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Abstract 
Motivation: Evaluating the impact of non-synonymous genetic variants is essential for uncovering dis-
ease associations. Understanding the corresponding changes in protein sequences can also help with 
synthetic protein design and stability assessments. Even though hundreds of computational ap-
proaches addressing this task exist, and more are being developed, there has been little improvement 
in their performance in the recent years. One of the likely reasons for this lack of progress might be 
that most approaches use similar sets of gene/protein features for model development, with great em-
phasis being placed on sequence conservation. While high levels of conservation clearly highlight res-
idues essential for protein activity, much of the in vivo observable variation is arguably weaker in its 
impact and, thus, requires evaluation of a higher level of resolution. 
Results: Here we describe function Neutral/Toggle/Rheostat predictor (funtrp), a novel computational 
method that classifies protein positions by type based on the expected range of mutational impacts at 
that position: Neutral (most mutations have no or weak effects), Rheostat (range of effects; i.e. func-
tional tuning), or Toggle (mostly strong effects). Three conclusions of our work are most salient. We 
show that our position types do not correlate strongly with the familiar protein features such as conser-
vation or protein disorder. Moreover, we find that position type distribution varies across different en-
zyme classes. Finally, we demonstrate that position types reflect experimentally derived functional ef-
fects, improving performance of existing variant effect predictors and suggesting a way forward for the 
development of new ones.  
Availability: https://services.bromberglab.org/funtrp; Git: https://bitbucket.org/bromberglab/funtrp/ 
Contact: mmiller@bromberglab.org  
Supplementary information: Supplementary data are available online. 

 
 

1 Introduction  
The recent decades have seen significant advances in high-throughput 

experimentation and growing sophistication in the analyses of the results. 
Unfortunately, our ability to perform these experimental analyses cannot 
keep up with the current pace of sequencing for research and medical 

purposes (Bruse, et al., 2016; Ellinghaus, et al., 2013; Turner, et al., 2016). 
On the other hand, advanced computational techniques are enabled by, and 
crucial for, dealing with this onslaught of data. 

Consider experimental techniques like Deep Mutational Scanning 
(DMS) (Fowler, et al., 2010). DMS allows for simultaneous assessment 
of the effects of hundreds of thousands of genetic variants. It combines 
high throughput sequencing with the ability to create large protein 
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libraries, i.e. uniting high throughput selection methods with high through-
put sequencing methods. Still, large-scale mutant library generation is lim-
ited by a number of factors, such as bias in sequencing preparation and 
time requirements / difficulties of design of meaningful screening and se-
lection methods. Experimental limitations also include sequencing read 
length, severely limiting the evaluation of co-acting effects between dis-
tant residues (Araya and Fowler, 2011). Thus, it is infeasible to experi-
mentally assess, for example, the effects of all non-synonymous Single 
Nucleotide Polymorphisms (nsSNPs) of a given individual, much less a 
population. However, the large-scale mutational fitness landscapes result-
ing from DMS analyses are an exciting resource for the development of 
new accurate variant effect prediction approaches (Gray, et al., 2018). 

Identifying disease-association of the roughly 10,000 protein sequence 
changing genetic variants of every individual (Bromberg, 2013) is like 
looking for the needle in a haystack. Finding variants that alter protein 
function may help, but variant effects are not black and white, having a 
range of outcomes (Swint-Kruse, 2016). While some variants may only 
marginally alter ligand affinity, others can induce drastic changes 
(Walker, et al., 2010). Moreover, while subtle molecular modifications are 
difficult to detect, in concert with other mutation-driven changes they can 
cause phenotypic changes (Kowarsch, et al., 2010; Zabalza, et al., 2014). 

Single amino acid substitutions caused by nsSNPs are often associated 
with specific traits (Box, et al., 1997; Duffy, et al., 2007; Shastry, 2009), 
diseases (de Ligt, et al., 2013; Kumar, et al., 2017), and pharmacological 
responses (Halushka, et al., 2003). Moreover, targeted mutagenesis of spe-
cific protein sites is an essential tool in the synthetic biology toolkit (Sun, 
et al., 2015). Given the broad range of their possible applications, it is not 
surprising that many computational algorithms for the prediction of single 
amino acid substitution effects have been developed (>200; as of January 
2018). The different approaches range in algorithm complexity (e.g. ran-
dom forests (Ioannidis, et al., 2016) or meta-servers (Capriotti, et al., 
2013), training/development data sets (e.g. cancer (Douville, et al., 2013) 
or stability changes (Capriotti, et al., 2005), and gene/protein features used 
(e.g. conservation or protein structure (Adzhubei, et al., 2010; Bromberg 
and Rost, 2007; Ng and Henikoff, 2003). However, they still have room 
for improvement (Dong, et al., 2015; Mahmood, et al., 2017) and despite 
their increasing number and complexity, there has, arguably, not been a 
significant improvement in prediction accuracy over the last decade. 

Recently, our collaborators (Meinhardt, et al., 2013) had established a 
new classification of protein (sequence) position types - Toggle and Rhe-
ostat – where mutations in Toggle positions were mostly severely disrup-
tive of protein function, while mutations in Rheostatic positions had a 
complete range of effects. We further demonstrated (Miller, et al., 2017) 
that existing computational predictors fall short of accurately differentiat-
ing between neutral and non-neutral mutations in the two position types. 
Thus, for example, Toggle position mutation experimentally shown to 

have no-effect on protein function, were still deemed as having an effect 
by most of the evaluated predictors. We concluded from this work that 
knowledge of position type could improve prediction accuracy.  

Until now, Toggles and Rheostats were characterized on the basis of 
the distribution of experimentally validated variant effects per protein se-
quence position (Hodges, et al., 2018). However, experimental evaluation 
of variant effects is still very limited in comparison to the number of avail-
able protein sequences (e.g. UniProtKB (The UniProt, 2017)). Moreover, 
once the variant effect is experimentally determined, its prediction be-
comes irrelevant. In other words, having to experimentally establish the 
position type precludes using it as a feature in a variant effect predictor.  

Here, we developed a new machine learning approach, function Neu-
tral/Toggle/Rheostat predictor (fuNTRp), to predict position types using 
a curated set of sequence-based features. funtrp classifies protein positions 
by type based on the expected range of mutational impacts possible at each 
position; i.e. at Neutral positions most variation will have no or weak ef-
fect, at Rheostat positions – a range of effects is possible, i.e. functional 
tuning, and at Toggle positions mostly strong effects are expected. We 
found that protein active/functional regions are enriched in Rheostats and 
Toggles, with the latter dominating crucial residues (e.g. catalytic sites). 
While these findings are in line with the conservation landscape, we ob-
served lower than expected correlation between conservation and position 
types, particularly for Rheostats. Curiously, we also found that distribution 
of position types varied across protein classes, slightly differentiating en-
zymes from non-enzymes and significantly varying between enzyme func-
tional classes. Notably, we showed that position types correlate with ex-
perimental effect annotations; i.e. we were able to fairly accurately predict 
mutation effects simply by considering the position type. Combining 
funtrp annotation with outputs of the existing variant effect predictors fur-
ther improved prediction accuracy.  

These findings suggest that knowledge of position types is critical for 
evaluating functional effects of variants. Thus, funtrp predictions could 
aid the development of improved variant effect prediction methods. 

2 Methods 
The funtrp training/development process is detailed in Fig. 1. The training 
datasets are summarized in Supplementary Table S1. 

2.1 Training datasets and feature extraction 
We extracted quantitative deep mutational scanning (DMS) (Araya and 
Fowler, 2011; Pitt and Ferre-D'Amare, 2010) amino acid substitution ef-
fect data for five proteins (Table 1) (Firnberg, et al., 2014; Melamed, et 
al., 2013; Starita, et al., 2013; Starita, et al., 2015; Wu, et al., 2016). The 
DMS approach generates a large set of mutations and estimates of their 

Fig. 1. funtrp pipeline. Schematic overview of the funtrp pipeline. In training, experimentally measured variant effect scores are extracted for all residues present in selected Deep Muta-
tional Scanning (DMS) datasets. These scores are used in the k-means cluster labeling step to initially label a subset of all (residue) positions as either Toggle or Neutral. Annotated with a 
computed set of sequence-based features the subset of cluster-labeled positions is then used to train the ntModel to predict the not yet labeled positions from the DMS datasets as either 
Toggle or Neutral. After filtering, those are combined with the initially (cluster-labeled) positions and the same set of sequence-based features to train the final fuNTRp model. 
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impacts for every evaluated protein-coding gene. The effects evaluated in 
this study include impact on E3 ligase activity (Sets 1 and 3), ampicillin 
resistance (Set 2 and 4), and relative binding affinity of the human Immu-
noglobulin G F(c) fragment (IgG-FC) (Set 5). Note that from all DMS 
datasets extracted from the literature only five met our stringent require-
ments for inclusion into the study, namely: having at least 50 mutated po-
sitions, ≥6 variants per position for at least 40% of positions, at least one 
third of Single Nucleotide Polymorphisms (SNPs) among the variants, 
wildtype (wt) and knockout (ko) measurements available, and, notably, 
available raw datasets in parseable format (data in PDF format and/or not 
retrievable from contact with the study authors was excluded). 

Table 1. Deep mutational scanning datasets used in model training 

Gene Sub-region Organism |Variants| Measured Activity 

BRCA1 RING domain H. sapiens 3080 E3 ligase activity 
PAB1 RRM domain S. cerevisiae 1188 Ampicillin resistance 
UBE4B U-box domain H. sapiens 926 E3 ligase activity 
TEM-1 - E. coli 5469 Ampicillin resistance 
SPG1 GB1 Strepto. sp 467 Binding affinity to IgG 

 
For each protein, effects (scores) of each substitution were standardized 

using the wt measurements reported in the corresponding publication as 
reference. All scores (including the wt and ko variant scores) were thus 
transformed to reflect their absolute distance to wt, without differentiating 
beneficial and deleterious mutations (Eqn. 1). 

 
mut$%&'( = |mut$%&'( − 𝑤𝑡$%&'(|  (1) 

 
We further computed ten sequence-based features (Table 2) for each 

protein. These features included basic amino acid properties, as well as 
structural properties generated using a Dockerized (Docker, 2018) version 
of PredictProtein (default parameters) (Yachdav, et al., 2014). Features 
were chosen based on biological relevance to reflect a broad range of prop-
erties associated with protein function. 

2.1.1 Filtering sequence positions 

In total, our five proteins comprised 822 amino acids (residues) and 
11,130 substitutions with measured effect scores. We removed the two 
unknown amino acids (labeled X in sequence), leaving 820 residues. Note 
that the number of available experimental scores per residue varied be-
tween and within datasets. Also note that only half of the available variants 
(5,423 of 11,130) satisfied the SNP-possible criteria, i.e. the observed 
amino acid substitutions required no more than one nucleotide change 
with respect to the wildtype amino acid. Note, we did NOT go back to the 
gene sequence to find the affected codon, but rather designated as SNP-
possible any single nucleotide codon to codon changes representing the wt 
and substituting amino acids. As SNPs are more common than multi-nu-
cleotide changes, using only the SNP-possible variants more closely mir-
rored natural selection acting on genes/proteins. This approach also al-
lowed us to avoid compounding effects of the later mutagenesis round 
mutations, which may have impacted activity more severely. 

We removed from any further consideration the 57 positions with fewer 
than three variant scores as we could not reliably validate any predictions 
for these positions (7% of 820). With a total of six variants, Tryptophan 
(W) was the amino acid with the least (six) SNP-possible substitutions. 
Thus, selecting for the first round of training only the positions with at 

least six SNP-possible variants enabled us to include all wt residues, as 
well as to retain positions with a sufficient number of variants to ensure 
accurate classification. Thus, we set aside 172 positions (three to five var-
iants; FewVariants set) and retained 591 positions (72% of 820) with at 
least six SNP-possible variants in our dataset – Clustering set. 

Table 2. Set of sequence-based features used by prediction model 

id Feature Source ReliefF** Rank 

  1 Solvent Accessibility PROF (*) 0.18   3 
  2 Secondary Structure PROF (*) 0.12   6 
  3 Residue Flexibility PROFbval (*) 0.15   4 
  4 Protein Disorder MD (*) 0.22   2 
  5 Amino Acid - 5e-5   8 
  6 Residue Size -      0 10 
  7 Residue Charge - 1e-7   9 
  8 SNP possible - 7e-4   7 
  9 Conservation ConSurf (*) 0.34   1 
10 MSA Ratio - 0.14   5 

(*) tools in the PredictProtein pipeline (Yachdav, et al., 2014). (**) Features ranked 
by importance to funtrp position typing using ReliefF (Kononenko, et al., 1996); 
weights were rounded. Secondary structure weights were summarized across helix, 
sheet, and loop motifs (pH, pE, and pL). Feature descriptions and default parameters 
in Supplementary Table S2. 

2.1.2 Toggle and Neutral cluster labeling 

We further subdivided the sequence positions in the Clustering set into 
Neutral and Toggle classes. Note that we previously defined Toggles 
(Miller, et al., 2017) as positions intolerant of any change, while Neutrals 
were new to this work, indicating positions that can tolerate almost all 
substitutions with no-effect on function. Each of the proteins in our set 
was evaluated separately and only the Clustering set variants and positions 
were considered. To each protein’s set of experimental variant scores, the 
protein specific wt and ko scores were added. K-means (Lloyd, 1982) clus-
tering (with k=3) was used to partition each protein position set into three 
clusters. Variants assigned to the same cluster as the ko score were labeled 
severe. Those assigned to the cluster containing the wt score were labeled 
no-effect. All variants in the remaining cluster were labeled intermediate.  

Each sequence position x was classified (Eqn. 2) into one of two distinct 
position types (Toggle or Neutral) on the basis of the distribution of its 
variant scores among the three clusters. If the most variants at x were as-
signed to the no-effect cluster and no more than one to any other cluster, 
we labeled this x Neutral (N; 153 positions). If most were assigned to the 
severe cluster and no more than two to any other cluster, we labeled x a 
Toggle (T; 66 positions). If none of these two conditions held true, x was 
deemed unknown (372 positions; Unknown set). 

 

type(pos4) = 6
	𝑵, 𝑖𝑓	(		|𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠A| − |𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠A	BC	DE	FGHIEJK|	) ≤ 1
	𝑻, 𝑖𝑓	(		|𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠A| − |𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠A	BC	DE	FGHIEJK|	) ≥ 2
	𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 

We excluded all unknown positions from Clustering and manually re-
fined the remaining positions on the basis of distributions of experimental 
scores (Supplementary Fig. S3). Overall, we removed six Toggle and six 
Neutral positions with noticeably higher variance and/or different medi-
ans of scores as compared to other instances within the same class. We, 
thus, retained a conservative training set of labeled Toggle and Neutral 
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positions with comparable variance and medians of experimental scores 
(ntTraining set; 207 instances: 60 Toggles, 147 Neutrals). 

2.1.3 ntModel and Neutral/Toggle scoring 

Using the labeled ntTraining set we trained a Random Forest (RF) 
(Breiman, 2001) classifier (ntModel) to predict Toggle vs. Neutral posi-
tion types on the basis of the ten features extracted as described above 
(Table 2). To account for the bias towards the Neutral class in the training 
set, we used over-sampling and trained our model on a balanced input set 
comprising 414 instances (200% of the unbalanced input). We evaluated 
the model performance using Leave-One-Out-Cross-Validation (LOO-
CV). The model prediction scores were in the [0, 1] range, such that the 
sum of all type scores was =1. The LOO-CV predictions were used to de-
termine prediction score type thresholds, limiting the number of false pos-
itive Toggle or Neutral predictions to ≤3% (Fig. 2). Based on this required 
error rate limitation, thresholds were consecutively set at score ≤0.1 for 
Neutral and score ≥0.8 for Toggle predictions. 

2.1.4 Defining Rheostats 

We assessed the predictions close to the middle (0.5) of our RF classifier 
prediction range. Here the model exhibited the highest uncertainty in de-
ciding whether the position is a Neutral or a Toggle. We concluded that 
positions with prediction scores in that range were Rheostats – positions 
in which mutations can result in a whole range of functionality changes. 
The Rheostat score range was set at [0.35, 0.7] – a range containing 50% 
of all incorrect predictions of our ntModel. 

2.1.5 funtrp and residue labeling 

The FewVariants and the Unknown sets comprised 544 (66% of 820) yet-
unlabeled positions. We ran the ntModel and used score thresholds, as de-
fined above, to assign final N, R, T predictions per position. 
New Toggle and Neutral position variant score distributions were com-
pared to those of the cluster-based (Step 2, above) positions. We retained 
only those ntModel-Neutral positions from this set whose experimental 

score medians were less than or equal to the highest median score of the 
clustering-Neutral positions from the ntTraining set. Similarly, ntModel-
Toggles were retained only if their experimental score medians were more 
than or equal to the lowest median score of the clustering-Toggles. We 
retained only those Rheostats whose medians were in-between highest 
clustering-Neutral and lowest clustering-Toggle median scores were re-
tained. Thus-labeled positions (72 Neutrals, 20 Toggles, 104 Rheostats) 
were added to the ntTraining set to form the funtrpTraining set (403 posi-
tions: 219 Neutrals, 80 Toggles, 104 Rheostats).  
The funtrpTraining set was used to train a second RF model, i.e. the final 
funtrp model, using the same ten features, over-sampling -based class bal-
ancing (806 instances; 200% of the unbalanced input set), and LOO-CV 
evaluation as in the ntModel.  

For each position, the funtrpModel prediction score for each type (N, 
R, T) was in the [0,1] range, such that the sum total of all type scores was 
=1. By default, the position was assigned the highest scoring type. Perfor-
mance for both models in this work was reported as accuracy, precision, 
and recall (Eqn. 3; for each position type, Y, at every score cutoff, true 
positives, TP, are positions correctly predicted as Y; false positives, FP, 
are non-Y positions predicted as Y; false negatives, FN, are Y positions 
predicted as non-Y). 

 

precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

accuracy =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)	

 (3) 

2.2 Predicting position types in protein sets 
Neutral, Rheostat, and Toggle position types were predicted for various 
curated sets of protein sequences (Supplementary Table S4). Human pro-
teins were extracted from the UniProt Knowledgebase (UniProtKB release 
2018_09) (The UniProt, 2017). We predicted position types for all 20,410 
manually curated (Swiss-Prot) sequences; for 5% of these (909; 32 en-
zymes and 877 non-enzymes), no predictions could be made due to errors 
in extracting the required set of input features. In total 19,501 sequences 
were processed using clubber (Miller, et al., 2017) to distribute computa-
tion among multiple High-Performance Cluster (HPC) environments. The 
subsets of the data were as follows: 

(1) The EXPV set included 1,250 Swiss-Prot enzymes with experi-
mentally validated, unique, unambiguous E.C. (Enzyme Com-
mission) numbers, compiled as in (Mahlich, et al., 2018).  

(2) We extracted all human enzymes with catalytic site annotations 
from the M-CSA database (Ribeiro, et al., 2018) and retained 
those which also contained binding site annotations in UniProt 
(94 proteins;  419 catalytic und 214 binding sites). 

Fig. 2. Determination of ntModel thresholds. LOO-CV predictions of the ntModel were 
used to determine prediction score type thresholds. Thresholds were set at score ≤0.1 = 
Neutral and score ≥0.8 = Toggle, limiting the number of false positive Toggle or Neutral 
predictions to ≤3%. The model exhibits the highest uncertainty in deciding whether a po-
sition is a Neutral or a Toggle at predictions close to the middle (0.5). Positions with pre-
diction scores in the range [0.35, 0.7] (containing 50% of all incorrect predictions of the 
ntModel) were defined as Rheostats.  
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(3) We extracted a set of transition metal binding proteins from the 
PDB as described in (Senn, et al., 2014), (Bromberg Y., 2019) 
resulting in a set of structural sahle spheres. A sahle sphere is 
defined as all residues within a 15Å radius sphere centered on the 
geometric center of the metal ligand. 231 PDB structures of hu-
man proteins containing sahle spheres were mapped to UniProt. 
fuNTRp predictions were available for 230 of these. 

(4) Swiss-Prot proteins were labeled as disordered (6,309) or ordered 
(13,192) if at least 50% of their residues were predicted disor-
dered by the MetaDisorder predictor (MD score threshold of ≥ 
0.5) (Schlessinger, et al., 2009). 

(5) We extracted the Protein Mutant Database (PMD) experimental 
annotations and SNAP (Bromberg and Rost, 2007), SIFT (Ng and 
Henikoff, 2003) and PolyPhen-2 (Adzhubei, et al., 2010) predic-
tions of effects of 10,559 variants in 733 proteins from SNPdbe 
(Schaefer, et al., 2012). For this set we labeled variants as either 
experimentally benign (SNPdbe score=10), effect (SNPdbe score 
=3,6,9 or =11,13,16) or knockout (SNPdbe score=0). 728 of these 
proteins could be mapped unambiguously to UniProtKB. For the 
remaining five we used the SNPdbe sequences. 

 
To compare position type predictions between different subsets, we cal-

culated the standard error individually for all three position types as fol-
lows: for each subset, we randomly resampled 50% of the included resi-
dues (without replacement) for 100 times and computed standard error of 
the mean.  

2.3 funtrp pipeline implementation 
We used a Java based implementation of Random Forest Classification 
(Breiman, 2001; Smith and Frank, 2016). We used R (R Core Team, 2015) 
for K-Means Clustering, performance evaluations, and visualizations. 
Protein features were computed using the Dockerized version of the Pre-
dictProtein (Yachdav, et al., 2014) pipeline; available at https://bit-
bucket.org/bromberglab/predictprotein (manuscript in preparation).  

The funtrp prediction pipeline was implemented in Python (Version 3.6 
or later) and is publicly available via Git repository (https://bit-
bucket.org/bromberglab/funtrp). The funtrp predictor is available as 
standalone Docker container (bromberglab/funtrp) and as webservice 
(https://services.bromberglab.org/funtrp). 

3 Results 

3.1 funtrp accurately recognizes position classes 
Both RF classifier models were evaluated using LOO-CV (Supplementary 
Table S5 A,B). ntModel achieved an overall accuracy of 92.3% (Neutrals 
= 0.94/0.95 and Toggles = 0.88/0.85 precision/recall, respectively, at de-
fault cutoff; Eqn. 3). funtrp overall accuracy was 85.1% (Neutrals = 
0.90/0.91, Toggles = 0.88/0.80, Rheostats = 0.73/0.77 precision, respec-
tively, at default cutoff; Fig. 4; Eqn. 3). Note that that the higher prediction 

Fig. 3. Distributions of experimental effect scores for TEM-1 (E. coli) positions colored by position type. Positions are colored by assigned/predicted position type (green =Neutral, 
red =Rheostat, blue =Toggle) and ordered by the median of the associated variant score distribution. Positions classified by K-means cluster labeling are shown in bold colors. Those 
predicted of the ntModel are shown in more opaque coloring based on the number of experimental variants at the respective position. The dashed horizontal lines represent data set 
specific ko (red) and wt (green) scores. Positions removed during the manual and automatic refinement steps are not shown. Details for the remaining four proteins are available in 
Supplementary Fig. S3. 

Fig. 4. funtrp type classification performance. Precision-Recall curves for LOO-CV 
predictions of Neutral, Toggle and Rheostat positions for the funtrpModel. The perfor-
mance for all three position types is indicated for different cutoffs. Performance measures 
were calculated for the single True class vs. both remaining classes combined as Other, 
for Neutral, Toggle and Rheostat respectively. 
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scores of the funtrp model correlated with higher precision, albeit lower 
recall of the predictions. 
 

The slightly lower performance of the funtrpModel (vs. the ntModel) in 
differentiating Toggles and Neutrals is easily attributable to the increase 
set size and less obvious labels of the added positions. The funtrp perfor-
mance discrepancy among classes was expected. After all, while Toggles 
and Neutral are explicitly defined types, Rheostats are a collection of dif-
ferent position types. As such, they encompass a much larger range/vari-
ability in residue properties. For example, in our training set, a position 
containing three intermediate variants would be as much a Rheostat if it 
additionally contained three no-effect variants or three severe ones.  

Additionally, note that truly benign, no-effect, mutations are often sub-
jective and always less obvious and more difficult to identify, experimen-
tally or computationally, then severe ones. Thus, the differentiation be-
tween Rheostat and Neutral positions is arguably more complex even with 
experimental data available. For funtrp, the majority (80%) of the incor-
rectly predicted Rheostats were labeled Neutral; more than half of these 
predictions were also unreliable (scores in the [0.4, 0.49] range). Coinci-
dentally, of the incorrectly predicted Neutral positions 80% were also la-
beled as Rheostats. 

3.2 Individual sequence-based features are not sufficient to 
describe position types 

Using the ReliefF (Kononenko, et al., 1996) feature selection algorithm 
we ranked the importance of funtrp features for labeling sequence posi-
tions in Swiss-Prot (Table 2). As expected, evolutionary conservation was 
ranked most important. However, the assigned weight was only slightly 
higher than other important features: protein disorder, solvent accessibil-
ity, and residue flexibility. These results suggest that none of those fea-
tures alone could explain the predicted position types. 

Conservation is widely used as an approximation for residue im-
portance (Capra and Singh, 2007; Shakhnovich, et al., 1996); i.e. the more 
conserved a residue is, the higher the likelihood that its substitution by 

another amino acid will result in a function disruption. We compared con-
servation scores (defined by ConSurf (Ashkenazy, et al., 2016) for all po-
sitions of experimentally verified enzymes (EXPV). As expected, these 
were significantly different between the three position types (Fig. 5; me-
dians in bold). ConSurf scores are normalized by default, so that the aver-
age score over all residues of one protein is zero, and the standard devia-
tion is one; here, lower scores indicate more conserved residues. Toggle 
positions were predominantly conserved while Neutral positions were for 
mostly non-conserved. Rheostats, however, were in-between the other po-
sition types and often showed similarly high conservation as the Toggles. 

To further establish how well a predictor for position types could per-
form using conservation alone, we computed the number of positions in 
Swiss-Prot proteins that could be correctly identified as a funtrp Rheostat, 
Toggle, or Neutral at a fixed cutoff. The lowest cutoff for Neutrals was 
selected by taking the mean of the distribution medians of Neutral and 
Rheostat conservation scores. Similarly, the highest cutoff for Toggles 
was at the mean of Rheostat and Toggle conservation score medians. Rhe-
ostats were assigned all other conservation scores. The overall accuracy 
for this thresholding was 61% (Neutrals = 0.80/0.70, Toggles = 0.45/0.80, 
Rheostats = 0.44/0.39 precision/recall, respectively; Supplementary Table 
S6); 

Thus, evolutionary conservation - despite being the highest-ranking 
feature - was not representative of position types. Further, none of the re-
maining features was likely to perform better then conservation indicated 
by their consistently lower ReliefF rankings (Table 2). Moreover, argua-
bly, for a given position in a given protein establishing the conservation 
thresholds for each of the three classes would be infeasible. Note, that we 
observed the same trends for the training dataset (funtrpTraining) for 
funtrp (Supplementary Fig. S7). 

3.3 Position type profiles differ across protein classes 
 
Swiss-Prot (Fig. 6A) enzymes had proportionately more Toggle and fewer 
Neutral positions than non-enzymes. However, the difference in the num-
ber of Rheostats between enzymes and non-enzymes was minimal. As 
Rheostats allow for functional flexibility while adapting to different envi-
ronments, the latter result is expected. On the other hand, we did not ex-
pect Toggle positions in enzymes, i.e. those critical for defining protein 
activities: active sites, ligand specificity, etc., to represent a larger share 
of all residues than in non-enzymes. Our results, however, suggest that 
functionally critical sites are more common in enzymes than expected. 

Fig. 6. Conservation of position types. Density distributions of evolutionary conserva-
tion (ConSurf) compared between position types. ConSurf predictions scores are by de-
fault normalized such as 0 depicts the average score over the entire protein and standard 
deviation is |1|). Distribution medians are highlighted in bold. 

Fig. 5. Distribution of position types per protein class. Distributions are based on entire 
Swiss-Prot (A) and EXPV set (B). Colors are according to position type (green =Neutral, 
red =Rheostat, blue =Toggle). Percentages in (A) are rounded and thus do not add up to 
100%. Error bars in (B) are computed based on 100 iterations of random subsampling 
(Methods), 
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We further compared distributions of position types between the six 

main enzyme classes (with corresponding E.C.s): Oxidoreductases (1), 
Transferases (2), Hydrolases (3), Lyases (4), Isomerases (5) and Ligases 
(6) (Fig. 6B). For proteins with experimental annotations of enzymatic 
functionality (EXPV set), Neutral positions were significantly more fre-
quent for four of the six enzyme classes. For the other two (Oxidoreduc-
tases and Lyases) fractions of Neutrals and Rheostats were similar. Fewer 
than 25% of all enzymes class positions were Toggles. We observed sim-
ilar trends for all of Swiss-Prot enzyme classes except Oxidoreductases 
(Supplementary Fig. S8). There were slightly more Neutrals in the Swiss-
Prot set of EC1 proteins, an observation that can be explained by sequence 
redundancy of multiple proteins from the same family. The EXPV protein 
functions are experimentally derived and, thus, the data set tends to be less 
redundant (98% of the sequences <90% sequence similar). On the other 
hand, most Swiss-Prot EC annotations are annotated via function transfer 
by homology – a process (and some error in it (Mahlich, et al., 2018; 
Schnoes, et al., 2009) that ensure overrepresentation of position types of 
large families.  

3.4 Distribution of position types varies by residue function 
We compared the distribution of position types for catalytic sites, binding 
sites, and other residues in Swiss-Prot enzymes (Fig. 7A). Note, that here 
we included only the 47 proteins containing both binding and catalytic 
sites, which were non-overlapping, i.e. annotated in different positions of 
the protein. 

As expected, the majority of catalytic sites were Toggles and only 1% 
were Neutral. Binding sites were less frequently Toggles than catalytic 
sites, but much more frequently so than the other residues in the respective 
proteins, which were predominantly Neutral. Curiously, the fraction of 
Rheostat positions did not vary as drastically across the residues sets. 

Notably the catalytic site primary actors – the charged amino acids (D, 
E, R, K, H; Supplementary Fig, S9) (Bartlett, et al., 2002) were unexpect-
edly low in Toggles and Rheostats in other residues. This finding is par-
ticularly interesting in the light of the generic assumptions made about 
irreplaceability of charged residues. Outside the enzymatic functional 
sites, the more commonly structure-relevant large hydrophobic amino ac-
ids (C, W, Y, M, F) were most often Toggles, while the smaller (A, I, L, 
V) were drastically enriched in Rheostats (Supplementary Fig. S9).  

3.5 Distribution of position types varies by metal-ligand 
binding proximity 

We evaluated the composition of position types of residues located in the 
proximity of metal-containing ligands (sahle 3D-structure spheres, Meth-
ods) for Swiss-Prot proteins. As for functional sites above, we defined 
three sets of residues: those annotated in Swiss-Prot as metal binding, 
sahle sphere residues within 15A of the ligand center, and other residues 
(Fig. 7B). Note that we excluded from consideration any residues anno-
tated as metal binding and not located within a sahle sphere. 

Metal binding residues showed a similar distribution of position types 
as catalytic sites (80% Toggle, 5% Neutral). Notably, sahle spheres were 
more enriched in Rheostats (38%) than were the binding sites described 
above (26%). However, the latter were more frequently Toggles (59%) 
than the former (44%). This result suggests that binding sites are critical 
features of function, while sahle spheres encompass residues relevant to 
functional flexibility. Moreover, outside of sahle spheres Toggles were the 
least abundant and more than half of the residues were Neutral, suggesting 

that most of the other residues are significantly less involved in protein 
function (including stability effects). 

Preferred residues for metal binding are C, H, D, and E (Cao, et al., 
2017), which is also confirmed by our data (Supplementary Fig. S10). In-
terestingly, for all of these except glutamate (E) Toggles were the domi-
nant position type; for glutamate Neutrals and Rheostats were strongly 
enriched. 

3.6 Position type profiles enable identification of disordered 
proteins 

Based on MetaDisorder predictions (Methods) we labeled 6,309 Swiss-
Prot proteins as disordered and 13,192 as ordered and compared the ratios 
of position types between these sets. The two classes of proteins were 
clearly separable by distribution of position types (Supplementary Fig. 
S11). 

Ordered proteins contained more than twice as many Toggles as disor-
dered proteins (19% vs. 8%), while disordered proteins were preferentially 
Neutral (68% vs. 46%). Of the 668 proteins, where Neutrals made up over 
80% of all residues, 94% (650) were disordered. This result is, to a certain 
extent, expected due to frequent modulation of function, i.e. Rheostatic 
activity, achieved via structural changes; e.g. changes in residue solvent 
accessibility or secondary structure may, and often do, modulate function-
ality (Studer, et al., 2013). However, this finding may also indicate that 
disordered proteins are poorly predicted by funtrp, as our method relies on 
structural features. Another hypothesis based on this observation may be 
that our definition of position types is not directly applicable to disordered 
proteins, where changes in functionality may be harder to objectively 
measure and evaluate. 

3.7 Position types can improve variant effect prediction 
We evaluated the relationship of position types with experimental annota-
tions of variant effects extracted from the literature (as reported in PMD) 
and with the predicted variant effect scores (from SNAP, SIFT and Poly-
Phen-2). Based on PMD effect annotations, sequence positions could be 
categorized into three main variant impact groups: no-effect, ranged effect 
and knockout (Supplementary Fig. S12). We compared the composition of 
predicted position types for each of the effect groups. As expected, the 
majority (52%) of all 3,223 variants in the no-effect group were in Neutral 
positions. However, 20% of no-effect variant positions were Toggles. On 
the other hand, the most extreme impact group of knockout (2,271) 

Fig. 7. Distribution of position types across various protein sites. Colors are according 
to position type (green =Neutral, red =Rheostat, blue =Toggle). Percentages  are rounded 
and thus do not add up to 100%. 
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variants, was comprised of 53% Toggle positions 18% Neutrals. Note that 
in this set every sequence position had only one annotated variant. Thus, 
finding some no-effect variants in Toggle positions and some knockout 
variants in Neutral positions is not unexpected as per our position type 
definitions. However, as funtrp has never been trained to recognize variant 
effects, the dominant trend of finding variants of expected impact in the 
right places highlights our method’s ability to recognize functionally rel-

evant protein positions.  
Finally, the variants in the ranged effect group were nearly evenly dis-

tributed (33%/32%/35% Neutrals/Rheostats/Toggles) across all position 
types. This is not unexpected, as the ranged effect group contains variants 
with PMD annotations ranging from mild to severe. Interestingly, the frac-
tion of Rheostat positions was consistent across all three impact groups, 
although slightly less for knockout and no-effect groups (29%). This find-
ing is consistent with our definition of Rheostats, which may contain both 
severe/knockout effect and no-effect variants in addition to everything in-
between.  

To further highlight the relationship between predicted position types 
and annotated variant effects in PMD, we calculated the no-effect vs. effect 
(including ranged effect and knockout variants) ratios individually for 
every type (Fig. 8A) based on the extracted PMD dataset (Methods). In 
line with the above results, we found that reliably predicted Toggle 

positions were more likely to have a lower ratio (more effect variants), 
while reliably predicted Neutrals had a higher ratio (more no-effect vari-
ants). Thus, we suggest that variant effect predictors could improve sig-
nificantly if trained/developed separately with sample data specific to dif-
ferent position types. Specifically, we expect most improvement for Rhe-
ostats, where increased resolution can be expected once the, arguably, eas-
ier Toggle and Neutral -specific variants are no longer considered. 

To compare funtrp with common variant effect prediction tools (SNAP, 
SIFT and PolyPhen-2) we converted predicted position types into approx-
imated variant effect predictions (Toggle or Rheostat position = effect and 
Neutral = no-effect). We computed the performance for all four methods 
on the no-effect vs. effect groups extracted from PMD (described above). 
Note, that performance reported here (Supplementary Table S13) was av-
eraged over 100 iterations, each based on a subsampled dataset (without 
replacement and balanced regarding the class with fewer instances) from 
PMD . Note that all methods are expected to perform better on the original 
unbalanced set of variants, which include significantly more non-neutral 
effects. This is due to the earlier mentioned difficulty (computational and 
experimental) of correctly recognizing neutral effects (Bromberg, et al., 
2013). All four predictors attained nearly the same accuracy of 62% (+/- 
1%), though they did not perform similar within classes (e.g. SNAP = 
0.59/0.78 and SIFT = 0.65/0.57 precision/recall for effect variants, respec-
tively). On the other hand, as mentioned previously funtrp is NOT a vari-
ant effect prediction method but it reached a performance similar to those 
of specialized methods.   

To quantify the contribution that knowledge of position types can make 
to prediction method performance, we trained logistic regression models 
based on prediction scores of traditional variant effect predictors as well 
as in combination with the information gained by predicted funtrp position 
types (Fig. 8B). This approach consistently improved variant effect pre-
dictions. These findings strongly suggest that incorporating position type 
predictions as features into the more sophisticated variant effect evalua-
tion approaches will improve prediction performance.  

Additionally, our new definition of position types will likely contribute 
to the understanding of biophysics of protein folding and related epistatic 
mutation effects, as well as highlight prime candidates for directed evolu-
tionary pathways. 
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