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Abstract

Motivation: Mechanistic models of biochemical reaction networks facilitate the quan-

titative understanding of biological processes and the integration of heterogeneous datasets.

However, some biological processes require the consideration of comprehensive reaction net-

works and therefore large-scale models. Parameter estimation for such models poses great

challenges, in particular when the data are on a relative scale.

Results: Here, we propose a novel hierarchical approach combining (i) the efficient ana-

lytic evaluation of optimal scaling, offset, and error model parameters with (ii) the scalable

evaluation of objective function gradients using adjoint sensitivity analysis. We evaluate

the properties of the methods by parameterizing a pan-cancer ordinary differential equation

model (>1000 state variables, >4000 parameters) using relative protein, phospho-protein and

viability measurements. The hierarchical formulation improves optimizer performance con-

siderably. Furthermore, we show that this approach allows estimating error model parameters

with negligible computational overhead when no experimental estimates are available, pro-

viding an unbiased way to weight heterogeneous data. Overall, our hierarchical formulation

is applicable to a wide range of models, and allows for the efficient parameterization of large-

scale models based on heterogeneous relative measurements.
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1 Introduction

In systems biology, mechanistic ordinary differential equation (ODE) models are widely used to

deepen the understanding of biological processes. Applications range from the description of

signaling pathways (Klipp et al., 2005) to the prediction of drug responses (Hass et al., 2017)

and patient survival (Fey et al., 2015). With the availability of scalable computational methods

and increasing computing power, larger and larger models have been developed to capture the

intricacies of biological regulatory networks more accurately (Bouhaddou et al., 2018; Fröhlich

et al., 2018). In Fröhlich et al. (2018), we demonstrated how such a large-scale mechanistic model

integrating various cancer-related signaling pathways is able to, e.g., predict the response of cancer

cells to drug combinations based on measurements for single treatment responses, a task which

is commonly not possible with statistical models. Overall, mechanistic models can pave the way

to personalized medicine by integrating patient specific information, and thus creating virtual

patients (Kühn and Lehrach, 2012; Ogilvie et al., 2015).

Mechanistic ODE models usually contain parameters such as reaction rate constants and initial

concentrations, which have to be inferred from experimental data. Parameter estimation for larger

models is limited by (i) computational power for large numbers of required model simulations and

gradient evaluations, as well as by (ii) the availability of data to infer parameter values. Scalable

methods have been developed to address the problem of computational complexity, e.g. adjoint

sensitivity analysis (Fujarewicz et al., 2005; Lu et al., 2012; Fröhlich et al., 2017b) and paral-

lelization (Penas et al., 2015; Fröhlich et al., 2018). Complementary, large-scale transcriptomics,

proteomics and pharmacological datasets have been acquired and have been made publicly avail-

able in databases such as the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012),

the Genomics of Drug Sensitivity in Cancer (GDSC) project (Eduati et al., 2017) and the MD

Anderson Cell Lines Project (MCLP) (Li et al., 2017).
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The available databases are rather comprehensive and cover already hundreds of cell-lines. Yet,

those datasets are usually relative measurements and data often undergo some type of normaliza-

tion, which has to be accounted for when linking mechanistic model simulations to the data. A

commonly used approach is to introduce scaling and offset parameters in the model outputs (Weber

et al., 2011; Raue et al., 2013; Degasperi et al., 2017). However, this increases the dimensionality

of the optimization problem and slows down optimization. Indeed, even a small number of scaling

factors can result in a substantial drop of optimizer performance (Degasperi et al., 2017). The

precise reasons are yet to be understood.

To improve optimizer performance, Weber et al. (2011) developed a hierarchical optimization

method which exploits the fact that for given dynamic parameters, the optimal scaling parameters

can be computed analytically, which improved convergence and reduced computation time. The

approach was generalized by Loos et al. (2018) to error model parameters and different noise

distributions. However, the available approaches only considered scaling parameters, but not offset

parameters. In addition, those approaches were not compatible with adjoint sensitivity analysis,

but only with forward sensitivity analysis, which is computationally prohibitive for large-scale

models.

Here, we (i) analyze the problems caused by the introduction of scaling factors and (ii) extend the

hierarchical optimization method introduced by Loos et al. (2018) to be used in combination with

adjoint sensitivity analysis. Furthermore, we derive the governing equations to not only include

scaling parameters, but also offset parameters and the combination of both as well as error model

parameters in the case of additive Gaussian noise. Our method is more general and achieves a

better scaling behaviour than the existing ones (Weber et al., 2011; Loos et al., 2018). We apply it

to estimate parameters for the large-scale pan-cancer signaling model from Fröhlich et al. (2018).

First, we use simulated relative and absolute data to compare the performance of the standard

and the novel hierarchical approach and to demonstrate the loss of information associated with

using only relative data. Second, we use measured data to estimate model parameters, compare

the performance of different optimization algorithms, and show how the performance of each of

them improves with our hierarchical optimization approach.
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2 Materials and Methods

2.1 Mechanistic modeling

We consider ODE models of biochemical processes of the form

ẋ(t, θ, u) = f(x(t, θ, u), θ, u), x(t0, θ, u) = x0(θ, u).

The state vector x(t, θ, u) ∈ Rnx denotes the concentrations of involved species, the vector field

f(x, θ, u) ∈ Rnx describes the temporal evolution of the states, the vector θ ∈ Rnθ unknown

parameters, the vector u ∈ Rnu differential experimental conditions, and x0 ∈ Rnx the parameter-

and condition-dependent states at initial time t0.

An observation function h maps the system states to observables y(t, θ, u) ∈ Rny , via

y(t, θ, u) = h(x(t, θ, u), θ, u).

Experimental data D = {ȳit,iy ,iu}(it,iy ,iu)∈I corresponding to the observables are time-discrete and

subject to measurement noise ε ∈ Rny ,

ȳit,iy ,iu = hiy(x(tit , θ, uiu), θ) + εit,iy ,iu ,

indexed over a finite index set I of time points it, observables iy, and experimental conditions iu.

We assume the measurement noise to be normally distributed and independent for all datapoints,

i.e. εit,iy ,iu ∼ N (0, σ2
it,iy ,iu).

2.2 Relative measurements

Frequently, experiments provide measurement data only in a relative form, in arbitrary units,

rather than as absolute concentrations. Thus, to compare model and data, the observables need

to be rescaled. While the rescaling is usually incorporated in h and θ, here we use an explicit

formulation. Since these cover a broad range of measurement types, we assume that we have

scaling factors s and offsets b such that simulations and measured data are related via

ȳit,iy ,iu = sit,iy ,iu · h̃iy(x(tit , θ, uiu), θ) + bit,iy ,iu + εit,iy ,iu ,
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in which h̃(x, θ) denotes the mapping to unscaled observables.

Scaling factors sit,iy ,iu and offsets bit,iy ,iu , but also noise parameters σit,iy ,iu , in the setting considered

here the standard deviations of Gaussian distributions, are often shared between some datapoints,

e.g. for time series measurements, or for data taken under the same experimental conditions. In the

following, we summarize all different scaling, offset and noise parameters in vectors s ∈ Rns , b ∈

R
nb , σ ∈ Rnσ , respectively, and refer to them as static parameters, to distinguish them from the

original parameters θ, henceforth called dynamic parameters, since they affect the dynamics of the

simulated states. The static parameters are often unknown and thus have to be estimated along

with the dynamic parameters.

2.3 Parameter estimation problem with relative data

To infer the unknown parameters θ, s, b, and σ, we maximize the likelihood

L(θ, s, b, σ) =
∏
i

π(ȳi | si · h̃i(θ) + bi, σi),

of observing the experimental data D = {ȳi}i∈I given parameters θ, s, b, σ, where for simplicity of

presentation we employ a general index set i ∈ I over time points, observables, and experimental

conditions. π denotes the conditional probability of observing ȳi given simulation yi = si · h̃i(θ)+bi

and noise parameters σi. For Gaussian noise, we have

π(ȳi | yi, σi) =
1√

2πσ2
i

exp

(
−(ȳi − yi)2

2σ2
i

)
.

Instead of maximizing L directly, it is equivalent and numerically often preferable to minimize

the negative log-likelihood minθ,s,b,σ J(θ, s, b, σ) with J = − logL. Assuming Gaussian noise, J

becomes

J(θ, s, b, σ) =
1

2

∑
i

[
log(2πσ2

i ) +
(ȳi − (sih̃i(θ) + bi))

2

σ2
i

]
, (1)

which will henceforth be referred to as objective function.

2.4 Hierarchical optimization

In this section, we generalize the hierarchical optimization approach introduced by Loos et al.

(2018) to (1), allowing for scaling, offset, and noise parameters simultaneously, and we outline how
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hierarchical optimization can be combined with adjoint sensitivities.

The standard approach to handle the static parameters is to consider the extended parameter

vector (θ, s, b, σ) and to optimize all its elements simultaneously. However, the increased dimension

makes the optimization problem in general harder to solve. Instead, we can make use of the

specific problem structure of (1) more efficiently by splitting the optimization problem into an

outer problem where we optimize the dynamic parameters θ, and an inner problem where we

optimize the static parameters s, b, and σ, conditioned on θ. That is, we compute

min
θ
Ĵ(θ) with Ĵ(θ) := J(θ, s(θ), b(θ), σ(θ)), (2)

in which

(s(θ), b(θ), σ(θ)) = arg min
s,b,σ

J(θ, s, b, σ). (3)

It can be shown that global optima of the standard optimization problem are preserved in the

hierarchical problem.

2.4.1 Analytic expressions for the optimal scaling, offset, and noise parameters

In general, an inner optimization problem like (3) needs to be solved numerically. However,

under certain conditions one can give analytic expressions for the optimal static parameters, which

renders solving the inner problem computationally very cheap. The analytic expressions are based

on evaluating the necessary condition for a local minimum in s, b, σ given θ,

∇s,b,σJ(θ, s, b, σ) = 0. (4)

Here, we extend the available results by Weber et al. (2011) and Loos et al. (2018).

We define index sets Isα, I
b
β, I

σ
γ ⊂ I for α = 1, . . . , ns, β = 1, . . . , nb, γ = 1, . . . , nσ, with ns, nb and

nσ indicating the number of scaling, offset and noise parameters. The index sets indicate which

datapoints share static parameters, e.g., all datapoints ȳi with i ∈ Isα share a scaling parameter.

In order to derive analytic formulas, we will in the following assume that {Isα}α = {Ibβ}β, i.e., that

scaling and offset parameters are shared among the same datapoints, and that for all α there exists

γ such that Isα ⊂ Iσγ , i.e., that datapoints sharing the scaling (and offset) parameter share also

the noise parameter. The results are also flexible enough to allow any of s, b, and σ to be fixed
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or estimated as dynamic parameters, in which case the above assumptions can be alleviated. For

an extended discussion and derivations of the below formulas see the Supplementary Information,

Section 3.

First, we consider single scaling parameters sα and offset parameters bβ. Without loss of generality,

we reduce the objective (1) to only include relevant summands. Then, (4) yields

sα(θ) =

(∑
i∈Iα

h̃2i
σ2
i

)−1(∑
i∈Iα

(ȳi − bi)h̃i
σ2
i

)
, (5a)

bβ(θ) =

∑
i∈Iβ

1

σ2
i

−1∑
i∈Iβ

ȳi − sih̃i
σ2
i

 . (5b)

If either the si or bi are no static parameters, we are done by just inserting those values in

the respective other formula. If both are to be optimized as static parameters, in which case

by assumption si ≡ sα, bi ≡ bβ, we can proceed by inserting (5a) into (5b), which yields non-

interdependent formulas, see the Supplementary Information, Section 3.1. Note that the noise

parameters drop out of the formulas if all values coincide, as is our assumption in the case that we

want to estimate the noise parameters hierarchically as well. Thus, in either case sα(θ) and bβ(θ)

can now be readily computed. Note that for the special case b = 0 we recover the formula from

Loos et al. (2018).

Second, for a given single noise parameter σγ, we consider without loss of generality an objective

function (1) reduced to indices Iγ, while si and bi can be arbitrary. The objective considered here

will typically contain multiple sums of the type discussed for the scalings and offsets. As s and b

are known already at this stage, (4) immediately gives

σ2
γ(θ) =

∑
i∈Iγ

1

−1∑
i∈Iγ

(ȳi − (sih̃i + bi))
2

 .

Note that a problem occurs when the rescaled simulations match the measured data exactly, since

then σ2 = 0. In this case, the noise parameter and thus the objective function is unbounded in

the standard and the hierarchical formulation, so that measures to deal with this case have to be

taken, e.g. by specifying a lower bound for σγ.

Inspection of the Hessian ∇2
s,b,σJ(θ, s, b, σ) shows that the found stationary points indeed are

minima (see Supplementary Information, Section 3).

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579045doi: bioRxiv preprint 

https://doi.org/10.1101/579045
http://creativecommons.org/licenses/by/4.0/


2.4.2 Combining hierarchical optimization and adjoint sensitivity analysis

In optimization, the objective function gradient is of considerable value, because it gives the

direction of steepest descent in the objective function landscape. Recent studies indicated that

optimization methods using gradients tend to outperform those which do not (Schälte et al., 2018;

Villaverde et al., 2018). In Loos et al. (2018), hierarchical optimization was performed using

objective gradients computed via forward sensitivity analysis. However, for large-scale models

adjoint sensitivity analysis has shown to be orders of magnitude faster (Fröhlich et al., 2018),

because essentially here the evaluation of state sensitivities is circumvented by defining an adjoint

state p ∈ Rnx which does not scale in the number of parameters (Fröhlich et al., 2017b).

Whether hierarchical optimization can be combined with adjoint sensitivity analysis so far re-

mained unclear. The problem with applying adjoint sensitivity analysis is that, unlike the forward

sensitivity equations, the adjoint state depends on the data and the scaled observables and thus

requires knowledge of the static parameters. Therefore, the approaches by Weber et al. (2011)

and Loos et al. (2018) of first simulating the state trajectory x(t, θ, u) as well as all required sen-

sitivities, and then computing optimal static parameters in order to compute Ĵ and ∇Ĵ without

further simulations, are not applicable.

To combine hierarchical optimization and adjoint sensitivity analysis, we derived the scheme il-

lustrated in Figure 1. Conceptually, we postpone the evaluation of the adjoint state to after the

computation of the optimal static parameters. As the derivatives of the objective function with

respect to the optimal static parameters are zero, i.e. ∇s,b,σJ = 0, since we solve the inner sub-

problem exactly, we can prove that this scheme provides the correct objective function gradient

∇Ĵ . For a more detailed discussion and derivation of the adjoint-hierarchical approach, we refer

to the Supplementary Information, Section 2. An overview over the properties of the different

hierarchical optimization approaches is provided in the Supplementary Information, Table S1.

2.5 Implementation

We implemented the proposed method in MATLAB and C++. A custom parallelized objective

function implementation was used to decrease the wall time (see Supplementary Information,
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unscaled

observables

optimal static

parameters

objective

adjoint state gradient

update θ in outer optimization loop

hierarchical

optimization

compute

backward

simulation compute

forward

simulation

expensive

expensive

Figure 1: Illustration of the hierarchical optimization scheme using adjoint sensitivities. In the

outer loop, θ is updated by some iterative optimization scheme. Here, the solution of the inner problem

is shown in detail. The red boxes involve the simulation of ODEs and are thus usually computationally

more expensive. If the gradient is not required in some optimizer iteration, the adjoint and gradient steps

can be omitted.

Sections 4.5.2 and 4.5.3). The modular implementation can easily be adopted to work with other

Systems Biology Markup Language (SBML, Hucka et al. (2003)) models . Model simulation

and gradient evaluation using the proposed scheme were performed using AMICI (Fröhlich et al.,

2017a). Parameter estimation was performed using multi-start local optimization. The starting

points were sampled from a uniform distribution. The initial dynamic parameters were identical for

the standard and hierarchical optimization, where initial static parameters only had to be chosen for

the standard approach. We considered different local optimization methods (see Section Results)

and ran all for a maximum of 150 iterations (see Supplementary Information, Section 4.5.1 for more

details). The complete code and data are available at http://doi.org/10.5281/zenodo.2593839 and

http://doi.org/10.5281/zenodo.2592186.

3 Results

In this study, we considered the pan-cancer signaling pathway model developed by Fröhlich et al.

(2018). This model comprises 1396 biochemical species (1228 dynamic states and 168 constant

species) and 4232 unknown parameters, and can be individualized to specific cancer cell-lines

using genetic profiles and gene expression data. Fröhlich et al. (2018) demonstrated a promising

performance of the model in drug response prediction, but molecular insights were limited by non-

identifiabilities. Motivated by these results, we set out to parameterize this model using additional
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Figure 2: Convergence of standard and hierarchical optimization. Parameter estimation results

using a simulated version of dataset 1 from Table 1 with the Ipopt optimizer. For all evaluations 20

optimizer runs were performed. A: Pearson correlation of relative training data and corresponding model

simulation after training on relative data using standard and hierarchical optimization. Dashed line

shows the correlation that is achieved using the true parameters used to generate the training data. B:

Ratio of the average gradient contribution for scaling parameters against dynamic parameters using the

standard optimization for all optimizer runs along their trajectory. C: Expected gradient for standard

and hierarchical optimization. Only the parameters, that were optimized numerically, were taken into

account. D: Pearson correlation of absolute data and corresponding model simulation after training on

(left & middle) relative data and (right) on absolute data.

data.

3.1 Mapping multiple datasets to a large-scale model of cancer signal-

ing

For model calibration, we considered two datasets. Dataset 1 is the training data studied by

Fröhlich et al. (2018). These are viability measurements for 96 cancer cell-lines in response to

7 drugs at 8 drug concentrations available in the CCLE (Barretina et al., 2012). The viability

measurements are normalized to the respective control. To account for this normalization, Fröhlich

et al. (2018) simulated the model for the treated condition and the control, and the simulations

were then divided by each other. This corresponds to the method proposed by Degasperi et al.

(2017). However, this approach is not applicable if multiple observables need to be considered, e.g.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579045doi: bioRxiv preprint 

https://doi.org/10.1101/579045
http://creativecommons.org/licenses/by/4.0/


when incorporating additional data types, or when more complex data normalizations are applied.

Therefore, we reformulated the model output and replaced the normalization with the control by

a cell-line specific scaling (scell-linej). This yields the observation model

yviabilityi = scell-linej h̃viabilityi + εviabilityi

with i indexing the datapoints belonging to cell-line j. The measurement noise is assumed to be

normally distributed, εviabilityi ∼ N (0, σ2
viability).

We complemented the viability measurements employed with molecular measurements to refine

the parameter estimates. Dataset 2 contains reverse phase protein array (phospho-)proteomic

data for various cancer cell-lines taken from the MCLP (Li et al., 2017). We developed a pipeline

which (i) maps the measured protein levels to the state variables of the model and (ii) employs the

mapping to construct observables (see Supplementary Information, section 4.1 for more details).

We identified 32 proteins and 16 phosphoproteins measured that were also covered by the model.

In total, 54 out of the 96 considered cell-lines were included in the MCLP (dataset 2 in Table 1).

In the MCLP database, measurements are normalized across cell-lines and across all proteins by

subtracting the respective median from the log2-transformed measured values (see Level 4 data

in https://tcpaportal.org/mclp/#/faq). Therefore, we included one cell-line specific offset

(bcell-linej) and one protein specific offset (bproteini), yielding the observation model

yproteini,cell-linej = log2(h̃proteini,cell-linej)

+ bcell-linej + bproteini + εproteini,cell-linej ,

normally distributed measurement noise εproteini,j ∼ N (0, σ2
proteini

) and the simulated absolute

protein level

h̃proteini,cell-linej =
∑

l∈Iproteini

klxl.

The index set Iproteini refers to the species that include proteini and kl is the respective stoichio-

metric multiplicity.

The integration of viability and molecular measurements provides information on two different

levels, which potentially improves the reliability of the model. However, it requires a substantial

number of observation parameters (Table 1).
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Table 1: Datasets used for parameter estimation. The number of static parameters of certain classes

is indicated, followed by the number of parameters which are computed analytically in the hierarchical

setting in parentheses.

Dataset 1 (CCLE) Dataset 2 (MCLP)

# datapoints 5281 1799

# cell-lines 96 54

# observables 1 48

# scalings 96(96) 0

# offsets 0 102(48)

# noise parameters 1(1)* 48(48)
∗The noise parameter is set to one if dataset 1 is considered individually.

3.2 Evaluation of standard and hierarchical optimization using simu-

lated data

A priori it is not clear which influence scaling, offset and noise parameter have on optimizer

performance. However, Degasperi et al. (2017) observed in two examples that the use of scalings

lead to inferior optimizer behaviour compared to the normalization-based approach which was

also used by Fröhlich et al. (2018). Thus, before estimating parameters using real measured data

from CCLE and MCLP, we first used simulated data. To get realistic data, we simulated the

model for the same experimental conditions that were provided in dataset 1 and added normally

distributed noise to the simulations (see Supplementary Information, Section 4.7). The simulation

of experimental data allowed us to (i) compare the goodness-of-fit of estimated and true parameter

and to (ii) assess the information associated with relative data.

3.2.1 Hierarchical optimization facilitates convergence

To compare standard and hierarchical optimization, we employed both approaches for the analysis

of simulated, noisy relative data. For local optimization we employed the Interior Point OPTimizer

(Ipopt) (Wächter and Biegler, 2006; HSL, 2019). As metric we considered the Pearson correlations

between data and simulation for each of the optimized parameter vectors and the true parameter
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vector. The Pearson correlation reflected the objective function value (Supplementary Information,

Figure S1) but was easier to interpret.

The hierarchical optimization achieved substantially better correlations between simulation and

data than the standard optimization (Figure 2A). Furthermore, variability between different local

optimization runs was reduced. Indeed, all but two optimizer runs using hierarchical optimization

achieved correlations similar to the correlation observed for the true parameters, indicating a good

model fit and – in contrast to the standard optimization – a good convergence. No run reached

significantly better values than the true parameter vectors which would have indicated over-fitting.

3.2.2 Scalings have a pronounced influence on the objective function value

Hierarchical optimization decreases the effective dimension of the optimization problem. However,

as the number of parameters decreases for the considered problem only by 2% – this does not

explain the substantially improved convergence – the scaling factors might be particularly rele-

vant. To assess this, we evaluated the average absolute values of the objective function gradient

for scaling parameters (E[|∇sJ |]) and dynamic parameters (E[|∇θJ |]). Indeed, the evaluation of

the ratio (E[|∇sJ |]/E[|∇θJ |]) revealed that the objective function is usually 10 times more sensi-

tive with respect to scaling parameters than dynamic parameters (Figure 2B). This indicates the

presence of two separate timescales in the continuous representation of the optimization problem

(Wibisono et al., 2016), which suggests that the optimization problem is stiff. As standard opti-

mization methods correspond to explicit solving schemes of the continuous optimization problem,

the stiffness could explain the problem encountered for the standard approach. Vice versa, it ex-

plains the improvement achieved using hierarchical optimization, where the gradient contribution

of the scalings is zero. Accordingly, the average gradient for the hierarchical optimization is small

compared to the standard optimization (Figure 2C).

An inspection of the optimizer trajectories revealed that for the standard optimization some op-

timizer runs show flat trajectories of the objective function, while still having a comparably large

gradient (Figure 2C and Supplementary Information, Figure S2). For these runs, the contribution

of the scalings became small (flat lines in Figure 2B), which might be due to a valley in the ob-

jective function landscape defined by the scaling parameters, where the optimizer got stuck. Such
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valleys are eliminated in the hierarchical optimization.

3.2.3 Normalization results in information loss
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Figure 3: Computational efficiency of standard and hierarchical optimization for multiple

optimization algorithms. A: Optimizer trajectories for fmincon, Ipopt, Ceres and sumsl using standard

and the hierarchical optimization. Since the noise parameter was set to 1 for these runs, the constant term

in the objective function was omitted. dataset 1 from Table 1 was used. Fmincon runs were performed

on different systems and using a different implementation than the other optimizers, so that absolute

computation times are not comparable. B: Boxplots of final objective function values obtained after

150 iterations by the different optimizers using standard and hierarchical optimization. C: Speed-up of

the hierarchical optimization compared to the standard optimization. The speed-up is defined by the

computation time the hierarchical optimization needs to find the final objective function value of the

standard optimization for every local optimization (or vice versa if the standard optimization finds a

better final value). The dashed red line shows the point, where standard and hierarchical are equally fast.

To assess the influence of information loss associated with the use of relative data, we performed

optimization using simulated absolute data. For comparison, we predicted the absolute values

using the parameters inferred with relative data (see Supplementary Information, Section 4.7.3).

As expected, we found that the prediction of absolute data from relative data yields a correlation far

from one (Figure 2D), implying that information is lost in the normalization process. Interestingly,

hierarchical optimization again outperformed standard optimization. A potential reason is that

the improved convergence of the optimizer allows for the extraction of more information from the

relative data.
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3.3 All tested local optimization methods profit from hierarchical for-

mulation

To provide a thorough comparison of the performance of standard and hierarchical optimization,

we assessed it for different local optimization algorithms on the measured viability data (dataset 1 ).

We considered four commonly used or open-source optimizers: Ipopt (Wächter and Biegler, 2006;

HSL, 2019), Ceres (Agarwal et al., 2019), sumsl (Gay, 1983), and fmincon (Mathworks, 2019).

These optimizers use different updating schemes, e.g. based on line-search or trust-region methods.

We assessed the performance by studying the evolution of objective function values over com-

putation time and optimizer iterations. Given the same computational budget, the hierarchical

optimization consistently achieved better objective function values for all considered optimization

algorithms and for almost all runs (Figure 3A and Supplementary Information, Figure S3). Fur-

thermore, the objective function at the maximum number of iterations was substantially better for

hierarchical optimization than standard optimization, and there was in general a lower variability

(Figure 3B). Given this result, we determined the computation time required by the hierarchi-

cal optimization to achieve the final objective function value of the standard optimization and

computed the resulting speed-up (Figure 3C). Except for one start of Ipopt, the hierarchical op-

timization was always faster with a median speed-up between one and two orders of magnitude.

Since a single local optimization run required several thousand hours of computation time, the

efficiency improvement achieved using hierarchical optimization is crucial.

As the performance of optimization algorithms has so far mostly been evaluated for ODE models

with tens and hundreds of unknown parameters (Villaverde et al., 2018; Hass et al., 2019), we used

our results for a first comparison on a large-scale ODE model. We found that for the considered

problem (i) Ceres always stopped prematurely, (ii) sumsl progressed (at least for the standard

optimization) slower than Ipopt and fmincon, and (iii) fmincon and Ipopt reached the best objective

function values and appeared to be most efficient (Figure 3A, B).

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579045doi: bioRxiv preprint 

https://doi.org/10.1101/579045
http://creativecommons.org/licenses/by/4.0/


0 500 1000 1500 2000 2500 3000 3500
Computation time [h]

102

103

104

Ob
je

ct
iv

e 
fu

nc
tio

n

A
Standard
Hierarchical - Group 1
Hierarchical - Group 2

Via
bili
ty

ER
BB
2

EG
FR

PD
PK
1_S

24
1

SR
C

ER
BB
2_Y

12
48

PT
EN MY

C

CD
KN
1A

BR
AF

PD
PK
1

FO
XO
3

ST
AT
3_Y

70
5

TS
C2

JUN
S7
3

TS
C2
_T1

46
2

80.4

80.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
a2
30
n 

co
rre

la
tio

n

B

Figure 4: Integration of heterogeneous data using hierarchical optimization. A: Optimizer

trajectories for standard and hierarchical optimization with dataset 1 and 2 from Table 1 using Ipopt.

The two Groups found by the hierarchical optimization are indicated by different shades of blue. B:

Pearson correlations for all observables with at least 55 datapoints for all runs of the standard optimization

and for the two groups found by the hierarchical optimization. For all observables, see Supplementary

Information, Figure S4.

3.4 Hierarchical optimization enables integration of heterogeneous data

As the information about molecular mechanisms provided by viability measurements (dataset 1 )

are limited, we complemented it using the (phospho-)protein measurements (dataset 2 ). An unbi-

ased weighting was ensured by introducing error model parameters (i.e., standard deviations) for

the individual observables and estimating them along with the remaining parameters. In hierar-

chical optimization, (i) the error model parameters, (ii) the cell-line specific scaling of the viability

measurements and (iii) the observable-specific offsets of the log-transformed protein measurements

are optimized analytically (Table 1). The analytic optimization of the cell-line specific offsets of

the log-transformed protein measurements is not supported by the approach as the error model

parameters and the offsets have to share the same datapoints.

We performed multi-start local optimization for the combined dataset using Ipopt. Again, the

hierarchical optimization was computationally much more efficient and reached better objective

function values than the standard optimization (Figure 4A). For the standard optimization, all

starts yielded objective function values of approximately 104. For the hierarchical optimization,

we observed runs yielding objective values similar to those for standard optimization denoted by
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Group 1, with J ≈ 104 as well as runs which provided much better objective function values, i.e.

Group 2, J < 3 × 103. The optimized parameter vectors obtained using standard optimization

runs and hierarchical optimization runs in Group 1 were able to fit the viability measurements

but failed to describe the protein data (Figure 4B). In contrast, the optimized parameter vectors

obtained using hierarchical optimization runs in Group 2 show a good fit for viability and most

protein measurements (Figure 4B). Accordingly, only hierarchical optimization runs managed to

balance the fit of the datasets, thereby achieving an integration and a better overall description of

the data.

In summary, the adjoint-hierarchical approach outperformed in all regards standard optimization.

Compared to forward-hierarchical approaches (Weber et al., 2011; Loos et al., 2018) a speedup of

roughly three orders of magnitude is achieved. The computation time of one gradient evaluation

with forward sensitivities is in the same order as one full optimization, with the here used settings,

applying adjoints (see Supplementary Information, Section 4.3 for an estimate of the computation

time).

4 Discussion

Parameterization of large-scale mechanistic models is a challenging task requiring new approaches.

Here, we combine the concept of hierarchical optimization (Weber et al., 2011; Loos et al., 2018)

with adjoint sensitivities (Fujarewicz et al., 2005; Lu et al., 2012; Fröhlich et al., 2017b). This

is crucial when parameterizing large-scale models for which the use of forward sensitivities is

computationally prohibitive. Additionally, we derived more general formulas for hierarchically

optimizing a combination of scaling and offset parameters as well as noise parameters.

We demonstrated the advantages of hierarchical optimization using a recently published large-

scale pan-cancer model. We obtained median speed-ups of more than one order of magnitude

as compared to the conventional approach, irrespective of the employed optimizer. Given that

the overall computation time is thousands of CPU hours, this improvement is substantial. While

previous studies had already shown a reduced convergence rate when calibrating models to relative

data (Degasperi et al., 2017), we identified the large gradients with respect to the scalings as a
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possible explanation and established a flexible and easy way to circumvent them. The numerical

stiffness which can arise from this for numerical optimization methods is the first conceptual

explanation of the large improvements achieved by hierarchical methods (Weber et al., 2011; Loos

et al., 2018).

In addition to the methodological contribution, we provide here the first proof-of-principle for

the integration of multiple datasets using large-scale mechanistic models of cancer signaling. We

showed for the example of viability and (phospho-)proteomic measurements that our optimization

approach facilitates (i) data integration – where other methods failed – and (ii) an easy weighting

of datasets. This is possible without computational overhead. The optimized noise parameters pro-

vide estimates for the measurement noise when no or only low numbers of replicates are available,

as it is the case in many large-scale databases (e.g. CCLE and MCLP).

In this study, we used hierarchical optimization to estimate individual static parameters per observ-

able. However, measurements may require multiple scaling and offset parameters per observable

(e.g the protein observables considered here), as well as arbitrary combinations thereof. The cur-

rent hierarchical framework cannot account for such settings. An extension to efficiently estimate

all such parameters would thus presumably yield an even improved performance. Similarly, ex-

tending the optimization approach to other noise models would be of interest, even when the inner

subproblem lacks an analytical solution. Of particular interest are distributions that are more

robust to outliers, while still maintaining the good optimization convergence (Maier et al., 2017).

Large-scale mechanistic models are of high value for systems biomedicine, since, as opposed to

machine learning methods, they allow for mechanistic interpretation, analysis of latent variables

and extrapolation to unseen conditions (Baker et al., 2018; Fröhlich et al., 2018). While this

study is a proof-of-concept for the integration of heterogeneous datasets, for future biology-driven

analyses it will be valuable to include additional molecular measurements to improve the predictive

power and the mechanistic interpretation of the model. With the advance of high-throughput

technologies, more and more such large-scale datasets have been published. For example, the

cancer proteomic atlas (TCPA) (Li et al., 2013) or the datasets provided by Frejno et al. (2017) or

Gholami et al. (2013) constitute rich sources of training data for future analyses. Our hierarchical

optimization now allows for a much more efficient calibration of large-scale mechanistic models

using heterogeneous datasets.
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