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Abstract 27 

An ongoing challenge for ecological studies has been the collection of data with high precision 28 

and accuracy at a sufficient scale to detect effects relevant to management of critical global 29 

change processes. A major hurdle for many workflows has been the time-consuming and 30 

challenging process of sorting and identification of organisms, but the rapid development of 31 

DNA metabarcoding as a biodiversity observation tool provides a potential solution. As high-32 

throughput sequencing becomes more rapid and cost-effective, a ‘big data’ revolution is 33 

anticipated, based on higher and more accurate taxonomic resolution, more efficient detection, 34 

and greater sample processing capacity. These advances have the potential to amplify the 35 

power of ecological studies to detect change and diagnose its cause, through a methodology 36 

termed 'Biomonitoring 2.0'. 37 

Despite its promise, the unfamiliar terminology and pace of development in high-38 

throughput sequencing technologies has contributed to a growing concern that an unproven 39 

technology is supplanting tried and tested approaches, lowering trust among potential users, 40 

and reducing uptake by ecologists and environmental management practitioners. While it is 41 

reasonable to exercise caution, we argue that any criticism of new methods must also 42 

acknowledge the shortcomings and lower capacity of current observation methods. Broader 43 

understanding of the statistical properties of metabarcoding data will help ecologists to design, 44 

test and review evidence for new hypotheses. 45 

We highlight the uncertainties and challenges underlying DNA metabarcoding and 46 

traditional methods for compositional analysis, focusing on issues of taxonomic resolution, 47 

sample similarity, taxon misidentification, sample contamination, and taxon abundance. Using 48 

the example of freshwater benthic ecosystems, one of the most widely-applied non-microbial 49 

applications of DNA metabarcoding to date, we explore the ability of this new technology to 50 
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improve the quality and utility of ecological data, recognising that the issues raised have 51 

widespread applicability across all ecosystem types.   52 
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Introduction 53 

Biodiversity loss and the risks it poses to ecosystem functions and services remain a major 54 

societal concern (Cardinale et al. 2012), but due to a lack of consistently-observed data, there is 55 

no consensus regarding the speed or severity of this decline (Vellend et al. 2013; Newbold et al. 56 

2015). There are very few ecosystems in which we can quantify the magnitude of degradation, 57 

nor can we discriminate among multiple stressors, both key goals for environmental monitoring 58 

programs (Bonada et al. 2006). The power to detect change in ecological communities has 59 

been hampered by sampling costs predominantly associated with human labour and travel. As a 60 

result, ecosystem monitoring programs must manage a trade-off between the scope of a study, 61 

including the phylogenetic breadth of taxon coverage and the resolution to which taxa are 62 

described, and its spatial and temporal coverage (e.g. tropical forests Gardner et al. 2008; 63 

marine sediments Musco et al. 2009). A history of such trade-offs has led to entrenched 64 

practices relying on observation of a narrow range of taxa, which aim to provide a surrogate for 65 

the full biodiversity complement, yet whose taxonomic, spatial or temporal relationships are 66 

largely undefined (Lindenmayer & Likens 2011). The troubling reality is that management 67 

decisions are informed by very limited and potentially biased information, generated by 68 

approaches that no longer reflect our understanding of how ecosystems and species interact 69 

(Woodward, Gray & Baird 2013). 70 

 71 

Fortunately, technological advances offer the opportunity to generate high-quality biodiversity 72 

data in a consistent manner, radically expanding the scope of ecosystem monitoring (e.g. 73 

Turner 2014; Bush et al. 2017). One of the most promising of these is the technique of DNA 74 

metabarcoding, which supports the massively-parallelised taxonomic identification of organism 75 

assemblages within a biological sample. The application of this method in ecosystem 76 

monitoring, termed “Biomonitoring 2.0” (Baird & Hajibabaei 2012) uses this approach to support 77 
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the generation of higher level ecological knowledge that supports advances in our 78 

understanding of metacommunity and food-web theory (Bohan et al. 2017). When fully realised, 79 

DNA metabarcoding will provide a universal platform to identify any, and potentially all, 80 

phylogenetic groups occurring within an ecosystem, including many taxa currently not 81 

identifiable by expert taxonomists (e.g. streams: Sweeney et al. 2011; rainforest: Brehm et al. 82 

2016; marine zooplankton: Zhang et al. 2018). As DNA sequencing capacity continues to 83 

increase, there is a growing interest from ecological researchers and environmental managers 84 

for guidance in how to apply these new tools, and to provide clear evidence of their value 85 

relative to existing microscopy-based methods. However, it is important to emphasise that 86 

comparisons between traditional morphological identifications and DNA sequences are far from 87 

straightforward. For example, while metabarcoding can observe the occurrence of DNA 88 

sequences within a specified environmental matrix (e.g. soil sample), it does not currently 89 

discriminate between intact, living organisms and their presence as parts, ingested, or 90 

extraneous tissue. While some may see this as a challenge to be overcome, to retrofit a new 91 

method to an old system of observation, we view this as an opportunity to expand our universe 92 

of interest and gain new insight into ecosystem structure and function (Bohan et al. 2017). Using 93 

data from our own and other studies, we explore the uncertainties surrounding both traditional 94 

and DNA-based observation approaches. Our examples are drawn largely from recent research 95 

on river ecosystems, a research area with a long history and strong linkages with regulatory 96 

application for assessing the state of the environment (Friberg et al. 2011; Leese et al. 2018). 97 

 98 

Aquatic researchers have long recognised the challenges of taxonomic identification and 99 

resulting limitations it imposes on the scale and scope of observational, experimental and 100 

monitoring studies (Jones 2008). Freshwater monitoring programs rely upon a subset of taxa, 101 

primarily aquatic macroinvertebrates, fish, or algae, with little consistency across environmental 102 

agencies or regions (Friberg et al. 2011), and sparse spatial and temporal coverage and limited 103 
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taxonomic resolution (e.g. Orlofske & Baird 2013) ultimately constrains outcomes to 'pass/fail' 104 

(impacted/non-impacted; Clarke et al. 2006; Strachan & Reynoldson 2014), with causes of 105 

degradation inferred rather than supported by direct evidence. After decades of research, our 106 

ability to disentangle the influence of even the most basic drivers that impact the state of 107 

freshwater ecosystems is still limited (Woodward, Gray & Baird 2013). 108 

Our unit and universe of observation 109 

The science of aquatic biomonitoring is based on the principle that site-level observations of 110 

biological assemblage structure integrate responses to prevailing environmental conditions over 111 

space and time, reducing the intensity of sampling required to detect stressor-related changes 112 

in the environment, and providing an immediate signal of “ecosystem health” (Friberg et al. 113 

2011). However, consistently observing more than a narrow range of taxa within an ecological 114 

community has proved costly and impractical, with accuracy of identification often unrecorded or 115 

difficult to quantify, and varying across taxa. The observation universe is further constrained by 116 

sampling method (e.g. mesh-size of collection nets), rather than common phylogenetic or 117 

ecological characteristics, with further downgrading or exclusion of groups that are difficult to 118 

identify (e.g. Vlek, Šporka & Krno 2006). Even with the best taxonomic expertise available, it is 119 

practically impossible to identify all specimens to species-level, since many early life-stages lack 120 

necessary diagnostic features (Orlofske & Baird 2013). Species are subsequently aggregated at 121 

higher taxonomic ranks, obscuring species-level responses, constraining our knowledge of 122 

whether species’ environmental preferences are conserved or variable (Macher et al. 2016; 123 

Beermann et al. 2018). In our view, the level of observation provided by direct morphological 124 

identification of biological specimens in a sample is highly variable (typically referred to as 125 

“lowest taxonomic level”), disconnected from ecological theory, and contains an unknown yet 126 

potentially significant degree of bias (Jones 2008). 127 
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  128 

Ecological field studies inevitably face budgetary constraints, and DNA metabarcoding offers the 129 

potential to reduce many of the costs involved in routine morphological identification (Ji et al. 130 

2013). While single-specimen DNA barcoding uses short genetic sequences to identify 131 

individual taxa, often at the species-level, metabarcoding supports simultaneous identification of 132 

entire assemblages of organism via high-throughput sequencing (Taberlet et al. 2012; Yu et al. 133 

2012). Metabarcoding has now been applied in a wide range of aquatic ecosystems (e.g. rivers: 134 

Hajibabaei et al. 2011; wetlands: Gibson et al. 2015; lakes: Bista et al. 2017) and used to 135 

describe community composition in a wide variety of taxa (e.g. worms: Vivien et al. 2015; 136 

insects: Emilson et al. 2017; diatoms: Vasselon et al. 2017).  137 

  138 

When combined with appropriate bioinformatics tools, DNA-based identification can generate 139 

lists of taxa that are typically far richer than those generated by morphological identification 140 

(Sweeney et al. 2011; Gibson et al. 2015). This is further enhanced by expanding DNA barcode 141 

reference libraries (e.g. Curry et al. 2018) and by machine-learning algorithms (Porter & 142 

Hajibabaei 2018c). This has the potential to remove a significant impediment in field ecological 143 

studies, which need no longer be constrained by available taxonomic expertise. This new 144 

observation paradigm supports a definable universe of observation based on the types of DNA 145 

barcodes sequenced (see also below). 146 

Defining the universe of observation with metabarcoding  147 

While metabarcoding offers the potential to observe a greater diversity of freshwater taxa, the 148 

requirement to amplify extracted DNA to generate sufficient material for sequencing places 149 

limitations on simultaneous, universal taxonomic observation. The selection of primers used to 150 

amplify specific DNA sequence marker regions is crucial to any metabarcoding study, since they 151 
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are necessarily tailored to the taxonomic groups under study (Hajibabaei et al. 2012; Gibson et 152 

al. 2014). In order to expand taxonomic coverage, it is necessary to employ a range of primers 153 

and marker sequences (see Fig.3 in Gibson et al. 2014). Considerable efforts have been made 154 

to develop and refine primers for different taxonomic groups or species, and primers with broad 155 

coverage for invertebrates have now been established (e.g. Hajibabaei et al. 2012; Elbrecht & 156 

Leese 2017). However, amplification bias due to variable affinity among sequence variants for 157 

amplification can distort the relationship between sample biomass and the number of sequence 158 

reads (Elbrecht & Leese 2015; Zhang et al. 2018). Metabarcoding can therefore support a 159 

taxonomically broad universe of observation, but outputs should be treated as occurrences and 160 

do not currently support reliable estimation of organism biomass or abundance. 161 

 162 

Before discussing the parallels and differences between morphology-based monitoring and 163 

metabarcoding, two key issues must be highlighted: the distinction between bulk-community 164 

sampling and environmental DNA (eDNA), and the choice of primers. eDNA samples focus on a 165 

signal derived predominantly from traces of intracellular and extracellular DNA without 166 

attempting to isolate organisms (e.g. from water or soil; Cristescu & Hebert 2018), whereas 167 

bulk-community samples include eDNA, but target the collection of whole organisms. eDNA can 168 

be effective in detecting biological signal from the environment, but the significant spatial and 169 

temporal uncertainty of that signal clouds its application in observational studies. As a result, our 170 

examples of metabarcoding below focus entirely on observations derived from bulk-community 171 

samples that are otherwise identical to traditional monitoring surveys. 172 

Interpretation 173 

The statistical power and precision of any ecological assessment based on sample assemblage 174 

composition depends upon how results are combined and scored, and how identification errors 175 
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(i.e. false-presences and false-absences) can obscure the calibration of baseline composition, 176 

limiting our ability to detect deviations from this baseline and infer that change has occurred 177 

(e.g. Clarke et al. 2002; Clarke 2009). Although many sources of uncertainty affect our ability to 178 

infer regional and landscape-level trends from site-level observations, these are difficult to 179 

address with traditional approaches (Clarke 2009; Carstensen & Lindegarth 2016). To illustrate 180 

this problem, we focus on how five sources of error involved in describing freshwater 181 

biodiversity differ between morphological and metabarcoding workflows: a) taxonomic 182 

resolution, b) replicate similarity, c) taxonomic misidentification, d) contamination, and e) 183 

quantitative measures like abundance. 184 

Taxonomic resolution 185 

Biomonitoring 2.0 (Baird & Hajibabaei, 2012) employs metabarcoding to overcome the 186 

taxonomic bottleneck of sample processing, removing a critical trade-off between sample 187 

taxonomic resolution and the number of samples that can be studied (Jones 2008). Moreover, 188 

sample metrics derived from higher taxonomic categories, such as family- or genus-level, make 189 

a tacit assumption that species within those higher categories share similar environmental 190 

responses, and possess similar ecological functions. However, when studies are able to 191 

differentiate taxa at the species level, this assumption is false (e.g. nutrient and sediment 192 

sensitivity; Macher et al. 2016; Beermann et al. 2018), and this can significantly influence study 193 

outcomes (Hawkins et al. 2000; Schmidt-Kloiber & Nijboer 2004; Sweeney et al. 2011). 194 

 195 

Observing taxonomic assemblages at genus- or family-level masks turnover in composition, 196 

reducing our power to detect subtle changes among communities over space and time. As each 197 

species is less common than its parent taxonomic group, there will be fewer observations with 198 

which to establish reliable associations, and their inclusion could add noise to statistical models, 199 

echoing the long-running debate about the value of rare taxa in biomonitoring (Nijboer & 200 
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Schmidt-Kloiber 2004). This “noise” is not only due to the stochastic occurrence of uncommon 201 

species, but also sampling error, which can be quantified before discarding data (Clarke 2009; 202 

Ficetola, Taberlet & Coissac 2016; Guillera-Arroita 2016). We should therefore be particularly 203 

cautious about concluding how taxonomic resolution affects the strength of statistical 204 

relationships (Arscott, Jackson & Kratzer 2006; Martin, Adamowicz & Cottenie 2016). Instead, 205 

our current challenge is understanding when these subtle changes, previously invisible to 206 

traditional monitoring, are related to natural environmental factors or anthropogenic disturbance. 207 

 208 

One criticism of DNA metabarcoding is that high taxonomic resolution is not valuable if those 209 

taxa cannot be linked to a binomial taxonomic name, a limitation that emerges when barcode 210 

reference libraries are incomplete (Curry et al. 2018). However, many methods of ecological 211 

assessment evaluate community level characteristics such as alpha- and beta-diversity, that do 212 

not retain taxon identity, particularly at the species-level (Pawlowski et al. 2018). For this 213 

reason, interest in taxonomy-free approaches is increasing among those studying poorly-known 214 

assemblages whose morphological identification is challenging (e.g. meiofauna or diatoms: 215 

Vasselon et al. 2017). Moreover, new metrics could improve compatibility between 216 

biogeographically separated programs (Turak et al. 2017). Nonetheless, to tie DNA-based 217 

monitoring to historic surveys, and to assign ancillary information such as traits, it is still a 218 

requirement to assign taxonomic names to identified sequences (e.g. Compson et al. 2018). 219 

Based on the wealth of ecological information available that could complement DNA-based 220 

ecological studies, and the considerable body of legacy data generated by historical studies, 221 

including regulatory monitoring, increasing reference library coverage should be a priority for 222 

management agencies transitioning to DNA-based surveys. 223 
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Replicate similarity 224 

Depending on the scale of observation, species are rarely distributed randomly or uniformly in 225 

nature. For example, the distribution of macroinvertebrate taxa in streams is notoriously 226 

dynamic, as species adjust to changes in both abiotic (e.g. flow velocity, substratum size) and 227 

biotic (e.g. fish predation, mussel aggregation) factors (Downes, Lake & Schreiber 1993; 228 

Vaughn & Spooner 2006). Heterogeneity may also result from stochastic processes such as 229 

dispersal and colonization (Fonseca & Hart 2001), ephemeral resources (Lancaster & Downes 230 

2014), or disturbance regimes at multiple scales (Effenberger et al. 2006). Indeed, 231 

heterogeneity is so pervasive that a shift towards greater homogeneity within aquatic 232 

communities could indicate human modification of the landscape (Petsch 2016). Given such 233 

heterogeneity, the challenge for ecological studies or biomonitoring is to detect a sufficient 234 

proportion of the community, whilst also minimising processing costs, so that further detections 235 

are unlikely to alter the interpretation of subsequent analyses. Counting all individuals in a 236 

sample can have value, but it is prohibitive for routine observational studies, and not cost-237 

effective for biomonitoring purposes (e.g. Vlek, Šporka & Krno 2006). Most studies therefore 238 

employ subsampling (i.e. identifying a subset of individuals collected from the field) to reduce 239 

the time, effort and cost of processing macroinvertebrate samples. However, reducing the effort 240 

per sampling unit can significantly underestimate the richness per sample (Doberstein, Karr & 241 

Conquest 2000; Buss et al. 2014) and although subsampling is standardized by volume, weight, 242 

or number of individuals, it is often difficult to compare among survey methods and 243 

biomonitoring schemes (Buss et al. 2014). Although sensitivity to subsampling depends on the 244 

metric employed, subsampling can substantially increase the misclassification of site status 245 

(Clarke et al. 2006; Petkovska & Urbanič 2010) and exaggerate the perceived rarity of many 246 

taxa, whose exclusion from analyses may further bias interpretations of condition (Schmidt-247 

Kloiber & Nijboer 2004).  248 
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 249 

Figure 1 - Dissimilarity between replicate samples based on presence/absence data 250 

(Sørensen), and count data (Bray-Curtis) of morphologically identified macroinvertebrate 251 

families from a) 417 CABIN (Canadian Aquatic Biomonitoring Network; ECCC 2018) surveys 252 

(total n=1656, mean richness=16+/-4.8), and b) 787 surveys from the STAR-AQEM dataset 253 

(total n=1673) from 14 European countries (mean richness=51 +/-18.4; (Furse et al. 2006; 254 

Schmidt-Kloiber et al. 2014). 255 

 256 

Regardless of the sub-sampling approach, a single sample only recovers a subset of the 257 

community, particularly in heterogeneous environments (Fig. 1 & 2). As sampling effort 258 

increases, either by area or time, more taxa are recovered until the rate of new discoveries 259 

declines (Vlek, Šporka & Krno 2006). The rate of accumulation depends on taxon abundance 260 

distributions, their dispersion, and ease of collection, including the effects of environment on 261 

collection efficiency (Guillera-Arroita 2016). For example, a typical 3-minute kick-sample 262 

recovered only 50% of the macroinvertebrates species, and 60% of the families, found in total 263 

from six replicate samples (Furse et al. 1981). Other standardized protocols observe a similar 264 

degree of turnover among replicates (Fig. 1).  265 
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 266 

Figure 2 - Accumulated richness (mean +/- 95% confidence interval) of aquatic invertebrate 267 

families from 8 wetland sites in the Peace-Athabasca Delta, and for all samples combined (note 268 

different scale). Samples were collected between 2011 and 2016 (updated from surveys 269 

published in Gibson et al. 2015). 270 

 271 

Metabarcoding can, in principle, substantially reduce this sampling error, since the entire 272 

sample is processed (but see also limitations associated with primer selection discussed below). 273 
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False absences can be further reduced by rarefying the number of taxa observed per read and 274 

by analysing technical replicates (i.e. multiple DNA aliquots from sample extracts). Although 275 

low-biomass, low abundance taxa may still be missed (Hajibabaei et al. 2012; Elbrecht, Peinert 276 

& Leese 2017), metabarcoding detects a higher proportion of the target assemblage compared 277 

to morphologically-identified samples (Fig. 2), thereby increasing the power of monitoring 278 

programs to detect change. 279 

Misidentification 280 

Morphological identification of diverse taxonomic groups, such as invertebrates, is challenging, 281 

as demonstrated by a lack of reliable species-level data generated by routine biomonitoring 282 

programs. The probability of misidentifying an individual depends on the quality of the specimen 283 

(e.g. is the specimen partial or complete? Is it mature or immature?), the availability and 284 

completeness of identification keys, and the taxonomist’s experience. Though most 285 

biomonitoring programs now include a process for quality control and assessment to limit the 286 

likelihood of misidentification, false positives and negatives are still common. For example, early 287 

audits of the RIVPACS program showed that 8.3% of family occurrences were missed, and 288 

approximately one false presence was added in every four samples (Clarke 2009). Similarly, an 289 

audit of a range of European programs by Haase et al. (2006) found that after accounting for 290 

misidentifications and sorting errors, samples were on average 40% dissimilar to their initial 291 

composition. These errors compound the loss of taxa during sub-sampling, but remain difficult 292 

to predict. 293 

 294 
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 295 

Figure 3 - Families ordered by frequency of occurrence within three biomonitoring programs: 296 

the CABIN (n = 540), the UK River Invertebrate Prediction and Classification System 297 

(RIVPACS, n=2,504), and the Australian River Assessment System (AUSRIVAS n=1,516) from 298 

Victoria. Shading reflects the likelihood taxa could be misidentified using the CO1 RDP classifier 299 

v.3 (see Supplement 1 for further details). 300 

 301 

A major advantage of metabarcoding over traditional morphological identification is the ability to 302 

generate accurate identifications in a consistent manner (Orlofske & Baird 2013; Jackson et al. 303 

2014). That said, the accuracy of metabarcoding still depends on the taxonomic coverage and 304 
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quality of reference DNA sequences used for taxonomic inference as well as the bioinformatics 305 

approaches employed (Porter & Hajibabaei 2018b). If organisms are misidentified at the time of 306 

sequence deposition, reference library sequences become associated with an incorrect 307 

taxonomic name. To minimise this challenge, the Barcode of Life Database (BOLD) stores 308 

information on voucher specimens, supporting linkage of sequences to material in curated 309 

reference specimen collections. Overall, database coverage for animals is expanding rapidly 310 

(Porter & Hajibabaei 2018b) and is already relatively high for freshwater invertebrates. For 311 

example, sequences exist for 95% of the genera observed in >1% of samples collected by the 312 

Canadian national biomonitoring program (Curry et al. 2018; see also Leese et al. 2018). The 313 

current BOLD reference library is better suited to identifying macroinvertebrate families routinely 314 

observed in Canada, reflecting the greater effort on DNA barcode library development in that 315 

country when compared to Australia and the UK (Figure 3). Consequently, at the time of writing, 316 

a routine Bayesian classifier (Porter & Hajibabaei 2018a) is expected to misidentify 4.4%, 6.1% 317 

and 7.7% of families within CABIN, RIVPACS and AUSRIVAS programs respectively. It cannot 318 

be overstated that this is a significant improvement on the documented ability of current best-319 

available morphological identification, and is accompanied by an ability to drill down to species-320 

level, which will only improve as DNA libraries become more complete. To further improve DNA-321 

based identification by barcodes, agencies considering the transition to metabarcoding should 322 

support targeted specimen collection, and accelerate the digitisation of existing museum-323 

collected material to improve geographic and taxonomic library coverage (Stokstad 2018). 324 

Contamination 325 

The detection sensitivity of metabarcoding has raised concerns that the number of false 326 

positives will increase, particularly due to the adventitious introduction of DNA that did not 327 

originate from the sampled site. Existing ecological sampling protocols often recommend 328 

cleaning of equipment between surveys to reduce transfer of invasive species or pathogens, 329 
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and a more rigorous version of this practice should be adopted as standard practice to reduce 330 

the possibility of cross-sample contamination with DNA. Quality control and assurance practices 331 

are particularly crucial in eDNA studies that amplify trace amounts of DNA; these studies often 332 

include various controls, such as samples from localities that are believed to lack the target 333 

taxa, extraction blanks, and equipment controls. A combination of replicate sampling and 334 

appropriate controls can then quantify the rate of false-positives and false-negatives before 335 

observations are confirmed (Ficetola et al. 2015). Thus, although it is difficult to eliminate the 336 

possibility of cross-contamination altogether, it is possible to greatly reduce its occurrence and 337 

precisely quantify the probability of errors to support study quality assurance and control. 338 

Quantitative measures of biodiversity 339 

As stated above, DNA metabarcoding results do not currently produce a reliable signal of 340 

abundance or biomass (Elbrecht & Leese 2015). Nonetheless, it is equally misleading to 341 

suggest that current biomonitoring practices are themselves able to effectively detect 342 

differences in macroinvertebrate abundance without substantial effort. The difficulty of 343 

processing samples, coupled with species’ patchy distributions, means few studies can claim to 344 

have truly quantified patterns of abundance for multispecies invertebrate assemblages (e.g. 345 

Hawkins et al. 2000).  346 

 347 

Obtaining a reliable estimate of taxon abundance or biomass can support studies of many key 348 

ecological processes, but for the specific purposes of detecting compositional change, 349 

abundance information is most useful when responses can indicate a shift in species 350 

dominance without a change in composition. This is particularly true in depauperate systems, if 351 

species are pooled at higher taxonomic levels, or rare taxa are discarded (Reynoldson et al. 352 

1997). Nonetheless, differences in the composition of diverse assemblages are often sufficient 353 

to discriminate among sites, even at relatively coarse taxonomic resolution (Thorne, Williams & 354 
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Cao 1999; Hawkins et al. 2000), thus the challenge has always been the reliable identification of 355 

those taxa. While count or relative abundance information may provide another axis for 356 

discrimination, its inherent variability exaggerates the dissimilarity among replicate samples 357 

(Fig. 1), rendering baseline conditions more variable, thus reducing statistical power to detect 358 

change. These limitations are well illustrated by studies that have replaced quantitative count 359 

data with qualitative categories or occurrence data (e.g. Wright et al. 1984; Armanini et al. 360 

2013). These approaches have proved acceptable to practitioners precisely because count data 361 

provide little or no incremental improvement to detecting differences among sites. Moreover, 362 

approaches based on occurrence data illustrate a direct pathway to implement DNA 363 

metabarcoding in routine biomonitoring programs. 364 

Performance 365 

The relative advantages of DNA metabarcoding over morphological methods are necessarily 366 

contingent on the nature and scope of the question being investigated. Bonada et al. (2006) 367 

reviewed the requirements of biomonitoring studies to detect the occurrence and intensity of 368 

anthropogenic impacts, and Dafforn et al. (2016) explored their applicability to answer questions 369 

over a range of spatial and temporal scales. As they are driven by regulatory needs, most 370 

monitoring programs focus on relatively simple outcomes (e.g. local deviation from baseline; 371 

categorical quality assessment), and thus can greatly benefit from increased precision and 372 

statistical power. Recent freshwater ecosystem studies have demonstrated that metabarcoding 373 

data can support detection of ecological change at a greater level of discrimination than 374 

traditional approaches (Gibson et al. 2015; Elbrecht et al. 2017; Emilson et al. 2017). Although 375 

regulators have thus far remained hesitant to transition to monitoring with metabarcoding, these 376 

early studies have highlighted a lack of precision and consistency in the application of existing 377 

morphological approaches, shortcomings of traditional morphological observation that too often 378 

are either ignored or unrecognized by current practitioners. 379 
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 380 
Figure 4 Comparison of macroinvertebrate families (n=114) observed in pairs of standard 3-381 

minute river benthos kick samples (n=141 sites). Top row (a and b) shows the correspondence 382 

between observations of each taxonomic family using either morphological identification or DNA 383 

metabarcoding. Points are scaled relative to the number of morphological observations. Bottom 384 

row (c and d) shows the probability that each method included at least one false absence for 385 

each taxon (see Supplement 2 for code and raw data). 386 

 387 
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Our purpose in developing DNA metabarcoding as an observational tool has been to explore its 388 

ability to provide consistently-observed information to answer routine questions posed by 389 

managers (e.g. is biological composition at a site significantly different from expectations, and if 390 

so, is there evidence of impact?). Comparisons between metabarcoding and morphology-based 391 

methods have involved sorting and identification of a sample using existing taxonomic keys, 392 

followed by the reassembly of the sample for metabarcoding (Hajibabaei et al. 2012; but see 393 

Gibson et al. 2015). These approaches have demonstrated that DNA metabarcoding recovered 394 

~90% of the taxa identified by morphology, and all false-absences were from taxa that 395 

represented <1% of individuals. Most recently, we have also evaluated the similarity of taxa 396 

recovered by metabarcoding using paired samples (Fig. 4; GRDI-Ecobiomics 2017). The 397 

average similarity of morphological and metabarcoded samples at family-level was 73%, within 398 

the range of variation expected for replicate samples (Fig. 1; Clarke et al. 2002). Of the families 399 

observed by both methods, DNA observed 79% of the observations made by morphology, 400 

whereas morphology only matched 61% of those made by DNA. Some families also appear to 401 

be consistently under-represented or absent from this DNA dataset (Fig.4a-b, bottom-left), most 402 

likely due to a combination of gaps in the reference library (aquatic mites and oligochaetes in 403 

particular) and primer bias (Gibson et al. 2014; Elbrecht et al. 2017). Beyond mere overlap, a 404 

better estimate of performance could be the likelihood each family was missed based on their 405 

detectability in replicate samples (Fig.4b). Both methods are likely to have missed many families 406 

at least once, but the mean and likelihood of multiple false absences was lower among 407 

metabarcoding samples than for samples identified by morphology (Supplement 2).  408 

 409 

While primer bias remains an issue, the composition recovered by DNA metabarcoding is 410 

always likely to be a subset of all taxa in diverse systems. Nonetheless, metabarcoding provides 411 

a step-change in taxonomic coverage, in terms of the taxonomic breadth of taxa observed, 412 

improved taxonomic resolution, and fewer false negatives. Compared to traditional 413 
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morphological methods, metabarcoding representing a major advance in how consistently  we 414 

observe the taxonomic structure of ecological communities. 415 

Conclusions 416 

Biomonitoring 2.0 (Baird & Hajibabaei 2012) envisaged the use of DNA metabarcoding to 417 

generate consistently-observed biodiversity data to detect environmental change efficiently and 418 

rapidly. This can be done with only minor modification of existing sample collection methods, 419 

ensuring backwards compatibility with legacy data. Higher taxonomic resolution, more efficient 420 

detection (Fig. 2), and the capacity to increase spatiotemporal coverage can all increase the 421 

statistical power to detect change and diagnose its cause (Bonada et al. 2006).  422 

 423 

Study design and interpretation should acknowledge the sources of uncertainty in both 424 

morphological and metabarcoding approaches. Although abundance information is specified by 425 

existing programs (Leese et al. 2018), it is not necessary to achieve biomonitoring goals and 426 

many robust methods that use occurrence information already exist. Sources of uncertainty 427 

associated with metabarcoding can be quantified and minimised more easily than morphological 428 

approaches (e.g. Davis et al. 2018), and once standard operating procedures emerge, many 429 

tasks can be automated, further reducing the risk of handling errors and the costs of sequencing 430 

(Porter & Hajibabaei 2018c). A transition to large-scale observation by metabarcoding will take 431 

time as sequencing still requires specialized technicians and facilities. However, as demand 432 

grows, we anticipate organisations will outsource their DNA sample processing to specialist 433 

labs, equivalent to the current use of private consultants for taxonomic and chemical analyses. 434 

Currently, the cost of processing an invertebrate community sample (from DNA-extraction to 435 

sequencing) is approximately half the cost of morphological identification by taxonomists, but as 436 
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we have stressed, the divergent properties of each approach make it misleading to base 437 

comparisons on costs alone. 438 

 439 

We can only manage what we can measure, and at present the unknown magnitude and 440 

consequences of global biodiversity loss emphasize the value of metabarcoding as a technique 441 

to support improved ecological observation in all field studies of multispecies assemblages. 442 

Moving forward, we expect the increasing number of metabarcoding studies to further refine the 443 

uncertainties associated with observations, and the exchange of information should accelerate 444 

as research activities in this area grow, spearheading large-scale implementation of 445 

metabarcoding. Metabarcoding is also being used for increasingly novel applications, such as 446 

the study of trophic interactions (Bohan et al. 2017), meta-community theory (Miller, Svanbäck & 447 

Bohannan 2018), and ecosystem function relationships (Vamosi et al. 2017), and these 448 

applications could generate substantial added value to existing or future biomonitoring programs 449 

(Compson et al. 2018). 450 

Acknowledgements 451 

We thank Guy Woodward, Richard Marchant, Astrid Schmidt-Kloiber and Daniel Hering for 452 

providing data from monitoring programs in the UK, Australia and EU. This work was supported 453 

by the Ontario Genomics Institute and Genome Canada, NSERC, Environment and Climate 454 

Change Canada program funds and the Canadian federal Genomics Research & Development 455 

Initiative. 456 

  457 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

23 
 

References 458 

1. Armanini, D.G. et.al. (2013) Towards generalised reference condition models for 459 

environmental assessment: a case study on rivers in Atlantic Canada. Environmental 460 

Monitoring and Assessment, 185, 6247-6259. 461 

2. Arscott, D.B. et.al. (2006) Role of rarity and taxonomic resolution in a regional and 462 

spatial analysis of stream macroinvertebrates. Journal of the North American 463 

Benthological Society, 25, 977-997. 464 

3. Baird, D. & Hajibabaei, M. (2012) Biomonitoring 2.0: a new paradigm in ecosystem 465 

assessment made possible by next-generation DNA sequencing. Molecular Ecology, 21, 466 

2039-2044. 467 

4. Beermann, A.J. et.al. (2018) DNA metabarcoding reveals the complex and hidden 468 

responses of chironomids to multiple stressors. Environmental Sciences Europe, 30, 26. 469 

5. Bista, I. et.al.  (2017) Annual time-series analysis of aqueous eDNA reveals ecologically 470 

relevant dynamics of lake ecosystem biodiversity. Nature Communications, 8, 14087. 471 

6. Bohan, D.A. et.al.  (2017) Next-Generation Global Biomonitoring: Large-scale, 472 

Automated Reconstruction of Ecological Networks. Trends in Ecology & Evolution. 473 

7. Bonada, N. et.al. (2006) Developments in Aquatic Insect Biomonitoring: A Comparative 474 

Analysis of Recent Approaches. Annual Review of Entomology, 51, 495–523. 475 

8. Brehm, G. et.al. (2016) Turning Up the Heat on a Hotspot: DNA Barcodes Reveal 80% 476 

More Species of Geometrid Moths along an Andean Elevational Gradient. PLoS ONE, 477 

11, e0150327. 478 

9. Bush, A. et.al. (2017) Connecting Earth observation to high-throughput biodiversity data. 479 

Nature Ecology and Evolution, 1, 0176. 480 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

24 
 

10. Buss, D.F. et.al. (2014) Stream biomonitoring using macroinvertebrates around the 481 

globe: a comparison of large-scale programs. Environmental Monitoring and 482 

Assessment, 187, 4132. 483 

11. Cardinale, B.J. et.al. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 484 

59-67. 485 

12. Carstensen, J. & Lindegarth, M. (2016) Confidence in ecological indicators: A framework 486 

for quantifying uncertainty components from monitoring data. Ecological Indicators, 67, 487 

306-317. 488 

13. Clarke, R. (2009) Uncertainty in WFD assessments for rivers based on 489 

macroinvertebrates and RIVPACS. Integrated catchment science programme Science 490 

report: SC060044/SR4, pp. 1-87. Bristol, UK. 491 

14. Clarke, R.T. et.al. (2002) Sampling variation in macroinvertebrate data and implications 492 

for river quality indices. Freshwater Biology, 47, 1735-1751. 493 

15. Clarke, R.T. et.al. (2006) Effects of sampling and sub-sampling variation using the 494 

STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. 495 

Hydrobiologia, 566, 441-459. 496 

16. Compson, Z.G. et.al. (2018) Linking DNA Metabarcoding and Text Mining to Create 497 

Network-Based Biomonitoring Tools: A Case Study on Boreal Wetland 498 

Macroinvertebrate Communities. Advances in Ecological Research. Academic Press. 499 

17. Cristescu, M.E. & Hebert, P.D.N. (2018) Uses and Misuses of Environmental DNA in 500 

Biodiversity Science and Conservation. Annual Review of Ecology, Evolution, and 501 

Systematics, 49, null. 502 

18. Curry, C.J. et.al. (2018) Identifying North American freshwater invertebrates using DNA 503 

barcodes: are existing COI sequence libraries fit for purpose? Freshwater Science, 37, 504 

178-189. 505 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

25 
 

19. Dafforn, K.A. et.al. (2016) Big data opportunities and challenges for assessing multiple 506 

stressors across scales in aquatic ecosystems. Marine and Freshwater Research, 67, 507 

393. 508 

20. Davis, A.J. et.al. (2018) Accounting for observation processes across multiple levels of 509 

uncertainty improves inference of species distributions and guides adaptive sampling of 510 

environmental DNA. Ecology and Evolution, 8, 10879-10892. 511 

21. Doberstein, C.P. et.al.  (2000) The effect of fixed‐count subsampling on 512 

macroinvertebrate biomonitoring in small streams. Freshwater Biology, 44, 355-371. 513 

22. Downes, B.J. et.al. (1993) Spatial variation in the distribution of stream invertebrates: 514 

implications of patchiness for models of community organization. Freshwater Biology, 515 

30, 119-132. 516 

23. ECCC (2018) CABIN Canadian Aquatic Biomonitoring Network. Environment and 517 

Climate Change Canada, https://open.canada.ca/data/en/dataset/13564ca4-e330-40a5-518 

9521-bfb1be767147 519 

24. Effenberger, M. et.al. (2006) Local disturbance history and habitat parameters influence 520 

the microdistribution of stream invertebrates. Freshwater Biology, 51, 312-332. 521 

25. Elbrecht, V. & Leese, F. (2015) Can DNA-Based Ecosystem Assessments Quantify 522 

Species Abundance? Testing Primer Bias and Biomass—Sequence Relationships with 523 

an Innovative Metabarcoding Protocol. PLoS ONE, 10, e0130324. 524 

26. Elbrecht, V. & Leese, F. (2017) Validation and Development of COI Metabarcoding 525 

Primers for Freshwater Macroinvertebrate Bioassessment. Frontiers in Environmental 526 

Science, 5. 527 

27. Elbrecht, V. et.al. (2017) Sorting things out: Assessing effects of unequal specimen 528 

biomass on DNA metabarcoding. Ecology and Evolution, 7, 6918-6926. 529 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://open.canada.ca/data/en/dataset/13564ca4-e330-40a5-9521-bfb1be767147
https://open.canada.ca/data/en/dataset/13564ca4-e330-40a5-9521-bfb1be767147
https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

26 
 

28. Elbrecht, V. et.al. (2017) Assessing strengths and weaknesses of DNA metabarcoding-530 

based macroinvertebrate identification for routine stream monitoring. Methods in Ecology 531 

and Evolution, 8, 1265-1275. 532 

29. Emilson, C.E. et.al. (2017) DNA metabarcoding and morphological macroinvertebrate 533 

metrics reveal the same changes in boreal watersheds across an environmental 534 

gradient. Scientific Reports, 7, 12777. 535 

30. Ficetola, G.F. et.al. (2015) Replication levels, false presences and the estimation of the 536 

presence/absence from eDNA metabarcoding data. Molecular Ecology Resources, 15, 537 

543-556. 538 

31. Ficetola, G.F. et.al. (2016) How to limit false positives in environmental DNA and 539 

metabarcoding? Molecular Ecology Resources, 16, 604-607. 540 

32. Fonseca, D.M. & Hart, D.D. (2001) Colonization history masks habitat preferences in 541 

local distributions of stream insects. Ecology, 82, 2897-2910. 542 

33. Friberg, N. et.al. (2011) Biomonitoring of Human Impacts in Freshwater Ecosystems: 543 

The Good, the Bad and the Ugly. Advances in Ecological Research (ed. W. Guy), pp. 1-544 

68. Academic Press. 545 

34. Furse, M. et.al. (2006) The STAR project: context, objectives and approaches. The 546 

Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment 547 

Methods, pp. 3-29. Springer Netherlands, Dordrecht. 548 

35. Furse, M.T. et.al. (1981) An appraisal of pond-net samples for biological monitoring of 549 

lotic macro-invertebrates. Water Research, 15, 679-689. 550 

36. Gardner, T.A. et.al. (2008) The cost-effectiveness of biodiversity surveys in tropical 551 

forests. Ecology letters, 11, 139-150. 552 

37. Gibson, J.F. et.al. (2014) Simultaneous assessment of the macrobiome and microbiome 553 

in a bulk sample of tropical arthropods through DNA metasystematics. Proceedings of 554 

the National Academy of Sciences, 111, 8007-8012 555 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

27 
 

38. Gibson, J.F. et.al. (2015) Large-Scale Biomonitoring of Remote and Threatened 556 

Ecosystems via High-Throughput Sequencing. PLoS ONE, 10, e0138432. 557 

39. GRDI-Ecobiomics (2017) Ecobiomics: Metagenomics Based Ecosystem Biomonitoring 558 

Project, Government of Canada, Genomics R&D Initiative, Year-End Performance 559 

Report for Shared Priority Projects (2017-2018). 560 

40. Guillera-Arroita, G. (2016) Modelling of species distributions, range dynamics and 561 

communities under imperfect detection: advances, challenges and opportunities. 562 

Ecography, 40, 281-295. 563 

41. Haase, P. et.al. (2006) Assessing the impact of errors in sorting and identifying 564 

macroinvertebrate samples. Hydrobiologia, 566, 505-521. 565 

42. Hajibabaei, M. et.al. (2011) Environmental Barcoding: A Next-Generation Sequencing 566 

Approach for Biomonitoring Applications Using River Benthos. PLoS ONE, 6, e17497. 567 

43. Hajibabaei, M. et.al. (2012) Assessing biodiversity of a freshwater benthic 568 

macroinvertebrate community through non-destructive environmental barcoding of DNA 569 

from preservative ethanol.  570 

44. Hawkins, C.P. et.al. (2000) Development and Evaluation of predictive models for 571 

measuring the biological integrity of streams. Ecological Applications, 10, 1456-1477. 572 

45. Jackson, J.K. et.al. (2014) Cryptic biodiversity in streams: a comparison of 573 

macroinvertebrate communities based on morphological and DNA barcode 574 

identifications. Freshwater Science, 33, 312-324. 575 

46. Ji, Y. et.al. (2013) Reliable, verifiable and efficient monitoring of biodiversity via 576 

metabarcoding. Ecology letters, 16, 1245-1257. 577 

47. Jones, F.C. (2008) Taxonomic sufficiency: The influence of taxonomic resolution on 578 

freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews, 579 

16, 45-69. 580 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

28 
 

48. Lancaster, J. & Downes, B.J. (2014) Population densities and density–area relationships 581 

in a community with advective dispersal and variable mosaics of resource patches. 582 

Oecologia, 176, 985-996. 583 

49. Leese, F.  et.al. (2018) Chapter Two - Why We Need Sustainable Networks Bridging 584 

Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A 585 

Perspective Derived From the DNAqua-Net COST Action. Advances in Ecological 586 

Research, pp. 63-99. Academic Press. 587 

50. Lindenmayer, D.B. & Likens, G.E. (2011) Direct Measurement Versus Surrogate 588 

Indicator Species for Evaluating Environmental Change and Biodiversity Loss. 589 

Ecosystems, 14, 47-59. 590 

51. Macher, J.N. et.al. (2016) Multiple-stressor effects on stream invertebrates: DNA 591 

barcoding reveals contrasting responses of cryptic mayfly species. Ecological Indicators, 592 

61, 159-169. 593 

52. Martin, G.K. et.al. (2016) Taxonomic resolution based on DNA barcoding affects 594 

environmental signal in metacommunity structure. Freshwater Science, 35, 701-711. 595 

53. Miller, E.T., Svanbäck, R. & Bohannan, B.J.M. (2018) Microbiomes as 596 

Metacommunities: Understanding Host-Associated Microbes through Metacommunity 597 

Ecology. Trends in Ecology & Evolution, 33, 926-935 598 

54. Musco, L. et.al. (2009) Taxonomic structure and the effectiveness of surrogates in 599 

environmental monitoring: a lesson from polychaetes. Marine Ecology Progress Series, 600 

383, 199-210. 601 

55. Newbold, T. et.al. (2015) Global effects of land use on local terrestrial biodiversity. 602 

Nature, 520, 45-50. 603 

56. Nijboer, R.C. & Schmidt-Kloiber, A. (2004) The effect of excluding taxa with low 604 

abundances or taxa with small distribution ranges on ecological assessment. 605 

Hydrobiologia, 516, 347-363. 606 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

29 
 

57. Orlofske, J.M. & Baird, D.J. (2013) The tiny mayfly in the room: implications of size-607 

dependent invertebrate taxonomic identification for biomonitoring data properties. 608 

Aquatic Ecology, 47, 481-494. 609 

58. Pawlowski, J. et.al. (2018) The future of biotic indices in the ecogenomic era: Integrating 610 

(e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of The 611 

Total Environment, 637-638, 1295-1310. 612 

59. Petkovska, V. & Urbanič, G. (2010) Effect of fixed-fraction subsampling on 613 

macroinvertebrate bioassessment of rivers. Environmental Monitoring and Assessment, 614 

169, 179-201. 615 

60. Petsch, D.K. (2016) Causes and consequences of biotic homogenization in freshwater 616 

ecosystems. International Review of Hydrobiology, 101, 113-122. 617 

61. Porter, T. & Hajibabaei, M. (2018a) Over 2.5 million COI sequences in GenBank and 618 

growing. 13, e0200177. 619 

62. Porter, T.M. & Hajibabaei, M. (2018b) Automated high throughput animal CO1 620 

metabarcode classification. Scientific Reports, 8, 4226. 621 

63. Porter, T.M. & Hajibabaei, M. (2018c) Scaling up: A guide to high‐throughput genomic 622 

approaches for biodiversity analysis. Molecular Ecology, 27, 313-338. 623 

64. Reynoldson, T.B. et.al. (1997) The Reference Condition: A Comparison of Multimetric 624 

and Multivariate Approaches to Assess Water-Quality Impairment Using Benthic 625 

Macroinvertebrates. Journal of the North American Benthological Society, 16, 833-852. 626 

65. Schmidt-Kloiber, A. & Nijboer, R.C. (2004) The effect of taxonomic resolution on the 627 

assessment of ecological water quality classes. Hydrobiologia, 516, 269-283. 628 

66. Schmidt-Kloiber, A. et.al. (2014) Description of the AQEM/STAR invertebrate database. 629 

pp. 1-8. Freshwater Metadata Journal. 630 

67. Stokstad, E. (2018) Researchers launch plan to sequence 66,000 species in the United 631 

Kingdom. Science. 632 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

30 
 

68. Strachan, S.A. & Reynoldson, T.B. (2014) Performance of the standard CABIN method: 633 

comparison of BEAST models and error rates to detect simulated degradation from 634 

multiple data sets. Freshwater Science, 33, 1225-1237. 635 

69. Sweeney, B.W. et.al. (2011) Can DNA barcodes of stream macroinvertebrates improve 636 

descriptions of community structure and water quality? Journal of the North American 637 

Benthological Society, 30, 195-216. 638 

70. Taberlet, P. et.al. (2012) Environmental DNA. Molecular Ecology, 21, 1789-1793. 639 

71. Thorne, R.S.J. et.al. (1999) The influence of data transformations on biological 640 

monitoring studies using macroinvertebrates. Water Research, 33, 343-350. 641 

72. Turak, E. et.al. (2017) Essential Biodiversity Variables for measuring change in global 642 

freshwater biodiversity. Biological Conservation, 213, 272-279. 643 

73. Turner, W. (2014) Sensing biodiversity. Science, 346, 301-302. 644 

74. Vamosi, J.C. et.al. (2017) Forecasting pollination declines through DNA barcoding: the 645 

potential contributions of macroecological and macroevolutionary scales of inquiry. New 646 

Phytologist, 214, 11-18. 647 

75. Vasselon, V. et.al. (2017) Assessing ecological status with diatoms DNA metabarcoding: 648 

Scaling-up on a WFD monitoring network (Mayotte Island, France). Ecological 649 

Indicators, 82, 1-12. 650 

76. Vaughn, C.C. & Spooner, D.E. (2006) Unionid mussels influence macroinvertebrate 651 

assemblage structure in streams. Journal of the North American Benthological Society, 652 

25, 691-700. 653 

77. Vellend, M. et.al. (2013) Global meta-analysis reveals no net change in local-scale plant 654 

biodiversity over time. Proceedings of the National Academy of Sciences, 110, 19456-655 

19459. 656 

78. Vivien, R. et.al. (2015) Molecular Barcoding of Aquatic Oligochaetes: Implications for 657 

Biomonitoring. PLoS ONE, 10, e0125485. 658 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/


 

31 
 

79. Vlek, H.E. et.al. (2006) Influence of macroinvertebrate sample size on bioassessment of 659 

streams. Hydrobiologia, 566, 523-542. 660 

80. Woodward, G. et.al. (2013) Biomonitoring for the 21st Century: new perspectives in an 661 

age of globalisation and emerging environmental threats. Limnetica, 29, 159-174. 662 

81. Wright, J.F. et.al. (1984) A preliminary classification of running-water sites in Great 663 

Britain based on macro-invertebrate species and the prediction of community type using 664 

environmental data. Freshwater Biology, 14, 221-256. 665 

82. Yu, D.W. et.al. (2012) Biodiversity soup: metabarcoding of arthropods for rapid 666 

biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613–667 

623  668 

83. Zhang, G.K. et.al. (2018) Metabarcoding using multiplexed markers increases species 669 

detection in complex zooplankton communities. Evolutionary Applications, 11, 1901-670 

1914. 671 

 672 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/578591doi: bioRxiv preprint 

https://doi.org/10.1101/578591
http://creativecommons.org/licenses/by-nc/4.0/

