Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The speed of human social interaction perception

View ORCID ProfileLeyla Isik, Anna Mynick, Dimitrios Pantazis, Nancy Kanwisher
doi: https://doi.org/10.1101/579375
Leyla Isik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Leyla Isik
Anna Mynick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dimitrios Pantazis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nancy Kanwisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The ability to detect and understand other people’s social interactions is a fundamental part of the human visual experience that develops early in infancy and is shared with other primates. However, the neural computations underlying this ability remain largely unknown. Is the detection of social interactions a rapid perceptual process, or a slower post-perceptual inference? Here we used magnetoencephalography (MEG) decoding and computational modeling to ask whether social interactions can be detected via fast, feedforward processing. Subjects in the MEG viewed snapshots of visually matched real-world scenes containing a pair of people who were either engaged in a social interaction or acting independently. The presence versus absence of a social interaction could be read out from subjects’ MEG data spontaneously, even while subjects performed an orthogonal task. This readout generalized across different scenes, revealing abstract representations of social interactions in the human brain. These representations, however, did not come online until quite late, at 300 ms after image onset, well after the time period of feedforward visual processes. In a second experiment, we found that social interaction readout occurred at this same latency even when subjects performed an explicit task detecting social interactions. Consistent with these latency results, a standard feedforward deep neural network did not contain an abstract representation of social interactions at any model layer. We further showed that MEG responses distinguished between different types of social interactions (mutual gaze vs joint attention) even later, around 500 ms after image onset. Taken together, these results suggest that the human brain spontaneously extracts the presence and type of others’ social interactions, but does so slowly, likely relying on iterative top-down computations.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 16, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The speed of human social interaction perception
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The speed of human social interaction perception
Leyla Isik, Anna Mynick, Dimitrios Pantazis, Nancy Kanwisher
bioRxiv 579375; doi: https://doi.org/10.1101/579375
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The speed of human social interaction perception
Leyla Isik, Anna Mynick, Dimitrios Pantazis, Nancy Kanwisher
bioRxiv 579375; doi: https://doi.org/10.1101/579375

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3514)
  • Biochemistry (7367)
  • Bioengineering (5346)
  • Bioinformatics (20324)
  • Biophysics (10044)
  • Cancer Biology (7776)
  • Cell Biology (11352)
  • Clinical Trials (138)
  • Developmental Biology (6453)
  • Ecology (9980)
  • Epidemiology (2065)
  • Evolutionary Biology (13356)
  • Genetics (9373)
  • Genomics (12611)
  • Immunology (7725)
  • Microbiology (19102)
  • Molecular Biology (7465)
  • Neuroscience (41153)
  • Paleontology (301)
  • Pathology (1235)
  • Pharmacology and Toxicology (2142)
  • Physiology (3178)
  • Plant Biology (6879)
  • Scientific Communication and Education (1276)
  • Synthetic Biology (1900)
  • Systems Biology (5328)
  • Zoology (1091)