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Abstract12

Cortical microcircuits exhibit complex recurrent architectures that possess dynamically rich prop-13

erties. The neurons that make up these microcircuits communicate mainly via discrete spikes,14

and it is not clear how spikes give rise to dynamics that can be used to perform computationally15

challenging tasks. In contrast, continuous models of rate-coding neurons can be trained to perform16

complex tasks. Here, we present a simple framework to construct biologically realistic spiking re-17

current neural networks (RNNs) capable of learning a wide range of tasks. Our framework involves18

training a continuous-variable rate RNN with important biophysical constraints and transferring19

the learned dynamics and constraints to a spiking RNN in a one-to-one manner. The proposed20

framework introduces only one additional parameter to establish the equivalence between rate21

and spiking RNN models. We also study other model parameters related to the rate and spiking22

networks to optimize the one-to-one mapping. By establishing a close relationship between rate23

and spiking models, we demonstrate that spiking RNNs could be constructed to achieve similar24

performance as their counterpart continuous rate networks.25
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Introduction26

Dense recurrent connections common in cortical circuits suggest their important role in computa-27

tional processes [1–3]. Network models based on recurrent neural networks (RNNs) of continuous-28

variable rate units have been extensively studied to characterize network dynamics underlying29

neural computations [4–9]. Methods commonly used to train rate networks to perform cognitive30

tasks can be largely classified into three categories: recursive least squares (RLS)-based, gradient-31

based, and reward-based algorithms. The First-Order Reduced and Controlled Error (FORCE)32

algorithm, which utilizes RLS, has been widely used to train RNNs to produce complex output33

signals [5] and to reproduce experimental results [6, 10, 11]. Gradient descent-based methods,34

including Hessian-free methods, have been also successfully applied to train rate networks in a35

supervised manner and to replicate the computational dynamics observed in networks from be-36

having animals [7, 12, 13]. Unlike the previous two categories (i.e. RLS-based and gradient-based37

algorithms), reward-based learning methods are more biologically plausible and have been shown38

to be as effective in training rate RNNs as the supervised learning methods [14–17]. Even though39

these models have been vital in uncovering previously unknown computational mechanisms, con-40

tinuous rate networks do not incorporate basic biophysical constraints such as the spiking nature41

of biological neurons.42

Training spiking network models where units communicate with one another via discrete spikes43

is more difficult than training continuous rate networks. The non-differentiable nature of spike sig-44

nals prevents the use of gradient descent-based methods to train spiking networks directly, although45

several differentiable models have been proposed [18, 19]. Due to this challenge, FORCE-based46

learning algorithms have been most commonly used to train spiking recurrent networks. While47

recent advances have successfully modified and applied FORCE training to construct functional48

spike RNNs [8, 20–23], FORCE training is computationally inefficient and unstable when connec-49

tivity constraints, including separate populations for excitatory and inhibitory populations (Dale’s50

principle) and sparse connectivity patterns, are imposed [21].51

Due to these limitations, computational capabilities of spiking networks that abide by biological52

constraints have been challenging to explore. For instance, it is not clear if spiking RNNs operating53

in a purely rate-coding regime can perform tasks as complex as the ones rate RNN models are54

trained to perform. If such spiking networks can be constructed, then it would be important to55

characterize how much spiking-related noise not present in rate networks affects the performance56

of the networks. Establishing the relationship between these two types of RNN models could also57
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serve as a good starting point for designing power-efficient spiking networks that can incorporate58

both rate and temporal coding.59

To address the above questions, we present a computational framework for directly mapping rate60

RNNs with basic biophysical constraints to leaky integrate-and-fire (LIF) spiking RNNs without61

significantly compromising task performance. Our method introduces only one additional param-62

eter to place the spiking RNNs in the same dynamic regime as their counterpart rate RNNs, and63

takes advantage of the previously established methods to efficiently optimize network parameters64

while adhering to biophysical restrictions. These previously established methods include training65

a continuous-variable rate RNN using a gradient descent-based method [24–27] and connectivity66

weight matrix parametrization method to impose Dale’s principle [13]. The gradient descent learn-67

ing algorithm allowed us to easily optimize many parameters including the connectivity weights68

of the network and the synaptic decay time constant for each unit. The weight parametrization69

method proposed by Song et al. was utilized to enforce Dale’s principles and additional connectivity70

patterns without significantly affecting computational efficiency and network stability [13].71

Combining these two existing methods with correct parameter values enabled us to directly72

map rate RNNs trained with backpropagation to LIF RNNs in a one-to-one manner. The param-73

eters critical for mapping to succeed included the network size, the nonlinear activation function74

employed for training rate RNNs, and a constant factor for scaling down the connectivity weights75

of the trained rate RNNs. Here, we investigated these parameters along with other LIF parame-76

ters and identified the range of values required for the mapping to be effective. We demonstrate77

that when these parameters are set to their optimal values, the LIF models constructed from our78

framework can perform the same tasks the rate models are trained to perform equally well.79

Results80

Here we provide a brief overview of the two types of recurrent neural networks (RNNs) that we81

employed throughout this study (more details in Methods): continuous-variable firing rate RNNs82

and spiking RNNs. The continuous-variable rate network model consisted of N rate units whose83

firing rates were estimated via a nonlinear input-output transfer function [4, 5]. The model was84

governed by the following set of equations:85

τdi
dxi
dt

= −xi +
N∑
j=1

wrate
ij rratej + Iext (1)

rratei = φ(xi) (2)
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Fig. 1 | Rate RNNs trained to perform the Go-NoGo task. A. Schematic diagram illustrating

a continuous rate RNN model trained to perform the Go-NoGo task. The rate RNN model contained

excitatory (red circles) and inhibitory (blue circles) units. B. Distribution of the tuned synaptic decay time

constants (Mean ± SD, 28.2 ± 9.4 ms; left) and the average trained rate RNN task performance (right) from

an example rate RNN model. The mean ± SD output signals from 50 Go trials (dark purple) and from 50

NoGo trials (light purple) are shown. The green box represents the input stimulus given for the Go trials.

The rate RNN contained 200 units (169 excitatory and 31 inhibitory units). C. Rate RNNs with different

network sizes trained to perform the Go-NoGo task. For each network size, 100 RNNs with random initial

conditions were trained. All the networks successfully trained performed the task almost perfectly (range

96–100%; left). As the network size increased, the number of training trials decreased (Mean ± SD shown;

right).

where τdi is the synaptic decay time constant for unit i, xi is the synaptic current variable for unit86

i, wrate
ij is the synaptic strength from unit j to unit i, and Iext is the external current input to87

unit i. The firing rate of unit i (rratei ) is given by applying a nonlinear transfer function (φ(·))88

to the synaptic current variable. Since the firing rates in spiking networks cannot be negative,89
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we chose the activation function for our rate networks to be a non-negative saturating function90

(standard sigmoid function) and parametrized the connectivity matrix (wrate
ij ∈ W rate) to enforce91

Dale’s principle and additional connectivity constraints (see Methods).92

The second RNN model that we considered was a network composed of N spiking units.93

Throughout this study, we focused on networks of leaky integrate-and-fire (LIF) units whose mem-94

brane voltage dynamics were given by:95

τm
dvi
dt

= −vi +
N∑
j=1

wspk
ij rspkj + Iext (3)

where τm is the membrane time constant (set to 10 ms throughout this study), vi is the membrane96

voltage of unit i, wspk
ij is the synaptic strength from unit j to unit i, rspkj represents the synaptic97

filtering of the spike train of unit j, and Iext is the external current source. The discrete nature98

of rspkj (see Methods) has posed a major challenge for directly training spiking networks using99

gradient-based supervised learning. Even though the main results presented here are based on LIF100

networks, our method can be generalized to quadratic integrate-and-fire (QIF) networks with only101

few minor changes to the model parameters (SI Appendix, Table S1).102

Continuous rate network training was implemented using the open-source software library Ten-103

sorFlow in Python, while LIF/QIF network simulations along with the rest of the analyses were104

performed in MATLAB.105

Training Continuous Rate Networks. Throughout this study, we used a gradient-descent su-106

pervised method, known as Backpropagation Through Time (BPTT), to train rate RNNs to pro-107

duce target signals associated with a specific task [13, 24]. The method we employed is similar to108

the one used by previous studies ([13, 25, 27]; more details in Methods) with one major difference109

in synaptic decay time constants. Instead of assigning a single time constant to be shared by110

all the units in a network, our method tunes a synaptic constant for each unit using BPTT (see111

Methods). Although tuning of synaptic time constants may not be biologically plausible, this fea-112

ture was included to model diverse intrinsic synaptic timescales observed in single cortical neurons113

[28–30].114

We trained rate RNNs of various sizes on a simple task modeled after a Go-NoGo task to115

demonstrate our training method (Fig. 1). Each network was trained to produce a positive mean116

population activity approaching +1 after a brief input pulse (Fig. 1A). For a trial without an input117

pulse (i.e. NoGo trial), the networks were trained to maintain the output signal close to zero. The118

units in a rate RNN were sparsely connected via W rate and received a task-specific input signal119
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Fig. 2 | Mapping trained rate RNNs to LIF RNNs for the Go-NoGo task. A. Schematic diagram

illustrating direct mapping from a continuous rate RNN model (top) to a spiking RNN model (bottom). The

optimized synaptic decay time constants (τd) along with the weight parameters (Win, W rate, and W rate
out )

were transferred to a spiking network with LIF units (red and blue circles with a dashed outline). The

connectivity and the readout weights were scaled by a constant factor, λ. B. LIF RNN performance on the

Go-NoGo task without scaling (λ = 1; left), with insufficient scaling (middle), and with appropriate scaling

(right). The network contained 200 units (169 excitatory and 31 inhibitory units). Mean ± SD over 50

Go and 50 NoGo trials. C. Successfully converted LIF networks and their average task performance on the

Go-NoGo task with different network sizes. All the rate RNNs trained in Fig. 1 were converted to LIF RNNs.

The network size was varied from N = 10 to 400. D. Average synaptic decay values for N = 250 across

different maximum synaptic decay constants. E. Successfully converted LIF networks and their average

task performance on the Go-NoGo task with fixed network size (N = 250) and different maximum synaptic

decay constants. The maximum synaptic decay constants were varied from 20 ms to 1000 ms.

through weights (Win) drawn from a normal distribution with zero mean and unit variance. The120

network output (orate) was then computed using a set of linear readout weights:121

orate(t) = W rate
out · rrate(t) (4)

where W rate
out is the readout weights and rrate(t) is the firing rate estimates from all the units in122

the network at time t. The recurrent weight matrix (W rate), the readout weights (W rate
out ), and the123

synaptic decay time constants (τd) were optimized during training, while the input weight matrix124

(Win) stayed fixed (see Methods).125

The network size (N) was varied from 10 to 400 (9 different sizes), and 100 networks with126
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random initializations were trained for each size. For all the networks, the minimum and the127

maximum synaptic decay time constants were fixed to 20 ms and 50 ms, respectively. As expected,128

the smallest rate RNNs (N = 10) took the longest to train, and only 69% of the rate networks129

with N = 10 were successfully trained (see SI Appendix for training termination criteria; Fig. 1C).130

One-to-One Mapping from Continuous Rate Networks to Spiking Networks. We de-131

veloped a simple procedure that directly maps dynamics of a trained continuous rate RNN to a132

spiking RNN in a one-to-one manner.133

In our framework, the three sets of the weight matrices (Win, W rate, and W rate
out ) along with the134

tuned synaptic time constants (τd) from a trained rate RNN are transferred to a network of LIF135

spiking units. The spiking RNN is initialized to have the same topology as the rate RNN. The input136

weight matrix and the synaptic time constants are simply transferred without any modification,137

but the recurrent connectivity and the readout weights need to be scaled by a constant factor (λ) in138

order to account for the difference in the firing rate scales between the rate model and the spiking139

model (see Methods; Fig. 2A). The effects of the scaling factor is clear in an example LIF RNN140

model constructed from a rate model trained to perform the Go-NoGo task (Fig. 2B). With an141

appropriate value for λ, the LIF network performed the task with the same accuracy as the rate142

network, and the LIF units fired at rates similar to the “rates” of the continuous network units143

(SI Appendix, Fig. S1). In addition, the LIF network reproduced the population dynamics of the144

rate RNN model as shown by the time evolution of the top three principal components extracted145

by the principal component analysis (SI Appendix, Fig. S2).146

Using the procedure outlined above, we converted all the rate RNNs trained in the previous147

section to spiking RNNs. Only the rate RNNs that successfully performed the task (i.e. training148

termination criteria met within the first 6000 trials) were converted. Fig. 2C characterizes the149

proportion of the LIF networks that successfully performed the Go-NoGo task (≥ 95% accuracy;150

same threshold used to train the rate models; see SI Appendix) and the average task performance151

of the LIF models for each network size group. For each conversion, the scaling factor (λ) was152

determined via a grid search method (see Methods). The LIF RNNs constructed from the small153

rate networks (N = 10 and N = 50) did not perform the task reliably, but the LIF model became154

more robust as the network size increased, and the performance gap between the rate RNNs and155

the LIF RNNs was the smallest for N = 250 (Fig. 2C).156

In order to investigate the effects of the synaptic decay time constants on the mapping ro-157

bustness, we trained rate RNNs composed of 250 units (N = 250) with different maximum time158
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constants (τdmax). The minimum time constant (τdmin) was fixed to 20 ms, while the maximum159

constant was varied from 20 ms to 1000 ms. For the first case (i.e.τdmin = τdmax = 20 ms), the160

synaptic decay time constants were not trained and fixed to 20 ms for all the units in a rate RNN.161

For each maximum constant value, 100 rate RNNs with different initial conditions were trained,162

and only successfully trained rate networks were converted to spiking RNNs. For each maximum163

synaptic decay condition, all 100 rate RNNs were successfully trained. As the maximum decay con-164

stant increased, the average tuned synaptic decay constants increased sub-linearly (Fig. 2D). For165

the shortest synaptic decay time constant considered (20 ms), the average task performance was166

the lowest at 93.91± 7.78%, and 65% of the converted LIF RNNs achieved at least 95% accuracy167

(Fig. 2E). The LIF models for the rest of the maximum synaptic decay conditions were robust.168

Although this might indicate that tuning of τd is important for the conversion of rate RNNs to169

LIF RNNs, we further investigated the effects of the optimization of τd in the last section (see170

Analysis of the Conversion Method).171

Our framework also allows seamless integration of additional functional connectivity constraints.172

For example, a common cortical microcircuitry motif where somatostatin-expressing interneurons173

inhibit both pyramidal and parvalbumin-positive neurons can be easily implemented in our frame-174

work (see Methods and SI Appendix, Fig. S3). In addition, Dale’s principle is not required for our175

framework (SI Appendix, Fig. S4).176

LIF networks for context-dependent input integration. The Go-NoGo task considered in177

the previous section did not require complex cognitive computations. In this section, we consider178

a more complex task and probe whether spiking RNNs can be constructed from trained rate179

networks in a similar fashion. The task considered here is modeled after the context-dependent180

sensory integration task employed by Mante et al. [7]. Briefly, Mante et al. trained rhesus monkeys181

to integrate inputs from one sensory modality (dominant color or dominant motion of randomly182

moving dots) while ignoring inputs from the other modality [7]. A contextual cue was also given to183

instruct the monkeys which sensory modality they should attend to. The task required the monkeys184

to utilize flexible computations as the same modality can be either relevant or irrelevant depending185

on the contextual cue. Previous works have successfully trained continuous rate RNNs to perform186

a simplified version of the task and replicated the neural dynamics present in the experimental data187

[7, 13, 15]. Using our framework, we constructed the first spiking RNN model to our knowledge188

that can perform the task and capture the dynamics observed in the experimental data.189

For the task paradigm, we adopted a similar design as the one used by the previous modeling190
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Fig. 3 | Rate RNNs trained to perform the contextual integration task. A. Diagram illustrating

the task paradigm modeled after the context-dependent task used by Mante et al. [7]. Two streams of

noisy input signals (green and magenta lines) along with a context signal were delivered to the LIF network.

The network was trained to integrate and determine if the mean of the cued input signal (i.e. cued offset

value) was positive (“+” choice) or negative (“-” choice). B. Rate RNNs with different network sizes trained

to perform the contextual integration task. The network size was varied from N = 10 to 500. For each

network size, 100 RNNs with random initial conditions were trained. The average task performance (top)

and the proportion of the successful rate models (bottom) are shown. A model was successful if its mean

task performance was ≥ 95%. C. Average number of training trials required for each network size. As the

network size increased, the number of training trials decreased (Mean ± SD shown).

studies [7, 13, 15]. A network of recurrently connected units received two streams of noisy input191

signals along with a constant-valued signal that encoded the contextual cue (Fig. 3A; see Methods).192

To simulate a noisy sensory input signal, a random Gaussian time-series signal with zero mean and193

unit variance was first generated. Each input signal was then shifted by a positive or negative194

constant (“offset”) to encode evidence toward the (+) or (-) choice, respectively. Therefore, the195

offset value determined how much evidence for the specific choice was represented in the noisy196

input signal. The network was trained to produce an output signal approaching +1 (or -1) if the197
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cued input signal had a positive (or negative) mean. For example, if the cued input signal was198

generated using a positive offset value, then the network should produce an output that approaches199

+1 regardless of the mean of the irrelevant input signal.200
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output responses and spike raster plots from a LIF network model for two different input stimuli (rows) and

two contexts (columns). The network contained 250 units (188 excitatory and 62 inhibitory units), and the

noisy input signals were scaled by 0.5 vertically for better visualization of the network responses (purple

lines). B. Distribution of the optimized synaptic decay time constants (τd) for the example LIF network

(Mean ± SD, 38.9 ± 9.3 ms). The time constants were limited to range between 20 ms and 50 ms. C.

Average output responses of the example LIF network. Mean ± SD network responses across 100 randomly

generated trials shown. D. Successfully converted LIF networks and their average task performance across

different network sizes. The network size was varied from N = 10 to 500. The rate RNNs trained in Fig. 3

were used. E. Successfully converted LIF networks with N = 250 and their average task performance across

different maximum synaptic decay constants (varied from 20 ms to 1000 ms).

Rate networks with different sizes (N = 10, 50, . . . , 450, 500) were trained to perform the task.201

As this is a more complex task compared to the Go-NoGo task considered in the previous section,202
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the number of units and trials required to train rate RNNs was larger than the models trained on203

the Go-NoGo task (Fig. 3B and 3C). The synaptic decay time constants were again limited to a204

range of 20 ms and 50 ms, and 100 rate RNNs with random initial conditions were trained for each205

network size. For the smallest network size (N = 10), the rate networks could not be trained to206

perform the task within the first 6000 trials (Fig. 3B).207

Next, all the rate networks successfully trained for the task were transformed into LIF models.208

Example output responses along with the distribution of the tuned synaptic decay constants from209

a converted LIF model (N = 250, τdmin = 20 ms, τdmax = 50 ms) are shown in Fig. 4A and 4B. The210

task performance of the LIF model was 98% and comparable to the rate RNN used to construct the211

spiking model (Fig. 4C). In addition, the LIF network manifested population dynamics similar to212

the dynamics observed in the group of neurons recorded by Mante et al. [7] and rate RNN models213

investigated in previous studies [7, 13, 15]: individual LIF units displayed mixed representation214

of the four task variables (modality 1, modality 2, network choice, and context; see SI Appendix,215

Fig. S5A), and the network revealed the characteristic line attractor dynamics (SI Appendix,216

Fig. S5B).217

Similar to the spiking networks constructed for the Go-NoGo task, the LIF RNNs performed218

the input integration task more accurately as the network size increased (Fig. 4D). Next, the219

network size was fixed to N = 250 and τdmax was gradually increased from 20 ms to 1000 ms. For220

τdmin = τdmax = 20 ms, all 100 rate networks failed to learn the task within the first 6000 trials.221

The conversion from the rate models to the LIF models did not lead to significant loss in task222

performance for all the other maximum decay constant values considered (Fig. 4E).223

Analysis of the Conversion Method. Previous sections illustrated that our framework for224

converting rate RNNs to LIF RNNs is robust as long as the network size is not too small (N ≥ 200),225

and the optimal size was N = 250 for both tasks. When the network size is too small, it is harder226

to train rate RNNs and the rate models successfully trained do not reliably translate to spiking227

networks (Fig. 2D and Fig. 4D). In this section, we further investigate the relationship between rate228

and LIF RNN models and characterize other parameters crucial for the conversion to be effective.229

Training synaptic decay time constants. As shown in Fig. 5, training the synaptic decay230

constants for all the rate units is not required for the conversion to work. Rate RNNs (100 models231

with different initial conditions) with the synaptic decay time constant fixed to 35 ms (average τd232

value for the networks trained with τdmin = 20 ms and τdmax = 50 ms) were trained on the Go-NoGo233

task and converted to LIF RNNs (Fig. 5). The task performance of these LIF networks was not234
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significantly different from the performance of the spiking models with optimized synaptic decay235

constants bounded between 20 ms and 50 ms. The number of the successful LIF models with the236

fixed synaptic decay constant was also comparable to the number of the successful LIF models237

with the tuned decay constants (Fig. 5).238

Other LIF parameters. We also probed how LIF model parameters affected our framework.239

More specifically, we focused on the refractory period and synaptic filtering. The LIF models240

constructed in the previous sections used an absolute refractory period of 2 ms and a double expo-241

nential synaptic filter (see Methods). Rate models (N = 250 and τdmax = 100 ms) trained on the242

sensory integration task were converted to LIF networks with different values of the refractory pe-243

riod. As the refractory period became longer, the task performance of the spiking RNNs decreased244

rapidly (Fig. 6A). When the refractory period was set to 0 ms, the LIF RNNs still performed245

the integration task with a moderately high average accuracy (92.8 ± 14.3%), but the best task246

performance was achieved when the refractory period was set to 2 ms (average performance, 97.0247

± 6.6%; Fig. 6A inset).248

We also investigated how different synaptic filters influenced the mapping process. We first fixed249

the refractory period to its optimal value (2 ms) and constructed 100 LIF networks (N = 250) for250

the integration task using a double synaptic filter (see Methods; Fig. 6B light blue). Next, the251

synaptic filter was changed to the following single exponential filter:252

τdi
drspki

dt
= −rspki +

∑
tki <t

δ(t− tki )

where rspki represents the filtered spike train of unit i and tki refers to the k-th spike emitted by unit253

i. The task performance of the LIF networks with the above single exponential synaptic filter was254

95.7 ± 7.3%, and it was not significantly different from the performance of the double exponential255

synaptic LIF models (97.0 ± 6.6%; Fig. 6B).256

Initial connectivity weight scaling. We considered the role of the connectivity weight initial-257

ization in our framework. In the previous sections, the connectivity weights (W rate) of the rate258

networks were initialized as random, sparse matrices with zero mean and a standard deviation of259

g/
√
N · Pc, where g = 1.5 is the gain term that controls the dynamic regime of the networks and260

Pc = 0.20 is the initial connectivity probability (see Methods). Previous studies have shown that261

rate networks operating in a high gain regime (g > 1.0) produce chaotic spontaneous trajectories,262

and this rich dynamics can be harnessed to perform complex computations [6, 11]. By varying263
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Fig. 5 | Optimizing synaptic decay constants is not required for conversion of rate RNNs.

The Go-NoGo task performance of the LIF RNNs constructed from the rate networks with a fixed synaptic

constant (τd = 35 ms; blue) was not significantly different from the performance of the LIF RNNs with

tuned synaptic decay time constants (τdmin = 20 ms, τdmax = 50 ms; green).

the gain term, we determined if highly chaotic initial dynamics were required for successful con-264

version. We considered six different gain terms ranging from 0.5 to 3.5, and for each gain term,265

we constructed 100 LIF RNNs (from 100 rate RNNs with random initial conditions; Fig. 6C) to266

perform the contextual integration task. The LIF models performed the task equally well across267

all the gain terms considered (no statistical significance detected).268

Transfer function. One of the most important factors that determines whether rate RNNs can269

be mapped to LIF RNNs in a one-to-one manner is the nonlinear transfer function used in the270

rate models. We considered three non-negative transfer functions commonly used in the machine271

learning field to train rate RNNs on the Go-NoGo task: sigmoid, rectified linear, and softplus272

functions (Fig. 7A; see SI Appendix). For each transfer function, 100 rate models (N = 250 and273

τdmax = 50 ms) were trained. Although all 300 rate models were trained to perform the task almost274

perfectly (Fig. 7B), the average task performance and the number of successful LIF RNNs were275

highest for the rate models trained with the sigmoid transfer function (Fig. 7C). None of the rate276

models trained with the rectified linear transfer function could be successfully mapped to LIF277

models, while the spiking networks constructed from the rate models trained with the softplus278

function were not robust and produced incorrect responses (SI Appendix, Fig. S6).279

Discussion280

In the current study, we presented a simple framework that harnesses the dynamics of trained281

continuous rate network models to produce functional spiking RNN models. We identified a set282

of parameters required to directly transform trained rate RNNs to LIF models, thus establishing283

a one-to-one correspondence between these two model types. Despite of additional spiking-related284
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Fig. 6 | Effects of the refractory period, synaptic filter, and rate RNN connectivity weight

initialization. A. Average contextual integration task performance of the LIF network models (N = 250)

with different refractory period values. The refractory period was varied from 0 ms (i.e. no refractory period)

to 50 ms. The inset shows the average task performance across finer changes in the refractory period. Mean

± SD shown. B. Average contextual integration task performance of the LIF network models (N = 250 and

refractory period = 2 ms) with the single exponential synaptic filter (dark blue) and the double exponential

synaptic filter (light blue). Mean ± SD shown. C. Average contextual integration task performance of

the LIF network models (N = 250, refractory period = 2 ms, and double exponential synaptic filter) with

different connectivity gain initializations. Mean ± SD shown.

parameters, surprisingly only a single parameter (i.e. scaling factor) was required for LIF RNN285

models to closely mimic their counterpart rate models. Furthermore, this framework can flexibly286

impose functional connectivity constraints and heterogeneous synaptic time constants.287

We investigated and characterized the effects of several model parameters on the stability of288

the transfer learning from rate models to spiking models. The parameters critical for the mapping289

to be robust included the network size, choice of activation function for training rate RNNs, and290

a constant factor to scale down the connectivity weights of the trained rate networks. Although291

the softplus and rectified linear activation functions are popular for training deep neural networks,292

we demonstrated that the rate networks trained with these functions do not translate robustly to293
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Fig. 7 | Comparison of the LIF RNNs derived from the rate RNNs trained with three non-

negative activation functions. A. Three non-negative transfer functions were considered: sigmoid,

softplus, and rectified linear (ReLU) functions. B. All 300 rate RNNs (100 networks per activation function)

were successfully trained to perform the Go-NoGo task. C. Of the 100 sigmoid LIF networks constructed, 94

networks successfully performed the task. The conversion rates for the softplus and ReLU LIF models were

55% and 0%, respectively. Mean ± SD task performance: 98.8 ± 4.7% (sigmoid), 88.3 ± 15.8% (softplus),

and 59.7 ± 9.5% (ReLU).

LIF RNNs (Fig. 7). On the other hand, the rate models trained with the sigmoid function were294

transformed to LIF models with high fidelity.295

Another important parameter was the constant scaling factor used to scale W rate and W rate
out296

before transferring them to LIF networks. When the scaling factor was set to its optimal value297

(found via grid search), the LIF units behaved like their counterpart rate units, and the spiking298

networks performed the tasks the rate RNNs were trained to perform (Fig. 2). Another parameter299

that affected the reliability of the conversion was the refractory period parameter of the LIF network300

models. The LIF performance was optimal when the refractory was set to 2 ms (Fig. 6A). Training301

the synaptic decay time constants, choice of synaptic filter (between single and double exponential302

filter), and connectivity weight initialization did not affect the mapping procedure (Fig. 5 and303

Fig. 6B–C).304
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The type of approach used in this study (i.e. conversion of a rate network to a spiking net-305

work) has been previously employed in neuromorphic engineering to construct power-efficient deep306

spiking networks [31–36]. These studies mainly employed feedforward multi-layer networks or con-307

volutional neural networks aimed to accurately classify input signals or images without placing too308

much emphasis on biophysical limitations. The overarching goal in these studies was to maximize309

task performance while minimizing power consumption and computational cost. On the other310

hand, the main aim of the present study was to construct spiking recurrent network models that311

abide by important biological constraints in order to relate emerging mechanisms and dynamics312

to experimentally observed findings. To this end, we have carefully designed our continuous rate313

RNNs to include several biological features. These include (1) recurrent architectures, (2) sparse314

connectivity that respects Dale’s principle, and (3) heterogeneous synaptic decay time constants.315

For constructing spiking RNNs, recent studies have proposed methods that built on the FORCE316

method to train spiking RNNs [8, 20–22]. Conceptually, our work is most similar to the work by317

DePasquale et al. [21]. The method developed by DePasquale et al. [21] also relies on mapping318

a trained continuous-variable rate RNN to a spiking RNN model. However, the rate RNN model319

used in their study was designed to provide dynamically rich auxiliary basis functions meant to be320

distributed to overlapping populations of spiking units. Due to this reason, the relationship between321

their rate and spiking models is rather complex, and it is not straightforward to impose functional322

connectivity constraints on their spiking RNN model. An additional procedure was introduced323

to implement Dale’s principle, but this led to more fragile spiking networks with considerably324

increased training time [21]. The one-to-one mapping between rate and spiking networks employed325

in our method solved these problems without sacrificing network stability and computational cost:326

biophysical constraints that we wanted to incorporate into our spiking model were implemented in327

our rate network model first and then transferred to the spiking model.328

While our framework incorporated the basic yet important biological constraints, there are329

several features that are also not biologically realistic in our models. The gradient-descent method330

employed to tune the rate model parameters, including the connectivity weights and the synaptic331

decay time constants, in a supervised manner is not biologically plausible. Although tuning of332

the synaptic time constants is not realistic and has not been observed experimentally, previous333

studies have underscored the importance of the diversity of synaptic time scales both in silico334

and in vivo [8, 29, 30]. In addition, other works have validated and uncovered neural mechanisms335

observed in experimental settings using RNN models trained with backpropagation [7, 13, 37], thus336
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highlighting that a network model can be biologically plausible even if it was constructed using337

non-biological means. Another limitation of our method is the lack of temporal coding in our LIF338

models. Since our framework involves rate RNNs that operate in a rate coding scheme, the spiking339

RNNs that our framework produces also employ rate coding by nature. Previous studies have340

shown that spike-coding can improve spiking efficiency and enhance network stability [20, 38, 39],341

and recent studies emphasized the importance of precise spike coordination without modulations342

in firing rates [40, 41]. Lastly, our framework does not model nonlinear dendritic processes which343

have been shown to play a significant role in efficient input integration and flexible information344

processing [22, 42, 43]. Incorporating nonlinear dendritic processes into our platform using the345

method proposed by Thalmeier et al. [22] will be an interesting next step to further investigate346

the role of dendritic computation in information processing.347

In summary, we provide an easy-to-use platform that converts a continuous recurrent network348

model with basic biological constraints to a spiking model. The tight relationship between rate349

and LIF RNN models under certain parameter values suggests that spiking networks could be350

put together to perform complex tasks traditionally employed to train and study continuous rate351

networks. Future work needs to focus on why and how such a tight relationship emerges. The352

framework along with the findings presented in this study lays the groundwork for discovering353

new principles on how neural circuits solve computational problems with discrete spikes and for354

constructing more power efficient spiking networks. Extending our platform to incorporate other355

commonly used neural network architectures could help design biologically plausible deep learning356

networks that operate at a fraction of the power consumption required for current deep neural357

networks.358
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Methods468

The implementation of our framework and the codes to generate all the figures in this work are469

available at https://github.com/rkim35/spikeRNN. The repository also contains implementation470

of other tasks including autonomous oscillation and exclusive OR (XOR) tasks.471

All the trained models used in the present study are available from the corresponding authors472

upon reasonable request.473

Continuous rate network structure. The continuous rate RNN model contains N units recur-474

rently connected to one another. The dynamics of the model is governed by475

τ ddx

dt
= −x+W raterrate + Iext (5)

where τ d ∈ R1×N corresponds to the synaptic decay time constants for the N units in the network476

(see Training details on how these are initialized and optimized), x ∈ R1×N is the synaptic current477

variable, W rate ∈ RN×N is the synaptic connectivity matrix, and rrate ∈ R1×N is the output of the478

units. The output of each unit, which can be interpreted as the firing rate estimate, is obtained479

by applying a nonlinear transfer function to the synaptic current variable (x) elementwise:480

rrate = φ(x)

We use a standard logistic sigmoid function for the transfer function to constrain the firing rates481

to be non-negative:482

φ(x) =
1

1 + exp(−x)
(6)

The connectivity weight matrix (W rate) is initialized as a random, sparse matrix drawn from a483

normal distribution with zero mean and a standard deviation of 1.5/
√
N · Pc where Pc = 0.20 is484

the initial connectivity probability.485

The external currents (Iext) include task-specific input stimulus signals (see SI Appendix) along486

with a Gaussian white noise variable:487

Iext = Winu+ N (0, 0.01)

where the time-varying stimulus signals (u ∈ RNin×1) are fed to the network via Win ∈ RN×Nin ,488

a Gaussian random matrix with zero mean and unit variance. Nin corresponds to the number of489

input signals associated with a specific task, and N (0, 0.01) ∈ RN×1 represents a Gaussian random490

noise with zero mean and variance of 0.01.491
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The output of the rate RNN at time t is computed as a linear readout of the population activity:492

orate(t) = W rate
out r

rate(t)

where W rate
out ∈ R1×N refers to the readout weights.493

Eq. (5) is discretized using the first-order Euler approximation method:494

xt =

(
1− ∆t

τ d

)
xt−1 +

∆t

τ d
(W raterratet−1 +Winut−1)

+ N (0, 0.01)

where ∆t = 5 ms is the discretization time step size used throughout this study.495

Spiking network structure. For our spiking RNN model, we considered a network of leaky496

integrate-and-fire (LIF) units governed by497

τm
dv

dt
= −v +W spkrspk + Iext (7)

In the above equation, τm = 10 ms is the membrane time constant shared by all the LIF units,498

v ∈ R1×N is the membrane voltage variable, W spk ∈ RN×N is the recurrent connectivity matrix,499

and rspk ∈ R1×N represents the spike trains filtered by a synaptic filter. Throughout the study,500

the double exponential synaptic filter was used to filter the presynaptic spike trains:501

drspki

dt
= −

rspki

τdi
+ si

dsi
dt

= − si
τr

+
1

τrτdi

∑
tki <t

δ(t− tki )

where τr = 2 ms and τdi refer to the synaptic rise time and the synaptic decay time for unit i,502

respectively. The synaptic decay time constant values (τdi ∈ τ d) are trained and transferred to our503

LIF RNN model (see Training details). The spike train produced by unit i is represented as a504

sum of Dirac δ functions, and tki refers to the k-th spike emitted by unit i.505

The external current input (Iext) is similar to the one used in our continuous model (see Con-506

tinuous rate network structure). The only difference is the addition of a constant background507

current set near the action potential threshold (see below).508

The output of our spiking model at time t is given by509

ospk(t) = W spk
out r

spk(t)
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Other LIF model parameters were set to the values used by Nicola et al. [23]. These include the510

action potential threshold (-40 mV), the reset potential (-65 mV), the absolute refractory period511

(2 ms), and the constant bias current (-40 pA). The parameter values for the LIF and the quadratic512

integrate-and-fire (QIF) models are listed in SI Appendix, Table S1.513

Training details. In this study, we only considered supervised learning tasks. A task-specific514

target signal (z) is used along with the rate RNN output (orate) to define the loss function (L),515

which our rate RNN model is trained to minimize. Throughout the study, we used the root mean516

squared error (RMSE) defined as517

L =

√√√√( T∑
t=1

(z(t)− orate(t))2
)

(8)

where T is the total number of time points in a single trial.518

In order to train the rate model to minimize the above loss function (Eq. 8), we employed519

Adaptive Moment Estimation (ADAM) stochastic gradient descent algorithm. The learning rate520

was set to 0.01, and the TensorFlow default values were used for the first and second moment521

decay rates. The gradient descent method was used to optimize the following parameters in the522

rate model: synaptic decay time constants (τ d), recurrent connectivity matrix (W rate), and readout523

weights (W rate
out ).524

Here we describe the method to train synaptic decay time constants (τ d) using backpropagation.525

First, the time constants are initialized with random values within the specified range:526

τ d = σ(N (0, 1)) · τstep + τdmin

where σ(·) is the sigmoid function (identical to Eq. 6) used to constrain the time constants to527

be non-negative. The time constant values are also bounded by the minimum (τdmin) and the528

maximum (τdmax = τdmin + τstep) values. The error computed from the loss function (Eq. 8) is then529

backpropagated to update the time constants at each iteration:530

∂L
∂τ d

=
∂L
∂r
· ∂r
∂x
· ∂x
∂τ d

The method proposed by Song et al. [13] was used to impose Dale’s principle and create separate531

excitatory and inhibitory populations. Briefly, the recurrent connectivity matrix (W rate) in the532

rate model is parametrized by533

W rate = [W rate]+ ·D (9)
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where the rectified linear operation ([·]+) is applied to the connectivity matrix at each update step.534

The diagonal matrix (D ∈ RN×N ) contains +1’s for excitatory units and -1’s for inhibitory units in535

the network. Each unit in the network is randomly assigned to one group (excitatory or inhibitory)536

before training, and the assignment does not change during training (i.e. D stays fixed).537

To impose specific connectivity patterns, we apply a binary mask (M ∈ RN×N ) to Eq. 9:538

W rate =
(
[W rate]+ ·D

)
�M

where � refers to the Hadamard operation (elementwise multiplication). Similar to the diagonal539

matrix (D), the mask matrix stays fixed throughout training. For example, the following mask540

matrix can be used to create a subgroup of inhibitory units (Group A) that do not receive synaptic541

inputs from the rest of the inhibitory units (Group B) in the network (Fig. S3):542

mij =


0 i ∈ Group A, j ∈ Group B

1 otherwise

where mij ∈M establishes (if mij = 1) or removes (if mij = 0) the connection from unit j to unit543

i.544

Transfer learning from a rate model to a spiking model. In this section, we describe the545

method that we developed to perform transfer learning from a trained rate model to a LIF model.546

Once the rate RNN model is trained using the gradient descent method, the rate model parameters547

are transferred to a LIF network in a one-to-one manner. First, the LIF network is initialized to548

have the same topology as the trained rate RNN. Next, the input weight matrix (Win) and the549

synaptic decay time constants (τ d) are transferred to the spiking RNN without any modification.550

Lastly, the recurrent connectivity matrix (W rate) and the readout weights (W rate
out ) are scaled by a551

constant number, λ, and transferred to the spiking network.552

If the recurrent connectivity weights from the trained rate model are transferred to a spiking553

network without any changes, the spiking model produces largely fluctuating signals (as illustrated554

in Fig. 2B), because the LIF firing rates are significantly larger than 1 (whereas the firing rates of555

the rate model are constrained to range between zero and one by the sigmoid transfer function).556

To place the spiking RNN in the similar dynamic regime as the rate network, we first assume557

a linear relationship between the rate model connectivity weights and the spike model weights:558

W spk = λ ·W rate
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Using the above assumption, the synaptic drive (d) that unit i in the LIF RNN receives can be559

expressed as560

dspki (t) =
N∑
j=1

wspk
ij · r

spk
j (t)

≈
N∑
j=1

(λ · wrate
ij ) · rspkj (t)

=

N∑
j=1

wrate
ij · (λ · rspkj (t)) (10)

where wspk
ij ∈W spk is the synaptic weight from unit j to unit i.561

Similarly, unit i in the rate RNN model receives the following synaptic drive at time t:562

dratei (t) =
N∑
j=1

wrate
ij · rratej (t) (11)

If we set the above two synaptic drives (Eq. 10 and Eq. 11) equal to each other, we have:563

dspki (t) = dratei (t)

N∑
j=1

wrate
ij · (λ · rspkj (t)) =

N∑
j=1

wrate
ij · rratej (t) (12)

Generalizing Eq. 12 to all the units in the network, we have564

rrate(t) = λ · rspk(t)

Therefore, if there exists a constant factor (λ) that can account for the firing rate scale difference565

between the rate and the spiking models, the connectivity weights from the rate model (W rate)566

can be scaled by the factor and transferred to the spiking model.567

The readout weights from the rate model (W rate
out ) are also scaled by the same constant factor568

(λ) to have the spiking network produce output signals similar to the ones from the trained rate569

model:570

orate(t) = W rate
out · rrate(t)

≈W rate
out · (λ · rspk(t))

= (λ ·W rate
out ) · rspk(t) = ospk(t)

In order to find the optimal scaling factor, we developed a simple grid search algorithm. For a571

given range of values for 1/λ (ranged from 20 to 75 with a step size of 5), the algorithm finds the572

optimal value that maximizes the task performance.573
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Implementation of computational tasks and figure details. In this section, we describe the574

details of the parameters and methods used to generate all the main figures in the present study.575

Fig. 1. A rate RNN of N = 200 units (169 excitatory and 31 inhibitory units) was trained to576

perform the Go-NoGo task for Fig. 1B. Each trial lasted for 1000 ms (200 time steps with 5 ms577

step size). The minimum and the maximum synaptic decay time constants were set to 20 ms and578

50 ms, respectively. An input stimulus with a pulse 125 ms in duration was given for a Go trial,579

while no input stimulus was given for a NoGo trial. The network was trained to produce an output580

signal approaching +1 after the stimulus offset for a Go trial. For a NoGo trial, the network was581

trained to maintain its output at zero. A trial was considered correct if the maximum output signal582

during the response window was above 0.7 for the Go trial type. For a NoGo trial, if the maximum583

response value was less than 0.3, the trial was considered correct. For training, 6000 trials were584

randomly generated, and the model performance was evaluated after every 100 trials. Training585

was terminated when the loss function value fell below 7 and the task performance reached at least586

95%. The termination criteria were usually met at or before 2000 trials for this task.587

For Fig. 1C, rate RNNs with 9 different sizes (N = 10, 50, 100, 150, 200, 250, 300, 350, 400) were588

trained. For each network size, 100 rate RNNs with random initial conditions were trained on the589

Go-NoGo task.590

Fig. 2. The rate RNN trained in Fig. 1B was converted to a LIF RNN using different scaling591

factor (λ) values for Fig. 2B. The double exponential synaptic filter was used, and the gain term592

(g) for the rate RNN initialization was set to 1.5. The LIF parameters listed in Table S1 were used593

for all the LIF network models constructed in Fig. 2.594

Fig. 3. Rate RNNs with 11 different network sizes (N = 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500)595

were trained on the contextual integration task. For each network size, 100 rate RNNs with random596

initial conditions were trained.597

For the task design, the input matrix (u ∈ R4×500) contained four stimuli channels across time598

(500 time steps with 5 ms step size). The first two channels corresponded to the modality 1 and599

modality 2 noisy input signals. These signals were modeled as white-noise signals (sampled from600

the standard normal distribution) with constant offset terms. The sign of the offset term modeled601

the evidence toward (+) or (-) choices, while the magnitude of the offset determined the strength of602

the evidence. The noisy signals were only present during the stimulus window (250 ms – 1250 ms).603

The last two channels of u represented the modality 1 and the modality 2 context signals. For604
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instance, the third channel of u is set to one and the fourth channel is set to zero throughout the605

trial duration to model Modality 1 context.606

For each trial used to train the rate model, the offset values for the two modality input signals607

were randomly set to -0.5 or +0.5. The context signals were randomly set such that either modality608

1 (third input channel is set to 1) or modality 2 (fourth input channel is set to 1) was cued for609

each trial. If the offset term of the cued modality was +0.5 (or -0.5) for a given trial, the network610

was instructed to produce an output signal approaching +1 (or -1) after the stimulus window.611

The model performance was assessed after every 100 training trials, and the training termination612

conditions were same as the ones used for Fig. 1.613

Fig. 4. A network of N = 250 LIF units (188 excitatory and 62 inhibitory units) were constructed614

from a rate RNN model trained to perform the context-dependent input integration task for Fig. 4A.615

The scaling factor (λ) was set to 1/60. The double exponential synaptic filter was used, and the616

gain term (g) for the rate RNN initialization was set to 1.5. The LIF parameters listed in Table S1617

were used for all the LIF network models constructed in Fig. 4.618

Fig. 5. Rate RNNs (N = 250) were trained on the Go-NoGo task with and without optimizing619

the synaptic decay time constants (τd). For each condition, 100 rate RNNs were trained. For620

the fixed synaptic decay constant condition, τd was fixed to 35 ms. For the tuned synaptic decay621

condition, τdmin = 20 ms and τdmax = 50 ms.622

Fig. 6. For Fig. 6A, all 100 rate RNNs (N = 250, τdmin = 20 ms, τdmax = 100 ms) trained in623

Fig. 4E were converted to LIF RNNs with different values of the refractory period. The following624

20 refractory period values were considered: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10, 15,625

20, 25, 30, 35, 40, 45, 50 ms.626

Fig. 7. The following softplus function was used:627

r = log(exp(x) + 1)

For the networks trained with the softplus and ReLU activation functions, the following range628

of values for 1/λ was used for the grid search: 4 to 26 with a step size of 2.629

Quadratic integrate-and-fire model. For the quadratic integrate-and-fire (QIF) model (Fig. S7),630

we considered a network of units governed by631

τm
dv

dt
= v2 +W spkrspk + Iext

The definitions of the variables are identical to the ones used for the LIF network model.632
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Code availability633

The implementation of our framework and the codes to generate all the figures in this work are634

available at https://github.com/rkim35/spikeRNN. The repository also contains implementation635

of other tasks including autonomous oscillation and exclusive OR (XOR) tasks.636

Data availability637

All the trained models used in the present study are available from the corresponding authors upon638

reasonable request.639
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Supplementary Fig. 1 | Comparison of the time-varying rates of the continuous-variable rate

units and the LIF units. A. A single Go trial was used to extract the rates from the rate RNN trained

in Fig. 1B. The firing rates of the LIF RNN constructed using the optimal scaling factor (λ = 1/25) are

shown on the right. The firing rates of the LIF units were normalized to range from 0 to 1 for comparison.

B. Distribution of the firing rates for a NoGo trial (left) and a Go trial (right).
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Supplementary Fig. 2 | Comparison of the top three PCs extracted from the network activities

of the rate and LIF RNNs trained to perform the Go-NoGo task. Principal component analysis

(PCA) was performed on the firing rates derived from a rate RNN and a LIF RNN trained to perform the

Go-NoGo task. The rate RNN contained 200 units (169 excitatory and 31 inhibitory units), and the LIF

model was constructed from the rate model. The firing rates from 50 Go trials and 50 NoGo trials were

obtained from the two RNN models. For both models, the top three principal components (PCs) captured

99% of the variance. Red and blue empty circles indicate the trial onset for the Go and the NoGo trials,

respectively. Red and blue filled circles represent the end of the trial for the Go and the NoGo trials,

respectively.
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Supplementary Fig. 3 | Incorporation of additional functional connectivity constraints. A.

Common cortical microcircuit motif where somatostatin-expressing interneurons (SST; yellow circle) inhibit

both pyramidal (PYR; red circle) and parvalbumin-expressing (PV; blue circle) neurons. B. Schematic illus-

trating the incorporation of the connectivity motif shown in A into a LIF network model. The connectivity

pattern was imposed during training of a rate network model (N = 200) to perform the Go-NoGo task.

There were 134 PYR, 46 PV, and 20 SST units. A spiking model was constructed using the trained rate

model with λ = 1/50. C. Example output response and spikes from the LIF network model for a single

NoGo trial. Mean ± SD firing rate for each population is also shown (PYR, 3.08 ± 3.29 Hz; PV, 10.80

± 8.94 Hz; SST, 25.50 ± 2.33 Hz). D. Example output response and spikes from the LIF network model

for a single Go trial. Mean ± SD firing rate for each population is also shown (PYR, 4.72 ± 5.89 Hz; PV,

9.30 ± 8.16 Hz; SST, 27.05 ± 3.98 Hz). Box plot central lines, median; bottom and top edges, lower and

upper quartiles. E. LIF network model performance on 50 NoGo trials (light purple) and 50 Go trials (dark

purple). Mean ± SD shown.
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Supplementary Fig. 4 | Dale’s principle constraint can be relaxed. A. Schematic diagram showing

a LIF network model without Dale’s principle. A rate RNN model (N = 200) without Dale’s principle was

first trained to perform the Go-NoGo task. The scaling factor (λ) was set to 1/50. Note that each unit

(black dotted circles) can exert both excitatory and inhibitory effects. B. LIF network model performance

on 50 NoGo trials (light purple) and 50 Go trials (dark purple). Mean ± SD shown. C. Example output

response (top) and spikes (bottom) from the LIF network model for a single NoGo trial. D. Example output

response (top) and spikes (bottom) from the LIF network model for a single Go trial.
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Supplementary Fig. 5 | The LIF network model employs mixed representations of the task

variables. A. Mixed representation of the task variables at the level of single units from a LIF network

(N = 400; 299 excitatory and 101 inhibitory units; τdmin = 20 ms and τdmax = 100 ms). An excitatory unit

(red) and an inhibitory unit (blue) with mixed representation of three task variables (modality 1, modality 2,

and context) are shown as examples. The excitatory neuron preferred modality 1 input signals with negative

offset values, modality 2 signals with positive offset values, and modality 1 context (left column). The

inhibitory neuron also exhibited similar biases (right column). B. Average population responses projected

to a low dimensional state space. The targeted dimensionality reduction technique (developed in [7]) was

used to project the population activities to the state space spanned by the task-related axes. For the

modality 1 context (top row), the population responses from the trials with various modality 1 offset values

were projected to the choice and modality 1 axes (left). The same trials were sorted by the irrelevant

modality (modality 2) and shown on the right. Similar conventions used for the modality 2 context (bottom

row). The offset magnitude (i.e. amount of evidence toward “+” or “-” choice) increases from dark to light.

Filled and empty circles correspond to “+” choice and “-” choice trials, respectively.
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Supplementary Fig. 6 | Example output responses from a softplus LIF RNN constructed to

perform the Go-NoGo task. Individual output responses from 50 Go trials (dark purple) and 50 NoGo

trials (light purple) are shown. The optimal scaling factor was 1/10, and the performance of the model was

78%.
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Supplementary Fig. 7 | Quadratic integrate-and-fire (QIF) model constructed to perform the

context-dependent input integration task. A. The task paradigm and the trained rate network model

used for Fig. S5 were employed to build a QIF model. The QIF model parameter values are listed in Table S1.

B. The QIF model successfully performed the task by integrating cued modality input signals. Example

noisy input signals (scaled by 0.5 vertically for visualization; green and magenta lines) from a single trial

are shown. Mean ± SD response signals (purple lines) across 50 trials for each trial type.
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Supplementary Notes

For the quadratic integrate-and-fire (QIF) model (Supplementary Fig. 7), we considered a network

of units governed by

τm
dv

dt
= v2 +W spkrspk + Iext

The definitions of the variables are identical to the ones used for the LIF network model.

Supplementary Table

LIF QIF

Membrane time constant (τm) 10 ms 10 ms

Absolute refractory period 2 ms 2 ms

Synaptic rise time (τr) 2 ms 2 ms

Constant bias current -40 pA 0 pA

Spike threshold -40 mV 30 mV

Spike reset voltage -65 mV -65 mV

Supplementary Table 1 | Parameter values used to construct LIF and QIF networks.
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