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SUMMARY
Structural variants (SVs) rearrange large segments of the genome 
and can have profound consequences for evolution and human dis-
eases. As national biobanks, disease association studies, and clini-
cal genetic testing grow increasingly reliant on genome sequencing, 
population references such as the Genome Aggregation Database 
(gnomAD) have become integral for interpreting genetic variation. 
To date, no large-scale reference maps of SVs exist from high-cov-
erage sequencing comparable to those available for point mutations 
in protein-coding genes. Here, we constructed a reference atlas of 
SVs across 14,891 genomes from diverse global populations (54% 
non-European) as a component of gnomAD. We discovered a rich 
landscape of 433,371 distinct SVs, including 5,295 multi-breakpoint 
complex SVs across 11 mutational subclasses, and examples of lo-
calized chromosome shattering, as in chromothripsis. The average 
individual harbored 7,439 SVs, which accounted for 25-29% of all 
rare protein-truncating events per genome. We found strong cor-
relations between constraint against damaging point mutations and 
rare SVs that both disrupt and duplicate protein-coding sequence, 
suggesting intolerance to reciprocal dosage alterations for a sub-
set of tightly regulated genes. We also uncovered modest selection 
against noncoding SVs in cis-regulatory elements, although selec-
tion against protein-truncating SVs was stronger than any effect on 
noncoding SVs. Finally, we benchmarked carrier rates for medically 
relevant SVs, finding very large (≥1Mb) rare SVs in 3.8% of genomes 
(~1:26 individuals) and clinically reportable incidental SVs in 0.18% 
of genomes (~1:556 individuals). These data have been integrated 
directly into the gnomAD browser (https://gnomad.broadinstitute.
org) and will have broad utility for population genetics, disease as-
sociation, and diagnostic screening.

INTRODUCTION
Structural variants (SVs) are genomic rearrangements that alter seg-
ments of DNA larger than 50 nucleotides.1 By virtue of their size and 
abundance, SVs represent an important mutational force shaping ge-
nome evolution and function,2,3 and contribute to germline and somatic 
diseases.4-6 The profound impact of SVs is partially attributable to the 
varied mechanisms by which these intra- and inter-chromosomal rear-
rangements alter linear and three-dimensional genome structure, which 
can disrupt protein-coding genes or cis-regulatory architecture.7-9 SVs 
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can be grouped into distinct mutational classes, including “unbalanced” 
SVs associated with gains or losses of DNA (e.g., copy-number variants 
[CNVs]), and “balanced” SVs that rearrange genomic segments without 
corresponding dosage alterations (e.g., inversions and translocations) 
(Figure 1a).10 Other common forms of SVs include mobile elements such 
as transposons that insert themselves throughout the genome,11 and mul-
tiallelic CNVs (MCNVs) that may exist at high copy numbers.12 Beyond 
these canonical classes, more exotic species of complex SVs exist in 
all individuals.13,14 These variants do not conform to a single canonical 
class, and instead involve two or more SV signatures in a single muta-
tional event interleaved within the same allele, ranging from CNV-flanked 
inversions (e.g., dupINVdup) to rare instances of localized chromosome 
shattering, such as chromothripsis.15,16 The variant spectrum of germline 
SVs in all humans is therefore broad, as is their influence on genome 
structure and function.
 
While SVs alter more nucleotides per genome than single nucleotide 
variants (SNVs) and small insertion/deletion variants (indels; <50 bp),1 
surprisingly little is known about their mutational spectra, patterns of nat-
ural selection, and functional impact on a global scale. This paucity of 
population-scale characterization of SVs to date is attributable to several 
factors, including the limited availability of deep coverage whole-genome 
sequencing (WGS) datasets and the myriad technical challenges of SV 
ascertainment. In contrast to the established gold-standard methods for 
profiling SNVs and indels from WGS data, like the Genome Analysis 
Toolkit (GATK),17 the uniform detection of SVs from short-read WGS has 
presented a much greater challenge.18,19 Analyses of SVs require special-
ized computational methods that consider multiple SV signatures, and 
even high-coverage short-read WGS fails to capture a component of the 
variant spectrum accessible to more expensive niche data types such 
as long-read WGS, optical mapping, or strand-specific sequencing.18,19 
Current population references of SVs from WGS are thus restricted to 
the 1000 Genomes Project (N=2,504; 7X sequence coverage) or small-
er European-centric cohorts.1,20 These references are dwarfed by con-
temporary resources for coding SNVs and indels such as the Exome 
Aggregation Consortium (ExAC) and its second iteration, the Genome 
Aggregation Database (gnomAD), which have jointly analyzed >140,000 
exomes.21,22 Publicly available resources like ExAC and gnomAD have 
transformed most aspects of population genetics and disease association 
research, including defining a set of genes constrained against predict-
ed loss-of-function (pLoF) variation,21,23 and have become integral in the 
medical interpretation of small coding variants.24 As short-read WGS is 
becoming the prevailing platform for large-scale human disease studies, 
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a combination of false positives in children and/or false negatives in par-
ents because we expect less than one true de novo SV per genome.1,25,26 
We also found that 86% of SVs were in Hardy-Weinberg equilibrium, 
and common SVs were generally in strong linkage disequilibrium (LD) 
with nearby SNVs/indels (median peak R2 = 0.85). Finally, we leveraged 
matched long-read WGS data available for four individuals to perform 
in silico confirmation of our SVs predicted from short-read WGS.19,27,28 
These analyses yielded a confirmation rate of 94.0% for SVs with break-
point-level read evidence (92.8% of all SVs), and revealed that 59.8% of 
breakpoint coordinates from the gnomAD-SV callset were accurate with-
in a single nucleotide of the long-read data, while 75.9% were accurate 
within ±10bp. In conclusion, despite the limitations of short-read WGS, 
the seven benchmarking approaches we applied here suggest that these 
data conform to many fundamental principles of population genetics, in-
cluding Mendelian segregation, Hardy-Weinberg equilibrium, population 
stratification, and linkage disequilibrium, and that gnomAD-SV is suffi-
ciently sensitive and specific to provide a contemporary resource for most 
applications in human genomics.
 
Insights into population genetics
and genome biology
Investigation of population substructure from SVs followed the expecta-
tions set by human demographic history,29 with the top three principal 
components providing clear separation between populations (Figure 1d 
and Supplementary Figure 13). African/African-American samples ex-
hibited the greatest genetic diversity (Figure 1e) and their common SVs 

and will likely displace conventional technologies in diagnostic screen-
ing, there is a critical need for similar resources of SVs across diverse 
global populations.
 
In this study, we developed gnomAD-SV, a reference map of SVs from 
WGS of 14,891 samples with an average coverage of 32X aggregated 
as part of gnomAD. Our analyses revealed diverse mutational patterns 
among SVs, and principles of selection acting against reciprocal dosage 
changes in genes and noncoding cis-regulatory elements. We found 
that SVs contributed approximately 25-29% of all rare protein-truncat-
ing events accessible to short-read WGS per genome, and that 0.18% 
of individuals in the general population harbored a clinically reportable 
SV that is likely to influence phenotype. These reference maps have 
been directly incorporated into the gnomAD browser (http://gnomad.
broadinstitute.org) with no restrictions on reuse, and can be mined for 
new insights into genome biology and will provide an open resource for 
interpretation of SVs in diagnostic screening.
 

RESULTS
SV discovery and genotyping
We analyzed 14,891 samples in gnomAD-SV, of which 14,237 (95.6%) 
passed all data quality thresholds (Supplementary Tables 1 and Sup-
plementary Figure 1). Samples were aggregated across numerous 
large-scale sequencing projects, and collectively represented a gen-
eral adult population depleted for severe Mendelian diseases (median 
age = 49 years; Supplementary Figure 2). This gnomAD-SV reference 
included 46.1% European (N=6,559), 34.9% African/African-American 
(N=4,969), 9.2% East Asian (N=1,307), and 8.7% Latino (N=1,232) sam-
ples, as well as 1.2% samples from admixed or other populations (N=170; 
Figure 1). Following SV discovery (described below) and family-based 
analyses of 970 parent-child trios as a quality assessment, we pruned 
all first-degree relatives from the cohort, retaining 12,653 unrelated ge-
nomes for subsequent analyses. 

We discovered and genotyped SVs using a cloud-based version of a 
multi-algorithm pipeline for short-read WGS (Supplementary Figure 3), 
which has been previously detailed in a study of 519 autism quartet fam-
ilies.25 In brief, this pipeline integrated four orthogonal SV signatures to 
delineate variants across the size and allele frequency (AF) spectrum ac-
cessible to short-read WGS, including six classes of canonical SVs (Fig-
ure 1a; deletions, duplications, MCNVs, inversions, insertions, translo-
cations) and 11 subclasses of complex SVs (Figure 2).14 We augmented 
this pipeline with new methods to account for the technical heterogeneity 
of aggregated WGS datasets (Extended Data Figure 1 and Supple-
mentary Figures 4-5). In total, these methods discovered 433,371 SVs 
(Figure 1c and Supplementary Table 3). We further pruned this data-
set for the thousands of incompletely resolved non-reference breakpoint 
junctions per genome that are labeled by some algorithms as ‘breakends’ 
(BNDs; Figure 1a). These BNDs lack interpretable alternate allele struc-
tures for biological annotation, substantially inflated our variant counts 
(13.9% of all SVs detected), were enriched in false positives (Extended 
Data Figure 2a),25 and cannot be interpreted for functional impact, so we 
removed them from our final dataset (335,470 completely resolved SVs; 
Supplementary Table 3). The gnomAD-SV callset is freely available as 
a resource for the community via the gnomAD browser (https://gnomad.
broadinstitute.org) and NCBI dbVar (accession nstd166).
 
There are currently no universally accepted, gold-standard benchmark-
ing procedures for SV datasets from WGS, so we evaluated the techni-
cal qualities of gnomAD-SV using seven orthogonal approaches. These 
analyses are provided in complete detail in Extended Data Figures 2-3, 
Supplementary Figures 6-12, Supplementary Tables 4-5, and Sup-
plementary Note 1. Overall, we found comparable specificities for gno-
mAD-SV and our previous application of the same methods to 519 autism 
quartets, where we attained a 97% molecular validation rate for all de 
novo SV predictions.25 To highlight just a few measures in gnomAD-SV, 
we observed a Mendelian violation rate of 3.8% and a heterozygous de 
novo rate of 3.0% on average across 970 parent-child trios, which reflects 
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Figure 1 | Properties of SVs across human populations
(a) SV classes catalogued in this study. Complex SVs were further categorized into 
11 subclasses (see Figure 2). We also documented unresolved non-reference se-
quence junctions (i.e., breakends; BND), but they were excluded from all analy-
ses. (b) After sample quality control, we processed 14,237 samples from four major 
continental populations: African/African-American (AFR), Latino (AMR), East Asian 
(EAS), and European (EUR). A small subset of samples came from admixed or 
other populations (OTH). Three publicly available WGS-based SV datasets are in-
cluded for comparison (1000 Genomes Project [1000G], ~7X coverage; Genome 
of the Netherlands Project [GoNL], ~13X coverage; Genotype-Tissue Expression 
Project [GTEx], ~50X coverage).1,20,29 (c) We discovered 433,371 SVs, and provide 
counts from prior studies for comparison.1,20,29 (d) A principal component analysis 
of common SV genotypes separated samples along axes corresponding to genetic 
ancestry. (e) The median genome harbored 7,439 SVs. (f) Most SVs were small. 
Expected insertion peaks are marked at ~300 bp, ~2.1 kb, and ~6 kb, corresponding 
to three classes of mobile element insertion (Alu, SVA, and LINE1, respectively). (g) 
Most SVs were rare (AF<1%), and 49.8% of SVs were singletons (solid bars). (h) 
AFs were inversely correlated with SV size, which was accounted for in all subse-
quent analyses. Color codes are consistent between panels a, c, e-h, and between 
panels b and d.
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biallelic pLoF SVs (Figure 4b and Extended Data Figure 4e-h). When 
restricted to rare (AF < 1%) SVs, the mean genome had 10.2 altered 
genes (5.5 pLoF, 3.4 CG, and 1.3 IED), all effectively heterozygous. By 
comparison, SNV and indel analyses in gnomAD estimated 122.4 pLoF 
SNVs/indels per genome, of which 16.3 were rare,22 suggesting that be-
tween 25-29% of all rare pLoF events per genome are contributed by 
SVs, although this fraction is likely to be upwardly revised as the sensitiv-
ity of SV detection improves with emerging technologies. 

The degree to which selection acts globally on SVs within and outside of 
coding regions of the genome remains a fundamental question in human 
genetics. One approach to quantifying selection relies on inference from 
site-frequency spectra. Specifically, the proportion of singleton variants 
has been established as a proxy for strength of selection.21,22 However, 

exhibited weaker LD with nearby SNVs and indels than 
Europeans (Supplementary Figure 7). East Asian 
genomes featured the highest levels of homozygosity 
(Extended Data Figure 4a-d). The spectrum of SVs 
present in gnomAD-SV was diverse: we complete-
ly resolved 5,295 complex SVs across 11 mutational 
subclasses, of which 3,901 (73.7%) involved inverted 
segments (Figure 2), confirming prior predictions that 
most inversion variation accessible to short-read WGS 
comprises complex SVs rather than canonical inver-
sions.1,30 Across all SV classes, most SVs were small 
(median SV size = 331 bp; Figure 1f) and rare (AF < 
1%; 92% of SVs; Figure 1g), with nearly half of all SVs 
(49.8%) appearing as “singletons” (i.e., only one allele 
observed across all samples). While singleton propor-
tion varied by SV class, it was strongly dependent on 
SV size across all classes, suggesting that the amount 
of genetic material rearranged is a principal determi-
nant of selection against most SVs (Figure 1h and Ex-
tended Data Figure 5a).
 
Mutation rates for SVs have remained difficult to quan-
tify due to the limited resolution of conventional tech-
nologies, the technical challenges of SV discovery from 
short-read WGS, and the frequent use of cell line-de-
rived DNA in population studies.1,26 Given that nearly 
all samples in this study (99.3%) were sequenced from 
whole blood-derived DNA, we used the Watterson esti-
mator31 to project a mean mutation rate of 0.29 de novo 
SVs per generation in regions of the genome accessi-
ble to short-read WGS (95% confidence interval: 0.13-
0.44), or roughly one new SV every 2-8 live births, with 
mutation rates varying markedly by SV class (Figure 
3a). While this imperfect method approximates muta-
tion rates from aggregated genetic data across unre-
lated individuals, we previously demonstrated compa-
rable rates from molecularly validated observations in 
WGS analyses of 519 quartet families.25 Like mutation 
rates, the distribution of SVs throughout the genome 
was non-uniform, significantly correlated with numer-
ous repetitive sequence contexts, and particularly 
enriched near centromeres and telomeres (Supple-
mentary Figure 16).32  These trends were strongly de-
pendent on SV class. For instance, biallelic deletions 
and duplications were predominantly enriched at telo-
meres, whereas MCNVs were preferentially enriched 
in centromeric segmental duplications (Figure 3b-d). 
Given the reduced sensitivity of short-read WGS in re-
petitive and low-complexity sequences, gnomAD-SV 
certainly underestimates the true mutation rates and 
distributions of SVs, which are likely to be refined by 
population-scale applications of long-read genome 
assembly methods.33,34 Nevertheless, these analyses 
clearly implicate multiple aspects of chromosomal con-
text and SV class in driving SV mutation rates through-
out the genome.

Dosage sensitivity of protein-coding genes 
and noncoding regulatory elements 
Due to their size and mutational diversity, SVs can have varied conse-
quences on protein-coding genes (Figure 4a and Supplementary Fig-
ure 17).7 All classes of SVs can result in pLoF, either by deletion of coding 
nucleotides or alteration of open-reading frames. Coding duplications can 
result in copy-gain (CG) of entire genes, or duplication of a subset of 
exons contained within a gene, referred to here as intragenic exonic du-
plication (IED). The average genome in gnomAD-SV harbored a mean of 
179.8 genes altered by biallelic SVs (144.3 pLoF, 24.3 CG, and 11.2 IED), 
of which 11.6 were predicted to be completely inactivated by homozygous 

Figure 2 | Complex SVs are abundant in the human genome
We discovered and fully resolved 5,295 complex SVs across 11 mutational subclasses, 73.7% of which in-
volved at least one inversion. Each subclass is detailed here, including their mutational signatures, non-ref-
erence allele structures, abundance, sizes, and allele frequencies. For clarity, five pairs of subclasses have 
been collapsed into single rows due to mirrored or highly similar alternate allele structures (e.g., delINV 
vs INVdel). Two complex SVs that did not conform to any subclass are not included in this table (e.g., see 
Figure 6e and Extended Data Figure 8). APS = adjusted proportion of singletons.

Figure 3 | Genome-wide mutational patterns of SVs
(a) Mutation rates (µ) from the Watterson estimator for each SV class.32 Bars represent 95% confidence in-
tervals. Rates of molecularly validated de novo SVs from 519 quartet families are provided for comparison.25 
(b) Smoothed enrichment of SVs per 100 kb window across the average of all autosomes normalized by 
chromosome arm length (a “meta-chromosome”; also see Supplementary Figure 16). (c) The distribution 
of SVs along the meta-chromosome was dependent on variant class. (d) Biallelic CNVs were predominantly 
enriched at telomeres, MCNVs were predominantly enriched at centromeres, and canonical and complex 
inversions were depleted near telomeres. P-values computed using a two-sided t-test; bars correspond to 
95% confidence intervals (CIs).
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In contrast to the well-established effects of coding variation, the impact 
of noncoding SVs on regulatory elements is mostly unknown. Examples 
of SVs with strong noncoding effects are scarce in humans and model 
organisms,39-41 though recent studies have shown that noncoding SVs are 
relevant for gene regulation and disease.42,43 We explored noncoding dos-
age sensitivity across a spectrum of 14 regulatory element classes, rang-
ing from high-confidence experimentally validated enhancers to large 
databases of computationally predicted elements. We found that non-
coding CNVs overlapping most element classes had elevated singleton 
proportions (i.e., APS), though no SV class matched the APS observed 
for protein-coding pLoFs (Figure 5a). Conversely, noncoding CNVs that 
did not overlap any annotated elements featured an APS not significantly 
different from zero, reflecting relatively neutral variation. In general, the 
effects from noncoding deletions were stronger than noncoding duplica-
tions, and CNVs predicted to delete or duplicate entire elements were 
under stronger selection than CNVs with only partial element overlap 
(Figure 5b). We also observed that primary sequence conservation was 
correlated with singleton proportion across all noncoding CNVs (Figure 
5c-d), which lays the groundwork for functionally predictive models and 
interpretation frameworks for noncoding SVs. Collectively, these results 
mirrored trends we observed for protein-coding SVs, and can be inter-
preted to imply weak, widespread selection against CNVs altering most 
classes of annotated regulatory elements.
 
Relevance to disease association 
and clinical genetics
Most large-scale disease association efforts have focused on genotyping 
common SNVs in genome-wide association studies (GWAS).44 Taking ad-
vantage of the sample size and resolution of gnomAD-SV, we evaluated 
whether SNVs associated with human traits from GWAS might be in LD 
with functional SVs not directly genotyped during GWAS.42 We identified 
15,634 common SVs (AF > 1%) in strong LD (R2 ≥ 0.8) with at least one 
common SNV or indel (Supplementary Figure 7 and Supplementary 
Table 6), 14.8% (2,307/15,634) of which matched a reported association 

given the strong correlation between SV size and AF (Ex-
tended Data Figure 5a), direct comparisons of raw sin-
gleton proportions between groups of SVs are inherently 
confounded by SV size and other factors. Therefore, we 
developed a metric to account for SV class, size, genomic 
context, and other technical covariates (referred to here-
in as Adjusted Proportion of Singletons [APS]; Extended 
Data Figure 5b and Supplementary Figure 14). Under 
this normalized APS metric, a value of zero for a group of 
SVs corresponds to a singleton proportion comparable to 
intergenic SVs, whereas values greater than zero reflect 
increased proportions of singleton variants—and therefore 
increased selection—similar to the “MAPS” metric used for 
SNVs.21,22 Using this APS model, we found signals of perva-
sive selection against nearly all classes of SVs that overlap 
genes, including intronic SVs and pLoF SVs as small as 
partial-exon deletions (Figure 4c, Extended Data Figure 
6a-d, and Supplementary Figure 18). The exception was 
CG duplications, which showed no additional negative se-
lection beyond what could already be explained by sizes 
vastly larger than seen for duplications that did not encom-
pass entire genes (median CG duplication size = 134.8kb 
versus median non-CG duplication size = 2.7kb; P < 10-100, 
one-tailed Wilcoxon test). This result may be indicative of 
possible overcorrection for SV size in our APS model, but 
it is also consistent with the diverse evolutionary roles of 
gene duplication events, including positive selection acting 
on a subset of CGs in humans.35,36 While further methods 
development will continue to refine such predictions, these 
data show that SVs represent a substantial fraction of all 
gene-altering variants per genome, and widespread selec-
tion acts to remove most gene-altering SVs from the pop-
ulation.
 
Beyond the global impact of selection against coding vari-
ation, methods have recently been developed to quantitate selection on 
functional variation on a per-gene basis, such as the probability of LoF 
intolerance (pLI). These scores have become core resources in human 
genetics.21-23 Existing metrics like pLI are reliant on SNVs, and while 
previous studies have attempted to compute similar scores using large 
CNVs detected by microarray or to correlate deletions with pLI,37,38 no 
gene-level metrics comparable to pLI exist for SVs at WGS resolution. 
To gain insight into this problem, we estimated the number of rare SVs 
expected per gene while adjusting for gene length, exon-intron structure, 
and genomic context. This model is imperfect, as expectations can be 
influenced by many known and unknown covariates, and SVs are too 
sparse at current sample sizes to derive precise gene-level estimates 
of SV constraint. Nevertheless, we found strong concordance between 
pLoF constraint metrics from gnomAD SNV analyses and the depletion of 
rare pLoFs in gnomAD-SV (Figure 4d; Spearman’s rho = 0.90).22 This re-
sult was also true of missense constraint (Supplementary Figure 19), as 
expected given the strong correspondence between missense and pLoF 
constraint. Notably, a comparable positive correlation was also observed 
between CG from rare SVs and pLoF constraint from SNVs (rho = 0.78), 
while a weaker yet significant correlation was also detected for IED (rho = 
0.58). When we cross-examined these relationships using APS, we found 
an inverse correlation between the proportion of singleton SVs and SNV 
constraint across all functional categories of SVs (Extended Data Fig-
ure 6f). These comparisons confirm that selection against most classes 
of gene-altering SVs is consistent with patterns observed for SNVs and 
indels. They further suggest that constraint metrics like pLI, which are 
derived from pLoF point mutations, in fact capture a general correspon-
dence between haploinsufficiency and triplosensitivity—on average—for 
a large fraction of genes in the genome. It therefore appears that many 
highly pLoF-constrained genes are not only sensitive to pLoF, but also 
likely intolerant to increased dosage and other functional alterations more 
broadly.

Figure 4 | Pervasive selection against SVs in genes mirrors patterns observed 
from coding point mutations
(a) Four categories of gene-overlapping SVs, with counts of SVs in gnomAD-SV. (b) Distributions of 
genes altered by SVs per genome. (c) Autosomal SVs that overlap genes were enriched for singleton 
variants (a proxy for the strength of selection20) above baseline of all SVs genome-wide, and explicitly 
intergenic SVs (also see Extended Data Figure 5c-d). Bars indicate 100-fold bootstrapped 95% 
confidence intervals. (d) We evaluated the relationship of constraint against pLoF SNVs versus the 
four categories of gene-overlapping SVs from (a).20 Each point represents the total of ~175 genes, 
which have been ranked by SNV constraint. Correlations were assessed with a Spearman test. Solid 
lines represent 21-bin rolling means. See Supplementary Figure 10 for comparisons to missense 
SNV constraint.
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GD carrier frequencies did not vary significantly among populations in 
gnomAD-SV, with the exception of a single CNV—duplications of NPHP1 
at 2q13—for which carrier frequencies in East Asian samples were 2.5-to-
4.6-fold higher than in other populations, further highlighting the potential 
for disease risk interpretations to be confounded by the limited diversity of 
existing reference datasets (Supplementary Figure 21). 

In the context of variant interpretation, the current gnomAD-SV resource 
will permit a screening threshold of AF < 0.1% when matching on an-
cestry to the populations sampled here, and AF < 0.004% globally. gno-
mAD-SV can also aid in gene-level interpretation: we catalogued at least 
one SV resulting in pLoF or CG for 36.9% and 23.7% of all autosomal 
genes, respectively, and 490 genes with at least one homozygous pLoF 
SV (Figure 6b, Extended Data Figure 6e, and Supplementary Figure 
22). However, these data are still sparse compared to data for SNVs and 
indels, where analyses of the 140,000 gnomAD exomes documented at 
least one pLoF SNV for 95.8% of all genes.22 Despite this relative sparsity, 
we benchmarked carrier rates for several categories of medically relevant 
variants in gnomAD-SV. First, 0.32% of samples in gnomAD-SV carried 
a very rare (AF < 0.1%) SV resulting in pLoF of a gene for which inciden-
tal findings are clinically reportable, roughly half of which (i.e., 0.18% of 
all samples) would meet criteria for classification as pathogenic or likely 
pathogenic (Figure 6c).53 Second, we observed that 7.22% of individuals 
were heterozygous carriers of rare pLoF SVs in known recessive devel-
opmental disorder genes.54 Third, we estimated that 3.8% of the general 
population (95% CI: 3.2-4.6%) carries at least one very large (≥1Mb) rare 
autosomal SV, roughly half of which (45.2%) are balanced or complex 
(Figure 6d). Among these was an example of highly complex localized 
chromosome shattering involving at least 49 breakpoints yet resulting in 
largely balanced products reminiscent of chromothripsis.14-16,55 The vari-
ant was identified in an adult from the general population with no indi-
cation of severe disease and no known DNA repair defect (Figure 6e 
and Extended Data Figure 8). Collectively, these analyses demonstrate 
multiple avenues by which gnomAD-SV can augment future disease as-

from the NHGRI-EBI GWAS catalog or a recent analysis of 4,203 pheno-
types in the UK BioBank.45-47 Common SVs in LD with GWAS associations 
were enriched for genic SVs across multiple functional categories, and in-
cluded intriguing candidate SVs such as a 336 bp Alu deletion of a thyroid 
enhancer in the first intron of ATP6V0D1 at a hypothyroidism-associated 
locus (Extended Data Figure 7).46 We also found matches for sever-
al previously proposed causal SVs tagged by common SNVs, includ-
ing pLoF deletions of CFHR3/CFHR1 in nephropathies and of LCE3B/
LCE3C in psoriasis.48,49 These results support the value of imputing SVs 
from WGS into future studies of human phenotypes, and for the eventual 
unification of SNVs, indels, and SVs in all trait association studies.

As genomic medicine advances toward diagnostic screening at sequence 
resolution, WGS-based methods for SV detection and publicly accessible 
WGS references will be indispensable for variant discovery and interpre-
tation. In the context of variant discovery, one subset of disease-associat-
ed SVs is particularly important: genomic disorders (GDs). GDs are recur-
rent CNVs mediated by flanking homologous segmental duplications, and 
collectively represent one of the most common genetic causes of devel-
opmental disorders.50 Accordingly, a chromosomal microarray (CMA) to 
detect large CNVs is currently recommended as the first-tier genetic diag-
nostic screen for developmental disorders of unknown etiology.51 There-
fore, the ability of WGS to reliably discover these repeat-mediated CNVs 
is critical. Using gnomAD-SV, we evaluated our ability to detect GD CNVs 
in WGS data by calculating CNV carrier frequencies from gnomAD-SV 
for 49 GDs across 10,047 unrelated samples with no known neuropsy-
chiatric disease. We found that CNV carrier frequencies from WGS in 
gnomAD-SV were consistent with those reported from CMA in the UK 
BioBank52 (UKBB; R2 = 0.669; P = 7.38 x 10-13; Pearson correlation test; 
Figure 6a, Supplementary Table 7, and Supplementary Figure 20). 

Figure 5 | Dosage sensitivity in the noncoding genome
(a) Estimated strength of selection (APS) for noncoding CNVs intersected with 
14 categories of noncoding elements. Bars reflect 95% confidence intervals from 
100-fold bootstrapping. Protein-altering (pLoF & IED) CNVs provided for reference. 
Each category was compared to the expected APS of 0 for neutral variation using 
a one-tailed t-test. Categories surpassing Bonferroni-corrected significance for the 
32 noncoding comparison performed here are shown with dark shaded points. (b) 
Across all 14 annotation classes evaluated in (a), CNVs that completely covered 
elements (“full”) had significantly higher average APS values than CNVs that only 
partially covered elements (“partial”). P-values calculated using a two-tailed paired 
two-sample t-test. (c-d) Correlations between primary sequence conservation and 
APS for noncoding (c) deletions and (d) duplications. Here, noncoding CNVs were 
divided into percentile bins based on the sum of the phastCons scores overlapped 
by the CNV, and the relationships between APS and phastCons percentile were 
evaluated with a Spearman rank correlation test. Solid lines represent 21-bin rolling 
means.
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Figure 6 | gnomAD-SV as a resource for clinical WGS interpretation
(a) Filtering SVs against gnomAD-SV reduces individual genomes to ~13 singleton 
variants at current sample sizes. (b) At least one pLoF or CG SV was detected 
in 40.4% and 23.5% of all autosomal genes, respectively. “Constrained” and “un-
constrained” includes the least and most constrained 15% of all genes based on 
pLoF SNV observed:expected ratios, respectively.20 (c) Up to 1.3% of genomes 
in gnomAD-SV harbored a very rare (AF<0.1%) pLoF SV in a medically relevant 
gene across several gene lists.38-40 Manual review of all very rare pLoF SVs indi-
cated that 0.24% of genomes carry a pathogenic or likely pathogenic variant in 
a clinically reportable gene for incidental findings.38 We also found that 9.5% of 
genomes carried pLoF SVs of recessive DD genes in the heterozygous state.39 (d) 
We found 308 rare autosomal SVs ≥ 1Mb, revealing that ~3.1% of genomes carry 
a large, rare chromosomal abnormality. Bars represent binomial 95% confidence 
intervals. (e) An extremely complex SV involving at least 49 breakpoints that local-
ized in clusters across seven chromosomes in a single individual, yielding largely 
balanced derivatives, reminiscent of chromothripsis (see also Extended Data Fig-
ure 8). Chromosome coordinates provided as Mb.
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protein-coding nucleotides are not localized to simple- and low-copy re-
peats. Thus, catalogues of SVs accessible to short-read WGS across 
large populations—such as those presented here and in future releases 
of gnomAD-SV—will likely capture a majority of the most interpretable 
gene-disrupting SVs in humans.
 
The oncoming deluge of short-read WGS datasets has magnified the 
need for publicly available large-scale resources of SVs. In this study, 
we aimed to begin to bridge the gap between the existence of such ref-
erences for SNVs/indels and those for SVs. While the dataset provided 
here significantly exceeds current references in terms of sample size and 
sensitivity, these data remain insufficient to derive accurate estimates 
of gene-level constraint, sequence-specific mutation rates, and intoler-
ance to noncoding SVs. Nonetheless, these data provide an initial step 
toward these goals, and demonstrate the value of a commitment to open 
data sharing and joint analyses of aggregated datasets by the field. The 
gnomAD-SV resource has been made available without restrictions on 
reuse, and has been integrated into the widely adopted gnomAD Brows-
er (https://gnomad.broadinstitute.org), where users can freely view, sort, 
and filter the SV dataset described here, as well as access future gno-
mAD-SV releases. This resource will facilitate the continued development 
of methods for functional prediction of SVs, catalyze new discoveries in 
basic research, and provide immediate clinical utility for the interpretation 
of rare structural rearrangements in the human genome.
 

METHODS & SUPPLEMENTARY INFO
There is supplementary information associated with this study, which in-
cludes detailed methods. These materials have been provided in a sepa-
rate document, which will be linked directly from bioRxiv.
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Extended Data Figure 1 | Detection of chromosome-scale dosage alterations
We estimated ploidy (i.e. whole-chromosome copy number) for all 24 chromosomes per sample. (a) Distribution of autosome ploidy estimates across 14,378 samples passing 
initial data quality thresholds. The outlier points marked in red and blue correspond to the samples highlighted in panels (b-e). (b-e) Samples with outlier autosome ploidy 
estimates typically harbored somatic or mosaic chromosomal abnormalities, such as somatic aneuploidy of chr1 (b) or chr8 (e), or large focal somatic or mosaic CNVs on 
chr3 (c) and chr7 (d). Each panel depicts copy-number estimates in 1Mb bins for each rearranged sample in red or blue. Dark, medium, and light grey background shading 
indicates the range of copy number estimates for 90%, 99%, and 99.9% of all gnomAD-SV samples, respectively, and the medium grey line indicates the median copy number 
estimate across all samples. Regions of unalignable N-masked bases >1Mb in the reference genome are masked with grey rectangles. (f) Sex chromosome ploidy estimates 
for all samples from (a). We inferred karyotypic sex by clustering samples to their nearest integer ploidy for sex chromosomes. Several abnormal sex chromosome ploidies 
are marked, including XYY (i), XXY (ii), XXX (iii), and mosaic loss-of-Y (iv). (g) The overwhelming majority of samples conformed to canonical sex chromosome ploidies.

Extended Data Figure 2 | Benchmarking the technical qualities of the gnomAD-SV callset
We evaluated the quality of gnomAD-SV with seven orthogonal analyses detailed in Supplementary Table 4 and Supplementary Figures 6-9. Four core analyses are pre-
sented here. (a) Apparent rates of de novo (i.e., spontaneous) heterozygous SVs per child across 970 parent-child trios. Given the expected mutation rate of SVs accessible 
to short-read WGS (<1 true de novo SV per trio; see also Figure 3a),1,25 effectively all de novo SVs represented a combination of false-positive genotypes in children and/or 
false-negative genotypes in parents. SVs passing all filters and included in the final gnomAD-SV callset (“PASS”) are shown in green. For comparison, variants that did not 
pass post hoc site-level filters (“Not PASS”) are also shown in purple. (b) Hardy-Weinberg Equilibrium (HWE) metrics for all biallelic SVs localized to autosomes. Vertex labels 
reflect genotypes: 0/0=homozygous reference; 0/1=heterozygous; 1/1=homozygous alternate, with all sites shaded by HWE p-value. (c) Linkage disequilibrium between SVs 
and SNVs/indels represented as cross-population maximum R2 after excluding repetitive and low-complexity regions (see Supplementary Figure 7). (d) AF correlation for 
common (AF>1%) SVs captured by both the 1000 Genomes Project and gnomAD-SV.1 A Pearson correlation coefficient is provided here.
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Extended Data Figure 3 | Evaluating the positive predictive value of gnomAD-SV with long-read WGS
We used Pacific Biosciences (PacBio) long-read WGS data available for four samples in this study to perform in silico confirmation to estimate positive predictive value (PPV) 
and breakpoint accuracy for SVs in gnomAD-SV (Supplementary Figure 10).19,27,28 (a) Counts of SVs evaluated per sample in this analysis. SVs were restricted to those with 
breakpoint-level read support (i.e., “split-read” evidence, 92.8% of all SVs) and also did not have breakpoints localized to annotated simple repeats or segmental duplications. 
(b) An iterative local long-read WGS realignment algorithm, VaPoR,69 was used to perform in silico confirmation of SVs predicted from short-read WGS in gnomAD-SV. As 
noted by the VaPoR developers,69 the performance of this approach was sensitive to the sequencing depth of long-read WGS data. Therefore, the weighted mean of the four 
samples was used as a study-wide long-read WGS confirmation rate, weighting each sample’s confirmation rate based on the square root of its long-read WGS sequencing 
depth. (c) Confirmation rates stratified by SV class, size, and AF.
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Extended Data Figure 4 | SVs contribute a substantial burden of rare, homozygous, and coding mutations per genome
(a-d) Counts of SVs per genome across a variety of parameters, corresponding to median counts of (a) total SVs, (b) homozygous SVs, (c) rare SVs, and (d) singleton SVs. 
Samples are grouped by population and colored by SV types. The solid bar to the left of each population indicates the population median. (e-g) Median counts of genes 
disrupted by SVs per genome when considering (e) all SVs (including MCNVs), (f) homozygous SVs (including MCNVs), and (g) rare SVs. Colors correspond to predicted 
functional consequence. (h) Counts of pLoF SVs per genome. For certain categories, such as genes disrupted by rare SVs per genome, a subset of samples (<5%) were 
enriched above the population average, as expected for individuals carrying large, rare CNVs predicted to cause the disruption of dozens or hundreds of genes (see Extended 
Data Figure 1); for the purposes of visualization, the y-axis for all panels presented here has been restricted to a maximum of three interquartile ranges above the third quartile 
across all samples for each category.
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Extended Data Figure 6 | Most SVs within genes appear under negative selection
(a) Enrichments for pLoF consequences among rare and singleton SVs across SV classes. (b) Enrichments for non-pLoF functional consequences among rare and singleton 
SVs across SV classes. (c) Proportion of singletons, represented by our APS metric, across SV types and functional consequences. For panels (c), (d), and (f), bars represent 
95% confidence intervals from 100-fold bootstrapping. (d) APS among deletions relative to count of exons and whole-genes deleted. For panels (d) and (f), deletions in highly 
repetitive or low-complexity sequence (≥30% coverage by annotated segmental duplications or simple repeats) were excluded. (e) Fractions of all autosomal protein-coding 
genes with at least one SV across a variety of functional consequences. (f) Relationship of APS and constraint against pLoF SNVs.22 For this analysis, intronic, promoter, and 
UTR SVs were required to have precise breakpoints (i.e., have “split-read” support) to protect against any cryptic overlap with coding sequence unable to be annotated due 
to imprecise breakpoints.

Extended Data Figure 5 | Rearrangement size is a primary determinant of allele frequency for most classes of SVs
(a) Proportion of singleton SVs in five SV size bins for each class of biallelic SVs considered in this study. Intergenic SVs (light colors) exhibited reduced singleton propor-
tions when compared to all SVs (dark colors) of the same size and class. Bars reflect 95% confidence intervals from 100-fold bootstrapping. (b) To account for the strong 
dependency of singleton proportion on SV size and class, we developed a metric dubbed the “Adjusted Proportion of Singletons” (APS), which normalizes all values to zero 
to permit comparisons of the frequency spectra across SV classes (see Supplementary Figure 14). Shown here is the same data from (a) transformed onto the APS scale, 
which shows effectively no dependency on SV size for intergenic SVs. Bars reflect 95% confidence intervals from 100-fold bootstrapping. Residual deviation from APS=0 
is maintained when considering all SVs, due to APS being intentionally calibrated to intergenic SVs as a proxy for neutral variation. Since larger SVs are more likely to be 
gene-disruptive, they upwardly bias the APS point estimates due to residual negative selection not captured by SV size alone.
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Extended Data Figure 7 | gnomAD-SV can augment disease association studies
(a) Functional enrichments of 2,307 common SVs in strong LD (R2≥0.8) with an SNV associated with a trait or disease in the GWAS Catalog or the UK BioBank.45,46 Points rep-
resent odds ratios of SVs being in strong LD with at least one GWAS-significant SNV among all SVs in strong LD with at least one SNV (total N=15,634 SVs). Single and triple 
asterisks correspond to nominal (P<0.05) and Bonferroni-corrected significance thresholds from a two-sided Fisher’s Exact Test, respectively. Bars represent 95% confidence 
intervals. (b) Example locus on 16q22.1, where we identified a 336bp deletion in strong LD with SNVs significantly associated with hypothyroidism in the UK BioBank.46 The 
top panel depicts the GWAS signal among genotyped SNVs in the UK BioBank, colored by strength of LD with the 336bp deletion identified in gnomAD-SV. The bottom panel 
depicts the local genomic context of this deletion, which overlaps an annotated intronic Alu element near (<1kb) the first exon of a highly constrained, thyroid-expressed gene, 
ATP6V0D1. The deletion lies amidst histone mark peaks commonly found at active enhancers (H3K27ac & H3K4me1) based on publicly available chromatin data from adult 
thyroid samples, a phenotype-relevant tissue.70 Human Alu elements are known to frequently act as enhancers,71 and the sentinel hypothyroidism SNV from the UK BioBank 
GWAS is a significant expression-modifying variant (i.e., eQTL) for ATP6V0D1 and other nearby genes across many tissues, implying that the hypothyroidism risk haplotype 
modifies expression of ATP6V0D1 and/or other genes, potentially through the deletion of an intronic enhancer.22,72

Extended Data Figure 8 | An extremely complex SV involving 49 breakpoints and seven chromosomes
A highly complex insertion rearrangement from gnomAD-SV where 47 segments from six different chromosomes were duplicated and inserted into a single locus on chromo-
some 1, forming a 626,065bp stretch of contiguous inserted sequence composed of shattered fragments. Given the involvement of multiple chromosomes, the signature of 
localized shattering, and the clustered breakpoints, we note that this rearrangement has several hallmarks of germline chromothripsis,14,55 which has been observed in healthy 
adults previously, albeit rarely.55 However, unlike previous reports of germline chromothripsis, there are no apparent whole-chromosome translocations, and all segments 
were duplicated before being inserted in a compound manner into chromosome 1, potentially suggesting a replication-based repair mechanism. The exact origin of this re-
arrangement is unclear. (a) Circos representation of all 49 breakpoints and seven chromosomes involved in this SV. Teal arrows indication insertion point into chromosome 
1. (b) The median segment size was 8.4kb. (c) Linear representation of the rearranged inserted sequence. Colors correspond to chromosome of origin, and arrows indicate 
strandedness of inserted sequence, relative to the GRCh37 reference.
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