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gnomAD-SV
An open resource of structural variation for medical and population genetics

SUMMARY
Structural variants (SVs) rearrange the linear and three-dimensional 
organization of the genome, which can have profound consequenc-
es in evolution, diversity, and disease. As national biobanks, human 
disease association studies, and clinical genetic testing are increas-
ingly reliant on whole-genome sequencing, population references 
for small variants (i.e., SNVs & indels) in protein-coding genes, such 
as the Genome Aggregation Database (gnomAD), have become in-
tegral for the evaluation and interpretation of genomic variation. 
However, no comparable large-scale reference maps for SVs exist 
to date. Here, we constructed a reference atlas of SVs from deep 
whole-genome sequencing (WGS) of 14,891 individuals across di-
verse global populations (54% non-European) as a component of 
gnomAD. We discovered a rich landscape of 498,257 unique SVs, 
including 5,729 multi-breakpoint complex SVs across 13 mutation-
al subclasses, and examples of localized chromosome shattering, 
like chromothripsis, in the general population. The mutation rates 
and densities of SVs were non-uniform across chromosomes and 
SV classes. We discovered strong correlations between constraint 
against predicted loss-of-function (pLoF) SNVs and rare SVs that 
both disrupt and duplicate protein-coding genes, suggesting that 
existing per-gene metrics of pLoF SNV constraint do not simply re-
flect haploinsufficiency, but appear to capture a gene’s general sen-
sitivity to dosage alterations. The average genome in gnomAD-SV 
harbored 8,202 SVs, and approximately eight genes altered by rare 
SVs. When incorporating these data with pLoF SNVs, we estimate 
that SVs comprise at least 25% of all rare pLoF events per genome. 
We observed large (≥1Mb), rare SVs in 3.1% of genomes (~1:32 in-
dividuals), and a clinically reportable pathogenic incidental finding 
from SVs in 0.24% of genomes (~1:417 individuals). We also estimat-
ed the prevalence of previously reported pathogenic recurrent CNVs 
associated with genomic disorders, which highlighted differences 
in frequencies across populations and confirmed that WGS-based 
analyses can readily recapitulate these clinically important variants. 
In total, gnomAD-SV includes at least one CNV covering 57% of the 
genome, while the remaining 43% is significantly enriched for CNVs 
found in tumors and individuals with developmental disorders. 
However, current sample sizes remain markedly underpowered to 
establish estimates of SV constraint on the level of individual genes 
or noncoding loci. The gnomAD-SV resources have been integrat-
ed into the gnomAD browser (https://gnomad.broadinstitute.org), 
where users can freely explore this dataset without restrictions on 
reuse, which will have broad utility in population genetics, disease 
association, and diagnostic screening.
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INTRODUCTION
Structural variants (SVs) are genomic rearrangements that alter seg-
ments of DNA ≥50 bp. By virtue of their size and abundance,1 SVs repre-
sent an important mutational force shaping genome evolution and func-
tion,2,3 and a significant contributor to germline and somatic disease.4-6 
The profound impact of SVs is partially attributable to the varied mecha-
nisms by which intra- and inter-chromosomal rearrangements can alter 
linear and three-dimensional genome structure, which can disrupt pro-
tein-coding sequences and/or cis-regulatory architecture.5,7-9 Genomic 
rearrangements can be grouped into distinct mutational classes, includ-
ing “unbalanced” SVs associated with gains or losses of DNA (e.g., co-
py-number variants [CNVs]), and “balanced” SVs that rearrange genom-
ic segments without corresponding dosage alterations (e.g., inversions 
& translocations) (Figure 1a).10 Other common forms of SVs include 
mobile elements that insert themselves throughout the genome,11 and 
multiallelic CNVs (MCNVs) that exist at high copy states.12 Beyond these 
canonical classes, more exotic species of complex SVs exist in all indi-
viduals.13,14 These variants do not conform to a single canonical class, 
and instead involve two or more SV signatures from a single mutational 
event interleaved within the same allele. Complex SVs can range from 
CNV-flanked inversions (e.g., dupINVdup) to rare instances of localized 
chromosome shattering, such as chromothripsis.8,15 The variant spec-
trum of germline SVs in all humans is therefore diverse, as is their influ-
ence on genome structure and function.
 
While SVs alter more nucleotides per genome than single nucleotide 
variants (SNVs) and small insertion/deletion variants (indels; <50 bp),1 
surprisingly little is known about their mutational spectra, patterns of 
natural selection, and functional impact on a global scale. The paucity 
of population-scale characterization of SVs is primarily attributable to 
the technical challenges of their ascertainment and the limited availabil-
ity of whole-genome sequencing (WGS) datasets. Whereas gold-stan-
dard methods for profiling SNVs and indels are well-established, such 
with as the Genome Analysis Toolkit (GATK),16 the uniform detection of 
SVs from short-read WGS has presented a much greater challenge. 
Analyses of SVs require specialized computational methods that simul-
taneously consider multiple SV signatures, and even high-coverage 
short-read WGS fails to capture a significant component of the variant 
spectrum accessible to more expensive niche data types such as long-
read WGS, optical mapping, or strand-specific sequencing.17 Current 
population references of SVs from WGS are thus restricted to the 1000 
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While the number of SVs per genome in gnomAD-SV using the integra-
tion of multiple algorithms (n=8,202) is a marked increase from publicly 
accessible references from short-read WGS, such as the 1000 Genomes 
Project (3,441 SVs per genome from ~7X coverage WGS) and the GTEx 
project (3,658 SVs per genome from ~50X coverage WGS),1,24 it is far 
lower than estimates of the total SVs per genome from recent long-read 
WGS analyses (24,825 per genome from 40X long-read coverage).17 In 
the absence of gold-standard SV benchmarking methods, we evaluated 
the technical qualities of the gnomAD-SV callset using five orthogonal 
approaches summarized in Extended Data Figure 2, Supplementary 
Figures 5-7, and Supplementary Table 4. Briefly, we assessed Men-
delian inheritance in 966 parent-child trios (2,898 genomes). Almost all 
SVs that violate Mendelian transmission patterns represent algorithmic 
false positives or false negatives in the child and/or parents, and thus 
provide a proxy for the performance of SV detection and genotyping ac-
curacy. Here, we observed an average Mendelian violation rate of 4.2% 
per trio (Extended Data Figure 2a). We found 97.8% sensitivity to de-
tect large CNVs (>40 kb) previously reported from microarrays in 1,893 
individuals.25 As another proxy for genotyping accuracy, we calculated 
that 87% of SVs across all populations were in Hardy-Weinberg Equilib-
rium, although this is an imperfect metric given the potential confounding 
assumptions and population genetic forces that may not hold true for all 
SV sites (Extended Data Figure 2b). We also leveraged Pacific Biosci-
ences long-read WGS17 in four individuals and found long-read support 
for up to 88.1% of SVs predicted from short-read WGS. The AFs from 
gnomAD-SV were correlated with variants also observed in the 1000 

Genomes Project (N=2,504; 4-8X sequence coverage) or smaller Eu-
ropean-centric cohorts.1,18 This stands in stark contrast to references 
for coding SNVs from resources such as the Exome Aggregation Con-
sortium (ExAC),19 and its second iteration, the Genome Aggregation 
Database (gnomAD), which have jointly analyzed data from >140,000 
individuals.20 These references have transformed most aspects of med-
ical and population genetics research, including the definition of genes 
constrained against predicted loss-of-function (pLoF) variation,19,21 and 
have become integral in the clinical interpretation of small coding vari-
ants.22 Therefore, as short-read WGS becomes the prevailing platform 
for large-scale human disease studies, and is likely to eventually dis-
place conventional technologies in diagnostic screening, there is a criti-
cal need for similar resources of SVs across diverse global populations.
 
In this study, we developed gnomAD-SV, a reference atlas of SVs from 
deep WGS in ~15,000 samples aggregated as part of gnomAD. Our 
analyses reveal diverse mutational patterns among SVs, and principles 
of strong selection acting against reciprocal dosage changes. We also 
find that SVs contribute approximately 25% of all rare pLoF events cur-
rently accessible to short-read WGS in each genome, and that 0.24% of 
individuals in the general population harbor a clinically reportable, like-
ly pathogenic incidental finding from SVs. These reference maps have 
been directly incorporated into the gnomAD browser (http://gnomad.
broadinstitute.org), which can be mined for new insights into genome 
biology and will provide an openly accessible resource for interpretation 
of SVs in diagnostic screening.

 

RESULTS
SV discovery & genotyping

We analyzed 14,891 samples in gnomAD-SV, of which 14,216 (95.5%) 
passed all data quality thresholds (Supplementary Tables 1 and Sup-
plementary Figure 1). Samples were aggregated across population 
genetic and complex disease association studies, and the samples 
in gnomAD-SV represent a subset of the overall gnomAD project 
(see Supplementary Table 2).20 All samples were previously aligned 
to the GRCh37/hg19 human reference assembly. This gnomAD-SV 
reference included 45.6% European (N=6,484), 34.7% African/Af-
rican-American (N=4,937), 9.2% East Asian (N=1,304), and 7.8% 
Latino (N=1,109) samples, as well as 2.7% samples from admixed 
or other populations (N=382; Figure 1b). We discovered and geno-
typed SVs using a cloud-based version of a multi-algorithm pipeline 
for Illumina short-read WGS, which has been previously described 
in a disease association study of autism spectrum disorder (ASD) in 
519 quartet families, where molecular assays yielded a 97% validation 
rate for predicted de novo SVs (Supplementary Figure 2).23 In brief, 
this pipeline integrates four orthogonal signatures of SVs to delineate 
variants across the size and allele frequency (AF) spectrum accessi-
ble to short-read WGS, including six classes of canonical SVs (Figure 
1a; deletions, duplications, MCNVs, inversions, insertions, transloca-
tions) and 13 subclasses of complex SVs (Figure 2).14 We augment-
ed these methods with approaches to account for the technical het-
erogeneity of aggregated WGS datasets (Extended Data Figure 1 
and Supplementary Figures 3-4). In total, these methods discovered 
498,257 distinct SVs (Figure 1c and Supplementary Table 3). Follow-
ing family-based analyses from 966 parent-child trios included for quality 
assessment (e.g., de novo rates), we pruned all first-degree relatives 
from further analyses, retaining a total of 12,549 unrelated genomes. 
Analyses of SVs from short-read WGS also produces thousands of in-
completely resolved non-reference breakpoint junctions per genome, 
sometimes referred to as ‘breakends’ (BNDs; Figure 1a), which can be 
valuable to document as deviations from reference sequence, but lack 
interpretable alternate allele structures for biological annotation. Given 
that these BNDs substantially inflated our variant counts (16.3% of all 
SVs detected), were enriched in false positives (Extended Data Figure 
2a),23 and cannot be interpreted for functional impact, we removed them 
from our final dataset. All analyses were thus performed on 382,460 
unique, completely resolved SVs from 12,549 unrelated genomes (Sup-
plementary Table 3).
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Figure 1 | Properties of SVs across human populations
(a) SVs were catalogued across seven mutational classes. Complex SVs were fur-
ther categorized into 13 subclasses (see Figure 2). We also catalogued unresolved 
non-reference sequence junctions, or breakends (BNDs), but they were excluded 
from all analyses. (b) After sample quality control, we processed 14,216 samples 
from four major continental populations: African (AFR), Latino (AMR), East Asian 
(EAS), and European (EUR). A small subset of samples came from admixed or 
other populations (OTH). Three publicly available WGS-based datasets of SVs are 
included for comparison (1000 Genomes Project [1000G]; Genome of the Neth-
erlands Project [GoNL]; Genotype-Tissue Expression Project [GTEx]).1,18,24 (c) We 
discovered 498,257 SVs (also see Supplementary Table 3), and provide counts 
from prior studies for comparison.1,18,24 (d) A principal component analysis of SV 
genotypes separated samples along axes corresponding to genetic ancestry. (e) 
The median genome harbored 8,202 SVs (also see Extended Data Figure 3). (f) 
Most SVs were small. Expected insertion peaks are marked at ~300bp, ~2.1kb, and 
~6kb, corresponding to three classes of mobile element insertion (Alu, SINE-VNTR-
Alu [SVA], and LINE1). (g) Most SVs were rare (AF<1%), and 46% of SVs were 
singletons (solid bars). (h) AFs were inversely correlated with SV size (also see 
Extended Data Figure 4).
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were apparently depleted in telomeres, although these variants might 
be more susceptible to false negatives than CNVs due to local repeat 
structures. These analyses indicate that the processes influencing SV 
mutation rates and mechanisms of formation vary by SV class and chro-
mosomal context.

Constraint against SVs in protein-coding genes
By virtue of their size and mutational diversity, SVs can have varied con-
sequences on protein-coding sequence (Figure 4a and Supplementa-
ry Figure 10). All classes of SVs can result in pLoF, either by deletion 
of coding nucleotides or alteration of open-reading frames, and many 

Genomes Project (R2=0.67; Extended Data Figure 
2c and Supplementary Figures 6-7),1 though 87% of 
SVs in gnomAD-SV were novel compared to the 1000 
Genomes Project, reflecting the increase in scale and 
sensitivity of the current dataset.

 
Insights into population genetics
& genome biology

The properties of SVs in the gnomAD-SV dataset fol-
lowed expectations from human demographic histo-
ry,26 with the top two principal components projecting 
samples onto well-established axes according to pop-
ulation structure (Figure 1d). African/African-Ameri-
can samples exhibited the greatest genetic diversity 
(median 9,177 SVs per genome compared to 7,888 
per non-African genome) (Figure 1e), and East Asian 
genomes featured the highest levels of homozygos-
ity (median 1,582 homozygous SVs per East Asian 
genome compared to 1,475 per non-East Asian ge-
nome) (Extended Data Figure 3a-d). Most SVs were 
small (median SV size=374 bp; Figure 1f) and rare 
(AF<1%; 92% of SVs; Figure 1g). Nearly half of all 
SVs (46.4%) were singletons (i.e., only one allele ob-
served across all samples), and the singleton propor-
tion varied by SV class and was strongly dependent 
on SV size (Figure 1h and Extended Data Figure 4). 
We completely resolved 5,729 complex SVs across 
13 mutational subclasses, of which 4,341 (75.8%) 
involved inverted segments (Figure 2), confirming 
prior predictions that most inversion variation acces-
sible to short-read WGS is comprised of complex SVs 
rather than canonical inversions.1,27 Among canonical 
SVs, deletions were collectively more rare than other 
classes (P < 1x10-100; one-sided Wilcoxon Test; Sup-
plementary Figure 8). However, complex SVs were 
rarer than all canonical classes, including deletions (P 
< 1x10-100; one-sided Wilcoxon Test), suggesting that 
purifying selection on SVs is likely strongest against 
loss of genomic content and extensive structural re-
arrangement.
 
Mutation rates for SVs have remained difficult to esti-
mate due to technical limitations of SV discovery from 
WGS, and the frequent use of cell line-derived DNA 
rather than whole blood in population studies.1 Us-
ing the Watterson Estimator,28 we projected a mean 
mutation rate of 0.35 de novo SVs per generation in 
regions of the genome accessible to short-read WGS 
(95% confidence interval: 0.18-0.52 SV/generation), 
or roughly one new SV every 2-6 live births, with mu-
tation rates varying markedly by SV class (Figure 
3a). While this method estimates mutation rates from 
variation aggregated across unrelated individuals, 
we previously demonstrated comparable rates from 
molecularly validated de novo SVs in WGS analy-
ses of 519 quartet families.23 However, our calcula-
tions certainly underestimate the true mutation rates 
for SVs given the reduced sensitivity of short-read WGS in repetitive 
and low-complexity sequences that can mediate their formation.29 We 
anticipate that emerging long-read WGS and assembly methods will 
greatly increase future estimates of SV mutation rates and clarify their 
associated mechanisms. Despite the limitations of short-read WGS in 
repetitive sequence, it was notable that the density of SVs in this study 
was significantly enriched near centromeres and telomeres (Figure 3b 
and Supplementary Figure 9). This trend was strongly dependent on 
SV class: biallelic deletions and duplications were predominantly en-
riched at telomeres, whereas MCNVs were preferentially enriched near 
centromeres (Figure 3c-d). Conversely, inversions and complex SVs 
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Figure 2 | Complex SVs are abundant in the human genome
We discovered and fully resolved 5,729 complex SVs across 13 distinct mutational subclasses, 75.8% of 
which involved at least one inversion. Each subclass is detailed here, including their mutational signatures, 
non-reference allele structures, abundance, sizes, and allele frequencies. For clarity, five pairs of subclasses 
have been collapsed into single rows due to mirrored or highly similar alternate allele structures (e.g., delINV 
vs INVdel). Two highly complex SVs that did not conform to any subclass are not included in this table (see 
Extended Data Figure 8).

Figure 3 | Genome-wide mutational patterns of SVs
(a) We estimated the mutation rate (µ) for each SV class using the Watterston estimator,28 projecting an 
average of 0.35 new SVs per generation. Bars represent 95% confidence intervals, and we provide rates of 
molecularly validated de novo SVs from 519 quartet families for comparison.23 (b) SVs were non-uniformly 
distributed across the genome. Shown here is the smoothed enrichment of SVs per 100 kb window across 
the average of all autosomes normalized by chromosome arm length (a “meta-chromosome”; also see Sup-
plementary Figure 9). (c) The distribution of SVs along the meta-chromosome was dependent on variant 
class. (d) Biallelic CNVs were predominantly enriched at telomeres, MCNVs were predominantly enriched 
at centromeres, and canonical and complex inversions were depleted near telomeres. P-values computed 
using a t-test; bars correspond to 95% confidence intervals (CIs).
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tween CG from rare SVs and pLoF constraint from SNVs 
(rho=0.80). A weaker, yet significant correlation was detect-
ed for IED as well (rho=0.58). By contrast, there was no 
correlation between pLoF constraint and rare inversions of 
entire genes without directly disrupting their open reading 
frames (rho=-0.16), despite canonical and complex inver-
sions appearing under particularly strong selection based 
on other metrics, such as the proportion of singleton SVs. 
Intriguingly, we found evidence for strong selection against 
noncoding inversions involving two or more recombination 
hotspots, which might suggest that large inversions influ-
ence meiotic mechanics in the general population (Extend-
ed Data Figure 6). When we cross-examined these rela-
tionships by using variant frequency distributions as a proxy 
for the strength of selection, we found the expected trend of 
an inverse correlation between proportion of singleton SVs 
and SNV constraint across all functional categories of SVs 
(Extended Data Figure 5f). These comparisons confirm 
that selection against multiple classes of gene-altering SVs 
is consistent with patterns observed for SNVs and indels. 
They further suggest that constraint metrics like pLI, which 
are derived from pLoF point mutations alone, underlie a 
general correspondence between haploinsufficiency and 
triplosensitivity, on average, for a large fraction of genes 
in the genome. Furthermore, these results imply that many 
highly constrained genes are not simply sensitive to pLoF, 
but intolerant to increased dosage and structural alterations 
more broadly. 
 
Relevance to disease association 
& clinical genetics
Most large-scale disease association studies of SVs have 

relied upon chromosomal microarrays (CMA), which are limited to de-
tection of large CNVs and have not had reliable reference resources 
to restrict analyses to ultra-rare variants.31 We evaluated gnomAD-SV 
as a filtering tool for previously published CMA-based association stud-
ies (N>10,000 samples) that have identified a significant contribution of 
large CNVs to developmental disorders (DDs),32 ASD,25 schizophrenia,33 
and cancer (Extended Data Figure 7).34 Filtering based on gnomAD-SV 
AFs magnified the previously reported associations of rare genic CNVs 
in DDs, ASD, and cancer, with less pronounced differences between 
schizophrenia cases and controls at ultra-rare AFs, consistent with ex-

SVs can duplicate or invert coding and noncoding loci.30 Coding dupli-
cations can result in copy-gain of entire genes (CG) or duplication of a 
subset of exons contained within a gene, referred to here as intragenic 
exonic duplication (IED). The average genome in gnomAD-SV harbored 
253 genes altered by biallelic SVs (199 pLoF, 18 IED, and 36 CG), of 
which 24 were predicted to be completely inactivated by homozygous 
biallelic pLoF SVs (Figure 4b and Extended Data Figure 2e-h). When 
restricted to rare (AF<1%) SVs, the average genome harbored 8 altered 
genes (5 pLoF, 1 IED, and 2 CG), effectively all of which were in the 
heterozygous state. By comparison, prior analyses estimated 120 pLoF 
SNV/indels per genome, of which 18 were rare,19 suggesting that up to 
25% of all rare pLoF events per genome are likely to result from SVs. 
We found signals of pervasive selection, such as the proportion of sin-
gleton variants,20 against all classes of SVs that overlap genes, including 
intronic SVs and pLoF SVs as small as single-exon deletions (Figure 4c 
and Extended Data Figure 5a-d). While further methods development 
will continue to refine these annotations, these data suggest that SVs 
represent a substantial fraction of all gene-altering variants per genome.
 
Metrics that quantitatively estimate the strength of selection on functional 
variation per gene, such as the probability of LoF intolerance (pLI), have 
become a core resource in human genetics.19,21 No comparable metrics 
exist for SVs due to small variant counts by comparison to SNVs. To gain 
some insight into this problem, we estimated the number of rare SVs ex-
pected per gene while adjusting for gene length, exon-intron structure, 
and genomic context (see Methods). This model is imperfect, as expec-
tations can be influenced by many known and unknown covariates, and 
SVs are too sparse to derive precise gene-level estimates of SV con-
straint at current sample sizes. Nevertheless, the results from this model 
displayed several clear and informative patterns. We found strong con-
cordance between pLoF constraint metrics from gnomAD exome anal-
yses and the depletion of rare pLoF SVs across 100 bins of 175 genes 
each, ordered by SNV constraint (Figure 4d; Spearman’s rho=0.89).20 
This result was also true of missense constraint, as expected given the 
strong correlation of missense and pLoF constraint (Supplementary 
Figure 11). We also discovered a comparable positive correlation be-

Figure 4 | Pervasive selection against SVs in genes mirrors patterns observed 
from coding point mutations
(a) Four categories of gene-overlapping SVs, with counts of SVs in gnomAD-SV. (b) Distributions of 
genes altered by SVs per genome. (c) Autosomal SVs that overlap genes were enriched for singleton 
variants (a proxy for the strength of selection20) above baseline of all SVs genome-wide, and explicitly 
intergenic SVs (also see Extended Data Figure 5c-d). Bars indicate 100-fold bootstrapped 95% 
confidence intervals. (d) We evaluated the relationship of constraint against pLoF SNVs versus the 
four categories of gene-overlapping SVs from (a).20 Each point represents the total of ~175 genes, 
which have been ranked by SNV constraint. Correlations were assessed with a Spearman test. Solid 
lines represent 21-bin rolling means. See Supplementary Figure 10 for comparisons to missense 
SNV constraint.

Figure 5 | Using gnomAD-SV to refine estimates of genomic disor-
der frequencies and penetrance at sequence resolution
(a) Comparison of carrier frequencies for 49 putatively disease-associated dele-
tions (red) and duplications (blue) at genomic disorder (GD) loci between gno-
mAD-SV and microarray analyses in the UK BioBank (UKBB).37 Grey bars indicate 
binomial 95% confidence intervals. Duplications of NPHP1, where WGS-derived 
CNV frequencies significantly differed from UKBB estimates, are marked with an 
asterisk. (b) GD CNV frequencies were comparable across populations in gno-
mAD-SV, except for duplications at 2q13 (NPHP1), where the frequency in East 
Asian samples was up to 5-fold greater than other populations (2q13 duplications 
marked with solid black outlines). (c) The odds ratios (ORs) for these 49 GDs in 
DDs were inversely correlated with the combined CNV frequencies in the gno-
mAD-SV and UKBB datasets (R2=0.28; P=1.18x10-3; Pearson correlation test).32 
(d) Using the larger combined sample size of gnomAD-SV and the UKBB, we 
re-estimated ORs for each of the 49 GDs by comparing to the 29,085 DD cases 
from (c).32
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cestry to the African, East Asian, European, or Latino populations sam-
pled here, and AF < 0.004% when compared against all samples col-
lectively. For instance, filtering all SVs found in an individual genome 
versus gnomAD-SV dramatically reduced the number of singleton SVs 
in that genome to a median of 13, just one of which was pLoF (Figure 
6a and Extended Data Figure 3). This reference dataset also aids in 
gene-level interpretation, as we catalogued at least one SV resulting in 
pLoF or CG for 40.4% and 23.5% of all autosomal genes, respective-
ly, and 586 genes with at least one homozygous pLoF SV (Figure 6b, 
Extended Data Figure 5e, and Supplementary Figure 12). However, 
these data are still extremely sparse as compared to SNVs and indels, 
where analyses of the 120,000 gnomAD exomes have documented at 
least one pLoF SNV for 95.8% of all genes.20 When further restricted 
to clinically relevant SVs using American College of Medical Genetics 
criteria,38 we find that 0.4% of samples carry a very rare (AF<0.1%) SV 
resulting in pLoF of a gene for which incidental findings are clinically 
reportable, roughly half of which (i.e., 0.26% of all samples) likely meet 
ACMG diagnostic criteria as pathogenic or likely pathogenic (Figure 
6c). We also observed that 9.5% of individuals were heterozygous carri-
ers of rare pLoF SVs in known recessive DD genes. Finally, we used the 
gnomAD-SV dataset to catalog rare chromosomal abnormalities (SVs 
≥ 1Mb). We estimate that 3.1% of the general population (95% CI: 2.5-
3.9%) carries at least one rare autosomal SV ≥1Mb in size, roughly half 
of which are balanced or complex (Figure 6d). Among these events was 
an example of highly complex localized chromosome shattering involv-
ing at least 49 breakpoints yet resulting in largely balanced products, 
reminiscent of chromothripsis, which was identified in an adult individual 
from the general population with no indication of severe developmental 
or pediatric disease (Figure 6e and Extended Data Figure 8).8,14,15 

 
An online, interactive SV reference browser

A key aspect of ExAC and gnomAD for analyses of coding SNVs and 
indels was the open release of variant information via an user-friendly 
online interface.19 Now in its second generation, the gnomAD browser 
(https://gnomad.broadinstitute.org) has been augmented to incorporate 
the gnomAD-SV callset described here. Users can query genes and re-
gions to view all SVs, including their mutational class, frequency across 
populations, predicted genic effects, genotype quality, and other variant 
metadata (Extended Data Figure 9). These features are directly inte-
grated into the existing interface as the gnomAD SNV and indel callsets, 
where users can toggle between viewing SVs and smaller point muta-
tions within the same window. Finally, all SVs described in this study 
are provided for download in two common file formats via the gnomAD 
browser, with no use restrictions on the reanalysis of these data. 

DISCUSSION
The fields of human genetics research and clinical diagnostics are 
becoming increasingly invested in defining the complete spectrum of 
variation in individual genomes. Ambitious international initiatives to 
generate short-read WGS in hundreds of thousands of individuals from 
complex disease cohorts have underwritten this goal,41-44 and millions of 
genomes from unselected individuals will be sequenced in the coming 
years from national biobanks.45,46 A central challenge to these efforts will 
be the uniform analysis and interpretation of all variation accessible to 
short-read WGS, particularly SVs, which are frequently cited as a source 
of added value offered by WGS over conventional technologies.47 In-
deed, early efforts to deploy WGS in cardiovascular disease, ASD, and 
type 2 diabetes were largely consistent in their analyses of SNVs using 
GATK, but all studies have differed in their analyses of SVs.23,36,42-44,48,49 
Thus, while ExAC and gnomAD have catalyzed remarkable advances 
in medical and population genetics, the same opportunities for new 
discovery and translational impact have not yet been realized for SVs. 
Although gnomAD-SV is by no means comprehensive, the half-million 
SVs it contains will begin to address the dearth of population SV data-
sets. Given that gnomAD-SV was constructed with contemporary WGS 
technologies and a reference genome that match those currently used 
in clinical settings, we anticipate that these data will augment disease 

pectations from genetic architecture studies. 

We next considered previously defined recurrent CNVs associated 
with syndromic phenotypes, or genomic disorders (GD), which are of-
ten mediated by recombination of long flanking segments of homolo-
gous sequences.35 These GDs are among the most prevalent genet-
ic causes of DDs,36 and accordingly CMA remains the recommended 
first-tier genetic diagnostic screen for DDs of unknown etiology.31 Thus, 
it is critical that these GD CNVs are able to be reliably captured from 
WGS for both routine clinical screening and studies of developmental 
and neuropsychiatric disease. Here, we calculated sequence-resolution 
CNV carrier frequencies in gnomAD for 49 GDs recently reported in the 
UK BioBank, and found consistent carrier frequency estimates between 
WGS in gnomAD-SV and those reported by CMA in the UK BioBank 
(UKBB; R2=0.69; P=1.22x10-13; Pearson correlation test; Figure 5a),37 
further confirming the accuracy of read depth-based discovery of large 
repeat-mediated CNVs from WGS. GD carrier frequencies did not vary 
dramatically between populations in gnomAD-SV, with the exception of 
a single GD (duplications of NPHP1 at 2q13), where carrier frequencies 
in East Asian samples were 2.5-to-4.9-fold higher than other popula-
tions (Figure 5b). This finding underscores the value of characterizing 
putatively disease-associated SVs across diverse populations. Finally, 
given the correlation of CNV frequencies between gnomAD-SV and the 
UKBB, we calculated the combined CNV frequencies from these re-
sources, which were inversely correlated with previously reported odds 
ratios (ORs) (Figure 5c).32 These data estimate that roughly 0.05% 
of the population (~1:2,000 individuals) is a carrier of a GD-associat-
ed CNV with an estimated OR > 14.0 (e.g., the top quartile of the 49 
GDs), compared to 1.86% (~1:54 individuals) for GDs with an OR < 1.7 
that represent relatively common polymorphic variants in the population 
(e.g., the bottom quartile) (Figure 5d).
 
As genomic medicine advances toward diagnostic screening at se-
quence resolution, publicly accessible WGS references will be indis-
pensable for variant interpretation. The current gnomAD-SV dataset 
will permit a screening threshold of AF < 0.1% when matching on an-

Figure 6 | gnomAD-SV as a resource for clinical WGS interpretation
(a) Filtering SVs against gnomAD-SV reduces individual genomes to ~13 singleton 
variants at current sample sizes. (b) At least one pLoF or CG SV was detected 
in 40.4% and 23.5% of all autosomal genes, respectively. “Constrained” and “un-
constrained” includes the least and most constrained 15% of all genes based on 
pLoF SNV observed:expected ratios, respectively.20 (c) Up to 1.3% of genomes 
in gnomAD-SV harbored a very rare (AF<0.1%) pLoF SV in a medically relevant 
gene across several gene lists.38-40 Manual review of all very rare pLoF SVs indi-
cated that 0.24% of genomes carry a pathogenic or likely pathogenic variant in 
a clinically reportable gene for incidental findings.38 We also found that 9.5% of 
genomes carried pLoF SVs of recessive DD genes in the heterozygous state.39 (d) 
We found 308 rare autosomal SVs ≥ 1Mb, revealing that ~3.1% of genomes carry 
a large, rare chromosomal abnormality. Bars represent binomial 95% confidence 
intervals. (e) An extremely complex SV involving at least 49 breakpoints that local-
ized in clusters across seven chromosomes in a single individual, yielding largely 
balanced derivatives, reminiscent of chromothripsis (see also Extended Data Fig-
ure 8). Chromosome coordinates provided as Mb.
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joint analyses of aggregated datasets by the field. The gnomAD-SV 
resource has been made available without restrictions on reuse, and 
has been integrated directly into the widely adopted gnomAD Browser 
(https://gnomad.broadinstitute.org), where users can freely view, sort, 
and filter the SV dataset described here. This resource will catalyze new 
discoveries in basic research and provide immediate clinical utility for 
the interpretation of rare structural rearrangements in the human ge-
nome.

 

METHODS & SUPPLEMENTARY INFO
There is supplementary information associated with this study, which 
includes detailed methods. These materials have been provided in a 
separate document, which will be linked directly from bioRxiv.
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association studies and provide a useful screening tool for clinical inter-
pretation of rare variation.
 
Most foundational assumptions of human genetic variation were con-
sistent between SNVs/indels from the gnomAD exome study and SVs 
reported here,20 most notably that SVs experience selection commen-
surate with their predicted biological consequences. This study also 
spotlights unique aspects of SVs, such as their remarkable mutation-
al diversity, their varied functional impact on coding sequence, and the 
strong selection against large and complex SVs in the genome. We pro-
vide resolved structures for nearly six thousand such complex SVs, and 
predict that SVs comprise up to 25% of all rare pLoF variation in each 
genome. These analyses also demonstrate that gene-altering effects of 
SVs beyond pLoF parallel measures of mutational constraint derived 
from analyses of SNVs. Despite the strong correlation between SNV 
and SV constraint in this study, we made several assumptions that likely 
underestimate the true diversity of possible functional outcomes. For in-
stance, we assigned any deletion of an exon from a canonical gene tran-
script as pLoF. There are technical and biological explanations for why 
that assumption will not universally hold,3 yet the proportion of singleton 
SVs was nearly identical for partial or single exon deletions as for loss 
of a full copy of a gene (Extended Data Figure 5d). More sophisticated 
models of SV annotation will continue to refine future predictions of their 
biological impact. The patterns we observed for whole-gene copy gains 
(CG) and intragenic exonic duplications (IEDs) against pLoF constraint 
imply that existing SNV constraint metrics are not specific to depletion 
of pLoF variation, but rather underlie a more generalizable intolerance 
to alterations of both gene dosage and structure. Indeed, similar pat-
terns of selection were observed for CG and pLoF SVs among the most 
constrained genes in the genome. Like complex SVs, IEDs are also an 
intriguing class of SVs that may operate in a context-dependent manner. 
Analogous to missense variation, IEDs can result in pLoF, neutral vari-
ation, or perhaps other effects, and thus represent an exciting area for 
future investigation. Finally, the strong selection against canonical and 
complex inversions despite no clear correspondence with existing gene 
constraint metrics is intriguing, and our analyses suggest that this may 
be related to large inversions blocking recombination through meiotic 
interference.
 
Technical barriers associated with short-read WGS preclude the es-
tablishment of a complete catalogue of SVs in gnomAD-SV. A recent 
study incorporating most extant genomics technologies demonstrat-
ed that short-read WGS is limited in low-complexity and repetitive se-
quence contexts.17 The technology and methods relied upon here are 
thus blind to a disproportionate fraction of repeat-mediated SVs, and un-
derestimate the true mutation rates within these hypermutable regions. 
Similarly, high copy state MCNVs often require specialized algorithms 
and manual curation to fully delineate their numerous haplotypes,12,50,51 
suggesting that the 1,053 MCNVs reported here comprise an incom-
plete portrait of extreme copy-number polymorphisms. We expect that 
emerging technologies, de novo assemblies, and graph-based genome 
representations are likely to expand our knowledge of SVs in repeti-
tive sequences.51,52 Nevertheless, based on current estimates, 92.7% of 
known autosomal protein-coding nucleotides are not localized to simple- 
and low-copy repeats. This suggests that catalogues of SVs accessible 
to short-read WGS across large populations, like gnomAD-SV, will likely 
capture a majority of the most interpretable gene-disrupting SVs in hu-
mans.
 
The oncoming deluge of short-read WGS datasets has magnified the 
need for publicly available large-scale resources of SVs. In this study, 
we aimed to begin to bridge the gap between the existence of such ref-
erences for SNVs/indels and those for SVs. While the dataset provided 
here significantly exceeds current references in terms of sample size 
and sensitivity, these data remain insufficient to derive accurate esti-
mates of gene-level constraint, and are dramatically underpowered to 
explore sequence-specific mutation rates and intolerance to noncoding 
SVs. Nonetheless, these data provide an initial step toward these goals, 
and demonstrate the value of a commitment to open data sharing and 
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Extended Data Figure 1 | Detection of chromosome-scale dosage alterations
We estimated ploidy (i.e. whole-chromosome copy number) for all 24 chromosomes per sample. (a) Distribution of autosome ploidy estimates across 14,378 samples passing 
initial data quality thresholds. The outlier points marked in red and blue correspond to the samples highlighted in panels (b-e). (b-e) Samples with outlier autosome ploidy 
estimates typically harbored somatic or mosaic chromosomal abnormalities, such as somatic aneuploidy of chr1 (b) or chr8 (e), or large focal somatic or mosaic CNVs on 
chr3 (c) and chr7 (d). Each panel depicts copy-number estimates in 1Mb bins for each rearranged sample in red or blue. Dark, medium, and light grey background shading 
indicates the range of copy number estimates for 90%, 99%, and 99.9% of all gnomAD-SV samples, respectively, and the medium grey line indicates the median copy number 
estimate across all samples. Regions of unalignable N-masked bases >1Mb in the reference genome are masked with grey rectangles. (f) Sex chromosome ploidy estimates 
for all samples from (a). We inferred karyotypic sex by clustering samples to their nearest integer ploidy for sex chromosomes. Several abnormal sex chromosome ploidies 
are marked, including XYY (i), XXY (ii), XXX (iii), and mosaic loss-of-Y (iv). (g) The overwhelming majority of samples conformed to canonical sex chromosome ploidies.

Extended Data Figure 2 | Benchmarking the technical qualities of the gnomAD-SV callset
We evaluated the quality of gnomAD-SV with five orthogonal analyses detailed in Supplementary Table 4 and Supplementary Figures 5-7. Three core analyses are pre-
sented here. (a) We assessed Mendelian transmission for heterozygous SVs in 966 parent-child trios. Given the expected mutation rate of SVs accessible to short-read WGS 
(<1 true de novo SV per trio; see also Figure 3a),1,23 most de novo SVs represented a combination of false-positive genotypes in children and/or false-negative genotypes 
in parents. These analyses revealed an apparent de novo rate of 4.1% in gnomAD-SV final variants (“Filter Pass”; green). For comparison, the apparent de novo rate is 
provided for variants that did not pass post hoc site-level filters (“Filter Fail”; purple). Notably, these failed variants with lower quality metrics are predominantly comprised of 
unresolved BNDs (72.2% of all failing SVs per trio). (b) We assessed Hardy-Weinberg Equilibrium (HWE) for all biallelic SVs localized to autosomes. Vertex labels reflect gen-
otypes: 0/0=homozygous reference; 0/1=heterozygous; 1/1=homozygous alternate, with all sites shaded by HWE p-value. (c) AFs were strongly correlated between common 
(AF>1%) SVs captured by both the 1000 Genomes Project and gnomAD-SV.1 A Pearson correlation coefficient is provided here.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/578674doi: bioRxiv preprint 

https://doi.org/10.1101/578674
http://creativecommons.org/licenses/by/4.0/


10 Collins*, Brand*, et al. (2019)

bioRxiv Preprint

Extended Data Figure 3 | SVs contribute a substantial burden of rare, homozygous, and coding mutations per genome
(a-d) We tabulated the count of SVs per genome across a variety of parameters, finding a median of (a) 8,202 total SVs, (b) 1,484 homozygous SVs, (c) 276 rare SVs, and 
(d) 13 singleton SVs. These counts varied by population, with African/African-American (AFR) samples having the greatest genetic diversity and East Asian (EAS) samples 
having the most homozygosity. Colors correspond to SV types as indicated to the right of each panel, and the solid bar to the left of each population indicates the population 
median. (e-g) We evaluated the contribution of SVs to disruptions of protein-coding genes per genome, and found median counts of genes disrupted by SVs of (e) 467 due 
to all SVs (including MCNVs; 253 genes altered by biallelic SVs), (f) 115due to homozygous SVs (including MCNVs), and (g) eight genes due to rare SVs. Colors correspond 
to predicted functional consequence as indicated to the right of each panel. (h) We found that a diverse spectrum of SV classes contribute pLoF alleles to every genome. The 
average genome harbored 255 pLoF SVs. For certain categories, such as genes disrupted by rare SVs per genome, a subset of samples (<5%) were enriched above the 
population average, as expected for individuals carrying large, rare CNVs predicted to cause the disruption of dozens or hundreds of genes (see Extended Data Figure 1); 
thus, for the purposes of visualization, the y-axis for all panels presented here has been restricted to a maximum of three interquartile ranges above the third quartile across 
all samples for each category.
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Extended Data Figure 4 | Rearrangement size is a primary determinant of negative selection for most classes of SVs
We calculated the proportion of singletons in five SV size bins for (a) all SVs, (b) biallelic deletions, (c) biallelic duplications, (d) insertions, (e) inversions, and (f) complex SVs. 
For this analysis, we excluded SVs that were in highly repetitive or low-complexity sequence (≥30% coverage by annotated segmental duplications or simple repeats). The 
proportion of singletons for all SV classes exhibited a clear dependency on SV size. Bars reflect 95% confidence intervals from 100-fold bootstrapping.
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Extended Data Figure 5 | Most SVs within genes appear under negative selection
These data suggest that negative selection acts against SVs overlapping genes across a broad spectrum of mutational classes and predicted functional consequences. (a) 
Rare and singleton variants were enriched for SVs with pLoF consequences on at least one gene, with singleton variants being enriched to a greater extent than rare variants. 
(b) SVs with predicted genic effects beyond pLoF, such as IED, CG, and whole-gene inversions, displayed similar enrichments as pLoF among rare and singleton variants. 
The same trend was also observed for intronic SVs and variants overlapping gene promoters, suggesting that these classes of variation are also likely subjected to negative 
selection. (c) Using the proportion of singletons as a proxy for the strength of negative selection, we found that SVs predicted to directly alter coding sequence (pLoF, IED, 
or CG) were enriched for singletons above the baseline of all autosomal SV, or also when compared to intergenic SVs of the same SV class (lighter dots), suggesting the 
overall observation of negative selection on pLoF SVs was not specific to a single SV class or context. For panels (c), (d), and (f), bars represent 95% confidence intervals 
from 100-fold bootstrapping. (d) The proportion of singletons for pLoF deletions was correlated with the number of exons and number of whole genes deleted, although this 
is also closely linked to SV size (see Extended Data Figure 4). Notably, even single-exon deletions exhibited a clear enrichment of singletons above the baselines of both 
all deletions and noncoding deletions, implying that our pLoF annotations were capturing likely disruptive SVs down to single-exon resolution. For this analysis, we excluded 
SVs that were in highly repetitive or low-complexity sequence (≥30% coverage by annotated segmental duplications or simple repeats). (e) In total, we found one pLoF SV 
for 40.4% of all autosomal protein-coding genes, and similar or lower fractions for all other SV effects considered in this study. (f) Most categories of SVs, including intronic, 
promoter, and UTR SVs, exhibited an inverse relationship between proportion of singleton SVs and pLoF SNV constraint. 
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Extended Data Figure 6 | Evidence of selection against possible meiotic interference caused by large noncoding inversions and CNVs
We evaluated the hypothesis that large SVs might cause meiotic interference by blocking recombination by evaluating a proxy for strength of selection (singleton proportion) 
between various categories of SVs. We compared SVs in this dataset against recombination hotspots, conditioned by whether or not each SV had any predicted direct effects 
on coding sequence. For inversions, deletions, and duplications, we found that rearrangements with no predicted genic effect that also were predicted to alter more than two 
recombination hotspots were under particularly strong selection, surpassing the degree of selection against SVs from the same class with direct coding effects. Although 
sample sizes were small, these analyses suggest that noncoding SVs may be selected against when predicted to disrupt multiple recombination hotspots, potentially due to 
mechanisms of meiotic interference.

Extended Data Figure 7 | gnomAD-SV can augment disease association studies of SVs
(a) Filtering CNV calls from microarray disease association studies against gnomAD-SV can magnify reported signals of association between ultra-rare genic CNVs and vari-
ous diseases, including DDs,32 ASD,25 and cancer.34 Bars represent the total number of large (≥100kb), rare (frequency<0.1% in the original study) CNVs overlapping at least 
one protein-coding exon across all cases or controls after filtering versus gnomAD-SV. Asterisks correspond to P-value thresholds of 0.05, 0.005, and 0.0005, respectively. 
AF=max allele frequency in gnomAD-SV; AC=max allele count in gnomAD-SV; “Not. Obs”=not observed in gnomAD-SV. (b) Odds ratios and 95% confidence intervals corre-
sponding to the filtering procedures used in (a).

Extended Data Figure 8 | An extremely complex SV involving 49 breakpoints and seven chromosomes
In the gnomAD-SV cohort, we identified one highly complex insertion rearrangement where 47 segments from six different chromosomes were duplicated and inserted into 
a single locus on chromosome 1, forming a 626,065 bp stretch of contiguous inserted sequence composed of shattered fragments. Given the involvement of multiple chro-
mosomes, the signature of localized shattering, and the clustered breakpoints, we note that this rearrangement has several hallmarks of germline chromothripsis.14 However, 
unlike previous reports of germline chromothripsis, there are no apparent whole-chromosome translocations, and all segments were duplicated before being inserted in a 
compound manner into chromosome 1, potentially suggesting a replication-based repair mechanism. The exact origin of this rearrangement is unclear. (a) Circos representa-
tion of all 49 breakpoints and seven chromosomes involved in this SV, reproduced from Figure 6 for clarity. (b) The median segment size was 8.4kb. (c) Linear representation 
of the rearranged inserted sequence. Colors correspond to chromosome of origin, and arrows indicate strandedness of inserted sequence, relative to the GRCh37 reference.
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Extended Data Figure 9 | An online, interactive platform to query, filter, and download the gnomAD-SV resource
The existing gnomAD browser (https://gnomad.broadinstitute.org) has been modified to incorporate the gnomAD-SV data described in this study. These data can be queried 
on a per-gene, per-locus, or per-variant basis, and toggled between SNV/indel SV datasets within the same view range. Shown here is an example of the SV mode for a 
gene-level query, for the gene LAMA1. This screenshot is annotated with several new SV features, and highlights some of the functionality of the new gnomAD browser mode, 
such as coloring by SV class or genic consequence, a synchronized display of SVs in the variant track and metadata table below, and the ability to sort, filter, and scroll freely 
among SVs in the view range.
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