 

was revealed in this direction, F(2, 182) = 2.804, p = .063. Inferential gist increased by 

0.6%, whereas premise pairs decreased by 2%. For TI, the MANOVA for time differences 

across premise pair memory and inferential gist memory was not significant, F(2, 205) = 

0.219, p = .928, η2 = 0.002. 

Baseline Multi-Level Models. We next constructed a baseline model to compute 

Intraclass Correlation Coefficients, which indicate the amount of variance in dependent 

variables that can be attributed to individual differences (and that can therefore be 

reasonably attributed to individual difference predictors, such as sleep). Variables with 

10% or more individual differences variance are considered to have meaningful individual 

differences. The ICCs were ρ = 0.848 for statistical learning (VSL), ρ = 0.085 for category 

gist (AM), ρ = 0.110 for summary gist (DRM), and ρ = 0.875 for inferential gist (TI). This 
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means that, across different memory measures, between 9 and 88% of the variance in 

memory variables can be attributed to individual differences, although the low intraclass 

correlation coefficient for category gist was likely due to large within-subject changes in 

that index over time. Because most of the models are above threshold, we consider there 

to be significant individual differences in the memory variables we measured. We therefore 

proceeded with multi-level modelling as planned. 

Gist Memory over Time. There was no decline in inferential gist between Pre-Sleep to 

Post-Sleep (p = .739) or between Pre-Sleep and Day7 (p = .662). There was no significant 

decline from Pre-Sleep to Post-Sleep for summary gist (p = .068), but a significant decline 

from Pre-Sleep to Day7 (p = .000). There were significant declines across both time points 

for both statistical learning (p = .0494 and p = .000) and category gist (p = .012 and p = .

000). There was no significant effect of OSPAN, ps > .135. A visual depiction of gist 

variables over time, normalized to Pre-Sleep, is given in Figure 4C. P values for all multi-

level models with time predictors are given in Table 3.  

Sleep. Participants reported an average weeknight sleep of 434 minutes (SD = 62 min). 

Average total sleep time for Pre-Sleep test was 359 minutes (SD = 91 min; approximately 

6 hours, which is also the ‘may be appropriate’ threshold set by the National Sleep 

Foundation43). Out of the participants who completed sleep diaries, 4 indicated that they 

were ‘refreshed’ the morning of the Pre-Sleep test, 28 indicated they were ‘somewhat 

refreshed’, and 26 indicated they were ‘fatigued’. However two sample t-tests between 

participants who indicated that they were either ‘refreshed’ or ‘somewhat refreshed’ and 

those who indicated that they were ‘fatigued’ did not significantly differ on any of our four 

gist memory measures at Post-Sleep (p =  .551 for inferential gist, p = .819 for summary 

gist, p = .252 for statistical learning, and p = .800 for category gist). Therefore, although 

sleep was shorter than a recommended typical night, subjective fatigue did not appear to 

impair gist memory performance. Along these lines, we note that even naps have been 
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shown to have memory effects,38 so shorter sleep durations should not preclude 

observation of possible memory effects.  

 Regarding our confirmatory analyses, after controlling for FDR (significance 

threshold of 0.05 divided by 4 variables is 0.013), proportion of REM negatively predicted 

statistical learning collapsed over time, or controlling for time, b = -0.626, t(58) = -2.662, p 

= .010. The role of REM on gist variables is given in Figure 3C-F. All of the following 

results were only significant before controlling for FDR. TST negatively predicted summary 

gist at Post-Sleep (b = -0.343, t(109) = -2.480, p = .015) and Day7 (b = -0.386, t(109) = 

-2.252, p = .026). Regarding our exploratory analyses, NREM positively predicted 

statistical learning over time or controlling for time, v = .445, t(62) = 2.089, p = .041. NREM 

also positively predicted summary gist at Post-Sleep, b = 3.325, t(120) = 2.156, p = .033, 

and Day7, b = 3.843, t(120) = 1.999, p = .048. We did not find any significant Spindle or 

Stage 2 effects, ps > .062. For the purposes of future hypotheses, we note a positive trend 

toward SWS positively predicting summary gist, b = 1.625, t(56) = 1.980, p = .053. P 

values for all multi-level models with time and sleep predictors are given in Table 3. 

Results of hippocampal analysis. Average anterior hippocampal volumes were 1027 

mm³ (SD = 158 mm³) on the left and 1100 mm³ (SD = 123 mm³) on the right. Average 

posterior hippocampal volumes were 1053 mm³ (SD = 119 mm³) for the left, and 1026 

mm³ (SD = 120 mm³) on the right. Average anterior/posterior ratios were 0.98 (SD = 0.19) 

on the left, and 1.09 (SD = 0.22) on the right. In this study, we collected data from a narrow 

age range (22-35) among healthy adults. We pre-registered that if age significantly 

predicts either anterior and posterior hippocampal volumes in a regression, we will include 

age as a covariate. If age does not significantly predict either or pHPC volume, then to 

simplify our analyses, we will not include age. Age did not significantly predict hippocampal 

volumes in our sample, so we did not include age in our models (p = .425 and p = .885 for 

left and right aHPC volumes, p = .084 and p = .084 for pHPC volumes). After controlling for 
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FDR, we did not find any significant effects of aHPC volumes, pHPC volumes or aHPC/

pHPC ratio when including these variables in our model, all ps > 0.09. We do note a trend 

for left anterior hippocampal volumes predicting statistical learning, b = .000, t(120) = 

1.738, p = .085 and negatively predicting associative gist at Post-Sleep, b = -.001, t(115) = 

-1.697, p = .093. We also note a trend for the right anterior-posterior ratio predicting 

inferences at Day7, b= -.137, t(103) = -1.610, p = .110.  

Discussion 

The goal of our study was to investigate the relationship of time and sleep stages 

on various forms of gist memory. We found a clear behavioural dissociation between 

inferential gist on the one hand, which was sustained over the course of a week, and 

statistical, category and summary gist on the other, which decayed over the same period. 

Thus, not all gist memory behaves the same over time, and among the forms of gist we 

evaluated, inferential gist appeared to be uniquely protected by consolidation processes 

supportive of long-term retention. This result is consistent with previous studies comparing 

sleep and wake groups.4,45 Another interpretation for this result could be that inferential 

gist is learned quickly and does not fade over time. We also found that proportion of REM 

sleep negatively predicted statistical learning over time, consistent with the proposal that 

REM sleep may contribute to discretization of information (and thereby working against the 

extraction of regularities from experienced events). By contrast, hippocampal volumes 

were not a reliable predictor of longitudinal effects. 

Taking Lewis & Durrant’s model of overlapping memory representations as a 

general gist extraction process,11 we conclude that memory overlap is an insufficient 

condition for long-term generalization. In our study, only structured relational memories 

(inferential gist), where each item was related to each other item, were enhanced. This 

type of memory contrasts with category memories (category gist), summary gist, and 

repeated co-occurrence in statistical learning, which could involve discrete sets of 
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overlapping memories organized into triplets. Inferential gist likely involves the formation of 

an overarching structural or schematic framework, such that any inference or premise pair 

can be referenced to this framework to determine the correct response. This may be a 

more similar structure to insight tasks46 and artificial grammars.38 Such a framework could 

be revealed through the synthesis of episodes characterizing individual premise pairs. 

Our finding that inferential gist is retained over sleep and time is consistent with 

previous research comparing sleep and wake groups.4,45 Although it is possible that the 

retention in memory is due to repeated testing, we did not find a significant test-retest 

effect when testing twice during the Pre-Sleep session. Furthermore, each task was 

presented to participants in a counterbalanced order, and no one task was deemed more 

important, so it is unlikely that participants selectively encoded information from TI above 

other tasks. In our data, we did not find any significant predictive effects of sleep stages on 

inferential gist at specific time points or collapsed over time. Speculatively, the absence of 

interfering stimuli during sleep could be what promotes higher inferential gist memory in 

sleep rather than wake groups.  

As in any single experiment, is possible our results were idiosyncratic to our specific 

choice of tasks. In future work, it will be valuable to test the generalizability of our findings 

to different tasks that putatively address the same constructs. 

Sleep Stages 

Proportion of REM predicted reduced statistical learning controlling for time, an 

effect not found with total sleep time. As this effect was found collapsing over time rather 

than interaction with a specific time point, one possible explanation is that a waking 

mechanism analogous to REM sleep exists that inhibits statistical learning at initial test 

and other time points. As mentioned above, Landmann et al. propose that REM sleep is 

responsible for a process called schema disintegration, which disbands existing schemas 

and allows for creativity.7 Considering this hypothesis, participants with higher proportions 
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of REM sleep may have weaker statistical learning schemas. In contrast to previous 

research, we did not find any evidence that SWS predicts inferential gist, statistical 

learning, summary gist, or category gist (transitive inference45 and statistical learning5). We 

also did not find evidence to support the theory proposed by Landmann et al. that schema 

integration (of which inferential gist is a special case) and schema formation (statistical 

learning) takes place during SWS or NREM sleep.7 We do note, however, a positive trend 

towards NREM sleep predicting statistical learning (significant before FDR correction). 

Hence, an active sleep mechanism to retain statistical learning may exist in addition to a 

negative (REM) inhibitory mechanism.  

We also note a positive trend towards TST negatively predicting summary gist and 

NREM positively predicting summary gist at Post-Sleep and Day7 (significant before FDR 

correction), suggesting that while more sleep may lead to worse summary gist processing, 

there may be an active NREM mechanism to retain semantic gist from lists. 

Relationships among Gist and Detail Memory Measures 

Looking at the relationships among gist and detail measures, we found within-task 

correlations across gist and detail memory in all of our tasks. Hence, it is possible that gist 

memory may draw upon the same underlying representation as detail memories, or 

alternately be inter-dependent with them: for instance, initial retrieval of a gist memory 

might help to align cortical state closer to that observed at encoding, thereby facilitating 

reinstatement of a detailed memory (see Conway & Pleydell-Pearce,47 for similar notions 

of hierarchical memory search). We also found correlations between premise pair memory, 

associative memory measures, and summary gist, suggesting an associative cognitive 

component involved in learning premise pair relationships (two shapes in TI, words and 

scenes in AM). This idea is also consistent with the lack of a correlation between premise 

pairs and detail memory, as during detail questions participants had to distinguish only the 

correct detail arrangement they had seen, and did not need to retrieve the word-scene 
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association. Lastly, summary gist memory was correlated with statistical learning and 

associative memory, which were not correlated with one another. Summary gist has a gist 

extraction component, as well as a temporal component as during study, individual words 

move quickly on the screen. VSL required participants to watch a quickly moving 

sequences of shapes and consolidate them immediate into patterns, which may be the 

cognitive component correlated to summary gist.  

Brainerd and Reyna48 suggested that gist traces are more resistant to forgetting 

than detail traces. Our omnibus MANOVA for AM and DRM tasks was significant, with 

follow-up test indicating significant decreases only in associative gist and instance 

memory. Hence, associative gist traces are more rapidly forgotten over time than detail 

traces and detail may be preferentially consolidated in this task. This goes against our 

earlier hypothesis that gist memory would be more resistant to forgetting than detail 

memory. Our omnibus MANOVA for transitive inference was not significant, so we did not 

find any evidence that inferential gist memory (TI) is more resistant to decay than premise 

pairs (TI).  

Hippocampal Volumes 

 We did not find any significant hippocampal effects. Previous studies have found 

activation in the right aHPC during overlapping transitive inference pairs,49 as well 

activation in the aHPC in more distant (compared to more proximal) premise pairs.50 Thus, 

although inferential gist is likely to be encoded in the aHPC, larger aHPC volumes do not 

seem to predict better inferential gist memory. Previous research also found activation in 

the right hippocampus during VSL.51 One obvious distinction between these studies and 

ours is that we measured individual differences in hippocampal volumes, rather than 

activation in the aHPC and pHPC, and there is rarely correspondence across these 

measures. However, we did observe trend-level relations that left anterior hippocampal 
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volumes positively predicted statistical learning, but negatively predicted associative gist at 

Post-Sleep, which may warrant investigation in future research. 

The current design did not allow us to pinpoint the dynamic changes in 

hippocampal activation and sleep over time. Although we were able to behaviorally 

measure different kind of gist and relate those to individual differences in hippocampal 

volumes, there may be time-dependent changes in the activation of the aHPC and pHPC. 

For instance, in a recent paper, Dandolo and Schwabe28 found that activity in the aHPC 

significantly decreased over time and was related to memory specificity at encoding, 

whereas pHPC activity remained the same. Tompary and Davachi52 found that feature 

overlaps emerged in the hippocampus over the course of a week. Future studies could test 

within an fMRI over three sessions to relate activation in the aHPC to pHPC to time-

dependent memory changes. 

Conclusion 

 Because only structured relational memories, rather than associative memories 

(category gist) or repeated co-occurrence (statistical learning) were retained over the 

course of a week, we conclude that inferential gist follows a different mnemonic trajectory 

than other forms of gist. Furthermore, REM sleep may be involved in schema 

disintegration, which although potentially beneficial for distinguishing similar events, works 

against participants’ ability to identify contiguous series. 
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Figure List 

Figure 1. Multiple conceptualizations of gist. a) Conceptual illustration of overlapping 
meaning between studied words and the unstudied “gist” word in the DRM task. b) 
Conceptual illustration of studied premise pairs on the bottom row, unstudied first-order 
inferences on the second row, and unstudied second order inferences on the top row. c) 
Conceptual illustration of gist internal to an individual stimulus. Participants studied word-
scene pairs, and were then asked about the scene’s category (e.g., bedroom) and super-
category (e.g., house). d) The left-hand panel shows a sequence presented over time, and 
one triplet which is repeated in the sequence. e) Study design. Participants first completed 
a practice night with the Sleep Profiler. Then they completed a study and first test session 
(Pre-Sleep test), which included two test-retests, Test 1 and Test 2 for TI and VSL tasks. 
Twelve hours and 7 days later participants completed a second (Post-Sleep Test) and third 
(Day7) test session, respectively. 
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Figure 2. Trials in each task during study and test. a) In TI, participants were presented 
with self-paced study trials. After a shape was selected, feedback was displayed at the 
bottom of the screen for 150 ms. During test, trials were also self-paced with no feedback 
provided. b) In the DRM task, participants were presented with a list of words at 1.5 s per 
word. After each list, participants solved math problems for 6 seconds. During test, 
participants indicated whether each word was old, related, or new in self-paced trials. c) In 
the AM task, participants completed incidental encoding trials, they were asked to study 
each word-scene associate for 8 seconds to determine whether the room’s name could be 
plausibly related to an object in that room. We selected this format to encourage 
participants to look at all aspects of the room, including details. During test, participants 
were cued with the word associate for 1 second, and then answered a cascade of forced-
choice probes for each associate at four levels: super-category, category, instance, and 
detail. Each probe was presented for 3.5 seconds, with a 0.3 second pause between 
probes and a 1 s inter-stimulus interval between trials. d) In the VSL task, participants 
were shown a stream of shapes at 400 ms intervals with 200 ms post trial. They were 
asked to press a key whenever a shape repeats. During test, participants were shown two 
triplets of shapes at 400 ms per shape and 1s between sequences, and then asked which 
was more familiar.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/578492doi: bioRxiv preprint 

https://doi.org/10.1101/578492
http://creativecommons.org/licenses/by-nc-nd/4.0/


!  38

Figure 3. Proportions of different sleep stages and proportion of REM effects on memory. 
a) Photograph of the Sleep Profiler, a single-channel EEG headband with dual EOG that 
participants took home to record their sleep. b) Barplot of proportions of different sleep 
stages in this dataset. Error bars reflect standard error. To assess whether populations of 
sleep stages in this dataset were close to population norms, we included yellow boxes that 
indicated proportions of sleep stages among healthy young adults as described by 
Carskadon and Dement54. c-e) For visualization purposes, we median-split REM into two 
groups, though our analysis was continuous. High and low REM groups across statistical 
learning, associative gist, and inferential gist measures. Proportion of REM significantly 
negatively predicted statistical learning collapsing over or controlling for time. 
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Figure 4. Memory variables at Pre-Sleep, Post-Sleep, and Day7. a) Correlations among 
dependent variables averaged over time. Yellow boxes indicate potential relationships 
among variables that are within the same task. Missing values indicate non-significant 
relationships. b) Accuracy at Pre-Sleep for all types of gist. c) Time effects for all four 
dependent measures. All variables were normalized to 0 at Pre-Sleep only for visualization 
purposes, and not in the statistical analyses. Error bars indicate standard error. Some error 
bars are too small to be visible. Category gist significantly decreased from Pre-Sleep test 
to both Post-Sleep test and Day7. Inferential gist was retained from Pre-Sleep test to both 
Post-Sleep test and Day7. Statistical learning and summary gist significantly decreased 
from Pre-Sleep test to Day7. Only significant p values after FDR correction are indicated. 
*** indicates ps < .001, * indicates ps < .05.  
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Box 1 

Definitions. 

Gist Memory A coarse-grained memory representation that captures the 
essential underlying features of an experience. 

Detail Memory A fine-grained memory representation that captures specific 
surface-level features of an experience.

Types of gist

Statistical Learning Implicit learning of patterns or regularities that are automatically 
segmented from a continuous environment.51 

Inferential Gist Extraction of relations across non-contiguous events, or 
extraction of higher-order relationships from lower-order ones.3  

Summary Gist Abstraction of a theme from a temporally contiguous series of 
items.2 Summary gist encapsulates the circumstance commonly 
observed in a false memory paradigm, such as the word list 
task employed here, where a category-consistent word is 
erroneously believed to be present. Multi-item gist extraction or 
multi-item generalization have been alternate terms used to 
describe this idea by Stickgold and Walker.21 Other forms of 
summary gist may include the semantic summary of a group of 
pictures or a series of objects located in a single picture. 

Category Gist Characterizion of a stimulus at a higher level in the semantic 
hierarchy than was experienced.

Related concepts

Gist Extraction Scanning of information and extraction of patterns or essential 
meaning. This can be an immediate or gradual process.

Schema We use the distinction put forth by Robin and Moscovitch53: a 
gist representation is specific to a single episode, whereas a 
schema is a more abstract representation from similar 
episodes. Participants in our study experience only one study 
phase, so we refer to the resulting memories as gist memories. 
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Table 1 

Intra-class Correlations between the Sleep Profiler Automated Scoring System and two 

Independent Raters. 

TST = Total Sleep Time, SWS = Slow-wave Sleep, REM = Rapid Eye Movement Sleep. 

Sleep stages Intra-class correlations 
(ICCs)

Inter-rater ICCs

TST 0.855 0.982

SWS 0.819 0.669

REM 0.798 0.988
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Table 2 

Memory performance at Pre-Sleep. 

Memory Variable Mean accuracy Standard Deviation

Premise Pairs 0.698 0.155

First Order Inferences 0.603 0.201

Second Order Inferences 0.635 0.258

Deterministic Sequences 0.623 0.154

Non-Deterministic Sequences 0.618 0.141

Super-Category 0.774 0.129

Category 0.817 0.127

Instance 0.915 0.094

Detail 0.665 0.122

Summary Gist 0.351 0.906
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Table 3 

P-values for Multi-level Models with Time and Sleep Predictors. 

*Significant after FDR correction (p < .013), ^Significant before FDR correction (p < .05), 

PREM = Proportion of Rapid Eye Movement Sleep, PSWS = Proportion of Slow-wave 

Sleep, TST = Total Sleep Time, NREM = Non-Rapid Eye Movement Sleep. 

Memory Variable Inferential Statistical 
Learning

Summary gist Category Gist

Confirmatory Analyses

Time 1 .739 .049^ .068 .012*

Time 2 .662 .000* .000* .000*

PREM .115 .010* .111 .119

PREM*Time .456, .909 .714, .559 .108, .108 .186, .426

PSWS .66 .965 .053 .665

PSWS*Time .276, .064 .482, .807 .843, .793 .276, .874

TST .994 .060 0.048^ .793

TST*Time .971, .436 .688, .379 .015^, .026^ .973, .845

Exploratory

Spindles .575 .082 .643 .073

Spindles*Time .469, .979 .915, .062 .054, .112 .886, .500

NREM .058 .041^ .067 .262

NREM*Time .859,.621 .409, .336 .033^, .048^ .114, .244

Stage 2 .752 .791 .692 .797

Stage 2* Time .720, .928 .513, .885 .664, .575 .264, .826
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