






Figure 2: (a) If the encoded variable is 3D (here, the animal leaves the 2D plane), simple projection down to the 2D
phase is ambiguous and consistent with multiple locations in the z-direction. (b) There are two sources of ambiguity,
the periodicity of the grid code within in the xy-plane, and the ambiguity the z-direction. (c) Two di↵erent 2D phases
for two modules are set by two distinct projections (red and blue) of the 3D value onto a plane. Together they are able
to simultaneously resolve both sources of ambiguity. (d) Estimates of the value of the encoded 3D variable obtained by
combining the ambiguous estimates of 1, 2, 3, and 4 modules as in (c). Given the cell responses we compute a probability
estimate and show only areas that exceed a fixed threshold (blue blobs). The spacing between the blobs defines the
coding range, that is, the range over which the code is unique. With increasing number of modules the range quickly
grows larger than the individual periods.

If the locations x lie in Euclidean space, the assigned phase is guaranteed to be indepen-
dent of the particular path � taken between x0 and x, thus ensuring a well-defined grid
code for x regardless of trajectory:

�(x) = '0 +A(x� x0) (mod 1). (3)

In this formulation, the di↵erent periods across modules could be generated by simple
re-scaling of the velocity projection A by a gain factor. In fact, within a single module,
when the spatial response period rapidly re-scales due to environment e↵ects [2], the
attractor model predicts that the re-scaling must be generated by a gain change in the
velocity projection [3], rather than by a change in the recurrent wiring that gives rise of
the periodic grid pattern. This prediction was verified in [28].

The description given above for spatial representation by grid cells, applies imme-
diately to the local representation of arbitrary (locally Euclidean) 2D spaces: the grid
phase is anchored to a particular landmark or landmarks in that space, and phase updates
are made from motion cues generated by navigation through those spaces, automatically
generating self-consistent codewords for any new location in that space. The only re-
quired change to represent a new space is the construction of a separate feedforward
projection A for motion through that space; under this expanded view, existing grid cell
models explain non-spatial representations [6, 16, 20, 15, 25, 17, 1].
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2.3 Extension to arbitrary dimension: Our model

If grid cell activity in a module is inherently two-dimensional and modules cannot indi-
vidually generate higher-dimensional grid responses, one way for the system to generate
a response while navigating through higher-dimensional cognitive spaces is to simply
project the N -dimensional velocity to two dimensions. We accomplish this by replacing
the 2 ⇥ 2 matrix A in Equation 2 by one of shape 2 ⇥ N . Intuitively one can imagine
the grid cells in a module responding to the variable’s “shadow” on (or projection onto)
some plane in the cognitive space, and generating classical hexagonal grids (along that
plane). Away from the plane the responses are elongated and undi↵erentiated along
the directions of projecting (Fig. 2a,b,d). This scheme is consistent with the empirical
findings in [11]. The resulting representation within a single module is ambiguous – at
least N � 2 cognitive directions project to zero under A – and the cognitive variable is
thus not decodable over any range, including within the smallest module period.

The central observation of this paper is that just as multiple modules operating
independently to integrate velocity solve the problem of the ambiguity of representation
by periodic responses, they can simultaneously solve the ambiguity that results from the
compression of higher-dimensional inputs to two-dimensional responses: We propose that
the grid cell system might uniquely encode higher-dimensional variables by constructing
M distinct operators A↵ (of size 2⇥N) that project velocities in N -dimensional spaces
into 2-dimensional velocity signals for each of the M grid modules. These velocity
signals, distributed to di↵erent modules, are not related simply by a scalar gain, as for
2D spatial responses, but must di↵er more fundamentally in their responses to each input
dimension (Fig. 2c). We choose A↵ to be a random projections independently chosen
for each module. These M independent projections can be viewed as a single matrix of
size 2M ⇥ N , which is of full-rank almost surely if N  2M (Appendix). This implies
that the intersection of the kernels of all projections is trivial, consisting solely of the
zero vector. In consequence they compress di↵erent portions of the input space and can
mutually resolve their ambiguities (Fig. 2c,d). With realistic estimates for the number of
grid modules in an individual animal (M = 4, . . . , 8), the code could represent variables
that lie in quite high-dimensional spaces (N = 8, . . . , 16).

As we show and explain next, it is a remarkable attribute of the grid code that with
this simple random projection scheme, the system can flexibly deploy and trade-o↵ its
massive coding capacity between coding range per dimension and number of dimensions,
across variables of di↵erent dimensions.

2.4 Expected coding range of the model

In any coding space, the available volume grows exponentially with the number of coding
dimensions. We call an e�cient code one that utilizes a sizable fraction of the available
volume for coding. The remarkable property of the grid cell code, enabled by its set
of periodic modules, is that it generates a vast library of codewords that are both well-
spaced and su�ciently densely packed in the available volume, so that the range of inputs
represented invertibly by the code scales exponentially with the number of modules
[7, 21, 19] (cf. also Equation 5 below). Therefore, the grid code is a highly e�cient code
for 2D analog variables. We can now ask, with regard to our proposed coding model for
generating unique codes for high-dimensional variables, is this e�ciency lost?

To address this question, we define the representational range of the code to be
the maximal side-length of a hypercube of dimension N over which no two points are
assigned the same grid code. Before we present numerical results on the coding range
of our model and its e�ciency, we set a rough benchmark by defining a conceptually
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Figure 3: Capacity grows exponentially with module number. All plots show the dynamic coding range of our
model (see Methods section). (a) Exact coding range of the grid code for variables of dimension 3 to 6, assuming
an overly conservative phase resolution of � = 0.2 to reduce time of computation. We show the geometric mean and
standard deviation over 1000 di↵erent draws of the projection matrices A for each pair M,N . The entries of the matrices
are sampled independently from a standard normal distribution. To compute the expected value E(W ) of the benchmark
in Equation 4, we also run this simulation with N = 1 (Appendix, Fig. 6), solid line. The capacity grows exponentially
with the number of modules; the benchmark provides an estimate of the expected capacity. (b) Change of coding range
while increasing the dimensionality of the input and keeeping the projection fixed (per trial), illustrating the flexibility
of the scheme (10 trials are shown). (c) We use the benchmark to show the coding range for more realistic values of
phase resolution (� = 0.2, . . . , 0.025). We chose the benchmark rather than measuring the exact range for practical
reasons (the run-time scales with the volume of the coding range not its side-length). Results shown for M/N � 1.

simpler yet e�cient coding scheme for a variable x of dimension N (with 2 < N  2M
(cf. also Fig. 4, middle panel).

For simplicity, assume that the number of modules is a multiple of N . Then we can
divide the modules into N distinct groups of M/N modules. Let each group encode just
one of the N coordinates of x, so that the problem of encoding a variable of dimension
N has been decomposed into the task of encoding N variables of dimension 1 each. The
representational range L will then be determined by the minimum coding range of one
of the groups, that is

L = min{L1, . . . , LN}, (4)

where Li (i = 1, . . . , N) denotes the 1-dimensional coding range of the ith group.
We know from previous theoretical work [7] that the representational range of encod-

ing a 1-dimensional variable with a number of 2D modules grows exponentially in the
number of modules. Thus, the representational range Li of group i increases with the
number of modules in that group, or as M/N . More precisely [7], for a phase resolution
(phase bin size) � and an average grid period � the expected representational range
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E(Li) of group i will scale as the spatial size of each phase bin times the number of
distinct phases. Thus, we have (cf. Appendix, Figure 6b)

E(Li) / � ·� ·
⇣ 1

�2

⌘M/N
. (5)

(An expected value is taken because of a random choice of how to “slice” each 2D grid
module to represent the ith component of x.) When M is a multiple of N we can
compute the empirical distribution for Li (Appendix, Figure 6a) as well as an expected
value for the overall representational range L (Fig. 3, solid lines). For non-integer values
M/N � 1, we simply interpolate between the distributions of Li.

The benchmark shows that the representational range of our model should still in-
crease exponentially with the number of modules when representing higher-dimensional
variables. While the benchmark scheme is simple and e�cient, it is based on the specific
dimension of the input (this determines how modules are grouped) and hence is not
flexible, in contrast to our model, as we will consider below.

2.5 E�ciency and flexibility of the model

For input variables of various dimensions (N = 3, . . . , 6) we numerically compute the
representational range as a function of the number of encoding grid modules (M =
1, . . . , 9), Figure 3a (white squares show the mean value over di↵erent samples of the
projection matrices). For each module ↵ we generate a random set of projections A↵ of
dimension 2⇥ 6; these projection matrices remain unchanged as the input dimension N
is varied (though only the corresponding sub-matrix of dimension 2 ⇥ N gets used for
coding).

The representational range of the randomized scheme clearly grows exponentially
with the number of modules, regardless of variable dimension. Further, the rate of
exponential growth closely matches the benchmark, illustrating its e�ciency. Thus, the
2D grid code with multiple modules is capable not only of unambiguous representation
of arbitrary 1D and 2D variables with exponentially large representational range as a
function of number of modules, but it can do the same for much higher-dimensional
variables as well.

Next, we note the model’s flexibility. When we fix the random projections A↵, then
increase the dimensionality of the input variable, the same projection enables represen-
tation of all additional dimensions of the input as well: The additional dimensions are
encoded by appropriating states from the far end of the range of the smaller-dimensional
representations, as can be seen because the representational range shrinks (while re-
maining exponential) as the input dimension is increased, Figure 3b. The conceptual
reason behind the inflexibility of the benchmark coding scheme using any modular code
including grid cells, versus the flexibility of our random projection-based scheme with
grid cells is illustrated schematically in Figure 4 (right panel).

For reasons of computational complexity, our primary numerical calculations are per-
formed with a rather conservative phase resolution (� = 0.2). To gain a more realistic
picture of model performance with finer phase resolution, we consider how coding range
of our model changes with phase resolution for a moderate number of modules and
dimensions (Appendix, Figure 7) and also how the benchmark changes with phase res-
olution (Figure 3c). Consistent with [7], capacity grows as a power of phase resolution,
regardless of the dimensionality of the encoded variable.
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Figure 4: Conceptual view of e�cient coding schemes that are flexible versus inflexible. Left: The conven-
tional (2D-only) grid code; cf. Figure 1c. Di↵erent modules change their state (phase) in a way that di↵ers by a fixed
scalar gain; this rigid coupling prevents the positional code from leaving a predefined set of coding states, defined by
planes that are arranged in parallel (black lines are edge-on views of these planes) within the combined 2M -dimensional
phase coding space of the grid cell system. Because the planes are tightly coiled (folded) throughout the coding space
(gray), the range is exponentially large in number of modules. However, it cannot encode variables of dimension greater
than 2. Middle: If modules are partitioned into disjoint groups, and di↵erent inputs (x, y versus z) control the state up-
dates in the di↵erent groups, the system can encode higher-dimensional variables. However, the partitioning of modules
must be carried out in advance for the specific dimension of the variable: A state that can be reached via updates in one
set of inputs (the black direction) cannot be accessed when another set of inputs is varied (red direction), which means
each state is pre-allocated to represent a given input dimension. States cannot be traded to exchange coding range
for coding dimension, thus such codes are not flexible. Right: As in the middle example, updates in module activity
are decoupled, but this time each module participates in the representation of all input dimensions. The periodicity of
the code makes it possible to connect (thus use) two coding states in di↵erent ways: by moving along di↵erent input
dimensions (red and black arrow). This means a given state (white circle) can be used to either enlarge the coding range
in the black direction or to encode a new dimension of the variable (via the red direction), without reconfiguration.

2.6 Predicted tuning curves for N-dimensional representations

Will it be possible to identify whether grid cells could be performing a flexible repre-
sentation of high-dimensional variables? A prerequisite for the grid cell system to work
according to our model is that di↵erent modules must be capable of changing their
internal state independently of each other (through the action of separate velocity pro-
jection operators); tantalizing hints that this is possible appear in [22], where di↵erent
grid modules appear to rescale by di↵erent amounts in response to an environmental
deformation.

A key signature of our proposed scheme relates to di↵erences in predicted tuning
curves across modules, described next. While it is straightforward to state the predicted
properties of neural responses to N -dimensional variables, it is di�cult to record, visu-
alize, and characterize these tuning curves in both principle and practice. Fortunately,
doing so is not necessary. We can simply characterize the responses of cells in di↵erent
modules as a function of variations along any 2D subspace of the explored N -dimensional
input space. The tuning curves in N dimensions will look like “lifts” (unchanging re-
sponses) of these 2D slices along N � 2 of the remaining dimensions (the null space of
the projection). For instance, if the input variable is 3D, these lifts simply look like
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Figure 5: Predictions about grid cell firing. For ease of illustration, we consider here the encoding of a variable
in three dimensions. (a) Left-most column (M = 1): 3D tuning curves of two grid-cells from di↵erent modules using
our coding model. Remaining columns (M > 1): 3D tuning curves of two conjunctive cells reading from M di↵erent
modules using our coding model. (b) Each row shows the 2D responses of 4 co-modular cells over a randomly chosen
tilted plane (shown on the left in gray) in 3D space. Di↵erent rows correspond to di↵erent modules and the modules
encode space according to our model.

elongated bands or pillars (see Figure 5a, M = 1).
The responses of grid cells along the 2D subspace will then resemble distorted grids

(Figure 5b), and can range from perfectly equilateral triangular grids to non-grid-like and
relatively complex, for instance, bands of bands (Figure 5b, 2nd row); in the atypical case
where the 2D subspace exactly aligns with one of the null or lift directions of a module,
those cells will have periodically arranged stripe responses. For a broader sampling of
possible grid cell response geometries, see Appendix Figure 8. Within a module, the
responses of di↵erent cells are generated from translations of the tuning of the module
(each row of Figure 5b shows co-modular responses over 2D slices). If plotted over a
large enough area, these translational relationships will be apparent, but when plotted
over smaller areas, they need not appear as simple shifts of a canonical 2D response
pattern (e.g. Figure 5b, top row), similar to the relationships seen in co-modular cells
in 1D environments which are generated by cutting a lower-dimensional slice through
translations of a higher-dimensional (2D) lattice [29]. Nevertheless, the common origins
of the response of co-modular cells means that they will obey systematic relationships.

Many cells in entorhinal cortex and the hippocampus express spatial fields that are
less structured than grid cells. In our model, if some of these cells were performing a
readout of two or three modules, these conjunction-forming cells would exhibit localized
3D fields with some regularity in spacing, but not full grid-like periodicity and thus no
clear notion of a spatial phase (Fig. 5a).

In sum, a central prediction of the hypothesis that the grid cell system could col-
lectively and flexibly use its multiple modules to encode variables of higher dimension
than two is that the projections to di↵erent modules should be di↵erent, and therefore
that in such situations, the responses of grid cells in di↵erent modules will di↵er in the
geometry of their tuning curves.
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3 Discussion

3.1 Implications for computation

The multi-module representation of grid cells provides a pre-fabricated, ready-to-use,
general high-dimensional neural a�ne1 vector space that can be used for both represen-
tation and memory of arbitrary vectors (of dimension  2M), and more specifically, for
integration of vector inputs. The representation is e�cient: it generates exponentially
many states with linearly many neurons, thus solving the curse of dimensionality prob-
lem faced by more naive coding schemes (e.g. by the formation of unary codes or grids
in higher dimensions). The update mechanism of grid cells permits vector-algebraic op-
erations between the stored vectors, required for vector integration in higher-dimension
abstract spaces. So long as displacements in the abstract spaces are provided as inputs
to the network, the network can thus e�ciently represent, hold in memory, and perform
algebraic sum operations on general, abstract vectors of di↵erent dimensions without any
reconfiguration of the recurrent grid cell network. We believe these results and impli-
cations fulfill, at least in theory, intuitive expectations that the very peculiar grid code
might be extraordinary in the computations it enables.

3.2 Relationship with band cells

Cells whose spatial responses resemble evenly spaced parallel bands across a 2-dimensional
environment are called band cells. They were postulated as inputs for computational
models of grid cells [5], and later observed experimentally in recordings in the parasubicu-
lum and entorhinal cortex of freely moving rats [18]. In our model, tuning curves can
be variously grid-like, distorted or stretched grid-like, band-like, amplitude-modulated
band-like, or like bands of bands, in a single cell. The band-like responses in our model
– obtained from 2D slices through the N -dimensional tuning curve – are a generalization
of simple band cells, and suggest that previously observed band-like responses might be
a signature of a projection operator that projects a 2D or higher-dimensional input onto
one of the null directions of the grid module.

3.3 Observed 3D responses in grid cells

In some studies of animals exploring higher-dimensional spaces, specifically 3D spatial
environments, the response of grid cells is elongated and undi↵erentiated along one di-
mension, while remaining grid-like in the other two [11]. This kind of tuning is consistent
with our prediction, and we have shown it allows for unique coding along the third di-
mension if the projections (and thus the undi↵erentiated direction) are not aligned across
modules.

Recently, grid cell responses have been examined in bats flying through 3D environ-
ments [9]. Bats crawling on 2D surfaces exhibit the same 2D triangular grid cell tuning
[27] as rats and mice. In 3D, consistent with our theory, the responses seem not to clearly
exhibit regular 3D grid patterns [26]. However, the fields do seem to be localized in all
3 dimensions, at least in the vicinity of a tree around where the bats forage for food
[9]. It is possible in this case that localized higher-dimensional fields are formed in the
hippocampus or the lateral entorhinal cortex based on spatial landmarks. Alternatively,
localized fields seen in medial entorhinal cortex and hippocampus in 3D could be formed
by conjunctions of grid cells encoding higher-dimensional spaces according to our model,

1The term a�ne makes explicit the lack of a preferred “zero” element. Each point in the space admits
a neighbourhood that naturally carries the structure of a vector space with the point at its origin.
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as shown in Fig. 5a, which qualitatively matches some of the reported properties of en-
torhinal cells in flying bats. A similar situation might hold for the observed localization
of fields in 3D, in rats navigating 3D wire mesh cubes [14]. However, an absence of
band-like structure in grid cells along any dimension during 3D coding would not be
consistent with our theory.

4 Methods

For the numerical part of the paper, we constructed a di↵erent random projection for
each trial. The entries of the matrices were independently sampled from a standard nor-
mal distribution. Given a collection of M grid modules and their associated projection
matrices, we want to determine the maximal range over which the code is unique. We
say that two points x, x0

collide if the distance of their associated phases in the grid
representation is smaller than or equal to a fixed threshold �

2 , where � is the phase
resolution per module. We determine the capacity of the code by computing the side
length of a maximal collision-free cube centered at the origin. However, in a small neigh-
bourhood of the origin (moving along each dimension by an amount smaller than all
the grid periods) the encoding map is one-to-one and continuous if the intersection of
the kernels of the di↵erent projection matrices is trivial. Any point thus admits a small
neighbourhood of points whose associated phases are closer than �; it is necessary to
ignore these points while performing our search for collisions for the capacity computa-
tions. We compute the minimal hyper-rectangle enclosing the ignored points and then
incrementally extend this box outward. We define the dynamic range as the minimum of
the side-lengths of the maximal cube divided by the side-length of the minimal starting
box. See Supplementary Material for a more detailed description of the algorithm.
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