ABSTRACT
Bipolar disorder is a highly heritable mental illness, but the relevant genetic variants and molecular mechanisms are largely unknown. Recent GWAS’s have identified an intergenic region associated with both intelligence and bipolar disorder. This region contains dozens of putative fetal brain-specific enhancers and is located ~0.7 Mb upstream of the neuronal transcription factor POU3F2. We identified a candidate causal variant, rs77910749, that falls within a highly conserved putative enhancer, LC1. This human-specific variant is a single-base deletion in a PAX6 binding site and is predicted to be functional. We hypothesized that rs77910749 alters LC1 activity and hence POU3F2 expression during neurodevelopment. Indeed, transgenic reporter mice demonstrated LC1 activity in the developing cerebral cortex and amygdala. Furthermore, ex vivo reporter assays in embryonic mouse brain and human iPSC-derived cerebral organoids revealed increased enhancer activity conferred by the variant. To probe the in vivo function of LC1, we deleted the orthologous mouse region, which resulted in amygdala-specific changes in Pou3f2 expression. Lastly, ‘humanized’ rs77910749 knock-in mice displayed behavioral defects in sensory gating, an amygdala-dependent endophenotype seen in patients with bipolar disorder. Our study elucidates a molecular mechanism underlying the long-speculated link between higher cognition and neuropsychiatric disease.