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Abstract

Sequential neural activity has been observed in many parts of the brain and has been
proposed as a neural mechanism for memory. The natural world expresses temporal re-
lationships at a wide range of scales. Because we cannot know the relevant scales a
priori it is desirable that memory, and thus the generated sequences, are scale-invariant.
Although recurrent neural network models have been proposed as a mechanism for gen-
erating sequences, the requirements for scale-invariant sequences are not known. This
paper reports the constraints that enable a linear recurrent neural network model to gen-
erate scale-invariant sequential activity. A straightforward eigendecomposition analysis
results in two independent conditions that are required for scale-invariance. First the
eigenvalues of the network must be geometrically spaced. Second, the eigenvectors must
be related to one another via translation. These constraints, along with considerations on
initial conditions, provide a general recipe to build linear recurrent neural networks that
support scale-invariant sequential activity.

1 Introduction

The natural world has temporal relationships on a wide range of timescales. Since we cannot
predict the relevant timescales a priori, it would be desirable to have a dynamic representation
of the world that is scale-invariant across time. Decades of research in cognitive psychology
demonstrate that human timing and memory behavior exhibit the same signature on a wide
range of timescales (Murdock (1962); Glenberg et al. (1980); Rakitin et al. (1998); Howard et al.
(2008)). This is termed “scalar timing” (Gibbon et al. (1977)). In models of temporal pattern
recognition, a spectrum of scale-invariant functions are used to encode the recent past. Indeed,
a suitable representation of time is an essential ingredient in neural circuit models for temporal
pattern recognition (Tank and Hopfield (1987); Hopfield and Brody (2000); Buonomano and
Maass (2009); Gütig and Sompolinsky (2009)). Sequential neural activity has been observed
in many areas of the brain and is thought to have important cognitive functions in memory
and decision making, including representing internal thought processes leading up to decisions
(Harvey et al. (2012)) and bridging temporal gaps between episodes (MacDonald et al. (2011)).

In light of these considerations, recently it has been proposed that “scale-invariance” is a
desirable property for neural sequences (Shankar and Howard (2012, 2013)). In a scale-invariant
neural sequence, the cells that are activated later have wider temporal receptive fields. More
specifically, the responses of different cells have identical time courses when they are rescaled
in time by their peaks. The hypothesis of scale-invariant neural sequences for time is consistent
with recent electrophysiological recordings of “time cells” during a delay period when animals
are performing various tasks (Pastalkova et al. (2008); MacDonald et al. (2011); Salz et al.
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(2016); Tiganj et al. (2018)). The firing fields of time cells that fire later in the delay period
are wider than the firing fields of time cells that fire earlier in the delay period.

Many researchers have studied recurrent neural networks that generate sequential activity
(Goldman (2009); Rajan et al. (2016); Wang et al. (2018)), but not many of these works con-
sidered scale-invariant sequences (but see Voelker and Eliasmith (2018)). In this paper we seek
to identify general constraints on the network connectivity for the generation of scale-invariant
neural sequences in recurrent neural networks. We study a linear network of interacting neu-
rons. The f-I curve of many neurons are observed to be largely linear (e.g. Chance et al.
(2002)). The learning dynamics of linear feedforward neural networks exhibit many similarities
compared to their non-linear counterparts (Saxe et al. (2013)). Therefore linear neural networks
provide a good model for studying systems-level properties of real neuronal circuits.

The paper is organized as follows. In Section 2 the network constraints for the generation
of scale-invariant neural sequences are derived analytically. In Section 3 two example networks
with different single cell dynamics are constructed to illustrate the mathematical result. In
Section 4, we compare the eigenvectors and eigenvalues of a chaining model and a random
recurrent network with those of the examples in Section 3. It is shown that neither of these
networks satisfy the structural constraints derived from Section 2, therefore neither of them
support sequential neural activity that is scale-invariant.

2 Derivation of the constraints for scale-invariance

In this section we derive the constraints on the connectivity matrix of a linear recurrent network
for it to support scale-invariant activity. In Section 2.1, we start with a formal definition of scale-
invariance of network activity. In Section 2.2 and Section 2.3 we will derive the two necessary
constraints on the connectivity matrix to achieve scale-invariance. Lastly in Section 2.4, we
will point out that in addition to the two necessary constraints, a particular initial condition
is required for the subsequent network dynamics to be scale-invariant.

2.1 Formulation of the problem

We consider the autonomous dynamics of a linear recurrent network with N neurons:

ẋ(t) = Mx(t), (1)

where x is an N -dimensional vector summarizing the activity of all the neurons in the network
and M is the N × N connectivity matrix of the network. We consider the case where there
is no input into the network since sequential neural activity is thought to be maintained by
internal neuronal dynamics (Pastalkova et al. (2008)).

Scale-invariance of the network activity means that the activities of any two neurons in
the sequence are rescaled version of each other in time (Figure 1b). Mathematically, this
requirement can be written in the following form:

xi(t) = xj(αijt), ∀i, j ∈ 1, 2, ..., N, (2)

That is, for every pair of neurons i and j, their responses xi(t) and xj(t) are rescaled
in time by a factor αij. In the following sections we are going to derive two conditions on
the connectivity matrix M necessary for Equation 2 to hold and for the network to generate
scale-invariant sequential activity.
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Figure 1: Scale-invariance for neural sequences and the setup of the problem. a Left:
the raster plots (top) and trial-averaged firing rates (bottom) for three neurons from MacDonald
et al. (2011). The neurons were recorded in the hippocampus of rats during a delay period when
they were waiting to sample an odor. The neurons that fire later in the delay period show a
wider response than neurons that fire earlier during the delay. Right: a scatter plot showing
the relationship between the width of each neuron’s response and the peak time at which that
neuron fires for all neurons recorded from Salz et al. (2016)). Neurons were recorded in the
CA3 region of the rat hippocampus during the delay period of a T-maze alteration task when
the animal was running on a treadmill. b. In this work, we study the dynamics of a linear
recurrent network. We seek constraints on the network connectivity matrix M (b, left) such
that the activity of every pair of neurons (here for example neurons i and j, middle) are rescaled
version of each other in time (right).
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2.2 Constraint 1: Weber-Fechner spaced network timescales

We start by solving Equation 1 using the standard eigendecomposition technique. We diago-
nalize the connectivity matrix M as M = UΛU−1 where Λ is a diagonal matrix consisting of
the eigenvalues and U is a matrix whose columns are the eigenvectors of M. The solution of
Equation 1 is then a linear combination of exponential functions:

xi(t) =
∑
j

UijAje
λjt ≡

∑
j

Ũije
λjt, (3)

where the Ai’s are constants determined by the initial condition and are absorbed into the
definition of the matrix Ũ.

Imposing the scale-invariance condition (Equation 2) on Equation 3, we have∑
k

Ũike
λkt =

∑
k

Ũjke
αijλkt ∀i, j ∈ 1, 2, ..., N. (4)

For this equation to hold, the time-dependent parts on both sides of the equation must be
identical. The only way to achieve this is to have a geometric series of eigenvalues (network
timescales) (Figure 2a), so that for each λk there exists an integer δ such that λk+δ = αijλk.
For this to hold, all the eigenvalues have to form a geometric series (for example, λ1 = −1,
λ2 = −2, λ3 = −4 ... ). Therefore we arrive at the first constraint:

Constraint 1: The eigenvalues of the connectivity matrix must form a geometric series.1

2.3 Constraint 2: Translation-invariant eigenvectors

A second constraint for Equation 4 to hold is that the rows of Ũ must satisfy a translation-
invariant relationship. Ũi,k+δ = Ũjk. This way the basis functions that different neurons
pick out will be rescaled versions of each other. Recall from Equation 3 that Ũij = UijAj.
Therefore the condition above is equivalent to the columns of the matrix U being translation-
invariant up to a constant. For example, the different eigenvectors could be v1 = [1,−1, 0, 0, 0],
v2 = [0, 1,−1, 0, 0], v3 = [0, 0, 1,−1, 0], etc.. Notice that the columns of U are the eigenvec-
tors of M. Therefore, we reach the second constraint (see Figure 2b for a graphical illustration):

Constraint 2: The eigenvectors of the connectivity matrix must consist of the same mo-
tif (up to a scaling factor) at translated entries. In other words, the eigenvectors must be
translation-invariant.

2.4 A note on initial conditions

Besides the constraints on the connectivity matrix, the initial condition of the network also
affects the scale-invariance property of the network activity. Equation 3 requires each neuron
to have a specific initial condition, i.e. xi(0) =

∑N
j=1 Ũij, to ensure that the dynamics that

ensues are scale-invariant. If in addition we specifically look at balanced motifs whose elements
sum to 0 (which will be the case for the examples in Section 3), the constraint on the initial
condition becomes:

xi(t = 0) =

{
0, if i ≤ N − L+ 1∑N

j=1 Ũij, otherwise,
(5)

1All of the eigenvalues have to have negative real parts to prevent the unbounded growth of network activity.
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where L is the length of the repeating motif. In the case where the number of neurons in the
network is much larger than the length of motif (N � L), this constraint on initial condition
states that most of the neurons in the network need to be inactive at t = 0, whereas a few
active neurons act as “input nodes” and propagate their activity to the rest of the network.

If the above initial condition is relaxed, so that instead of specifying the exact initial con-
dition for the active neurons, we assume they have random initial conditions,

xi(t = 0) =

{
0, if i ≤ N − L+ 1

N (0, 1), otherwise,
(6)

global scale-invariance will generally be broken, but subsets of neurons in the network will still
be scale-invariant. We did not study the exact mechanism for how this happens in this paper.

3 Examples

In this section we construct two example networks based on the analytical results derived above
and show that they allow scale-invariant sequential dynamics. The connectivity matrices of
these networks will have geometric series of eigenvalues and tranlation-invariant eigenvectors,
as shown in Section 2. In the first example (Section 3.1), all eigenvalues are real and the
neurons in the network have simple bell-shaped temporal receptive fields. In the second example
(Section 3.2), all eigenvalues are complex, which gives rise to more complex damping oscillatory
single neuron dynamics. We will also show that the network activity is no longer scale-invariant
when either of the two constraints is violated. In Section 3.3, we will discuss the relationship
of our results to a previously proposed network model that generates scale-invariant sequential
activity (Shankar and Howard (2013)). In what follows, all simulations were performed in
Python 3.6 using Euler’s method with a time step of 0.01 ms.

3.1 Bell-shaped temporal receptive fields

In this example we construct a network that generates sequentially-activated cells with a scale-
invariant property. The network consists of N = 10 cells. Each cell will have a bell-shaped
temporal receptive field, similar to what was observed in electrophysiological recordings of “time
cells” (MacDonald et al. (2011); Salz et al. (2016)).

We will construct the connectivity matrix from its eigendecomposition M = UΛU−1. Ac-
cording to Constraint 1 (Section 2.2), the network must have geometrically spaced eigenvalues.
We hence let Λ be a diagonal matrix whose diagonal elements are geometrically spaced between
-0.1 and -5.12.

Λ =


−0.1 0 0 . . .

0 −0.22 0 . . .
...

...
. . .

0 0 . . . −5.12

 (7)

According to Constraint 2, the eigenvectors of the connectivity matrix M must consist of the
same balanced motif. Equivalently, we will construct the matrix U such that its rows consist
of the same motif. In this example we construct the motif to be [1, -1]. Therefore the matrix
U was given by

U =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
...

UN,1 UN,2 UN,3 . . . UN,N

 , (8)
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Figure 2: Graphical illustrations of the constraints for scale-invariance. To generate
scale-invariant activity in linear recurrent networks, its network connectivity must have geo-
metrically spaced eigenvalues (a). Furthermore, it must have translation invariant eigenvectors
(columns of the matrix U) that consist of the same motif (in red) at translated entries (b).
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where the last row can be arbitrary numbers that are not all zero. In this example they were
sampled from N (0, 1). Finally the connectivity matrix of the network M was computed from
M = UΛU−1.

The simulated activity of the network is shown in Figure 3a (top left). The initial condition
is specified to satisfy Equation 5. The bottom left of Figure 3a shows the network activity
rescaled along the time axis according to the peak times of each neuron. It is evident that the
activations of the neurons are rescaled version of each other, confirming that the constraints
derived above indeed lead to scale-invariant sequential activity.

We also broke each of the two constraints above and showed that the resulting activity
became no longer scale-invariant (Figure 3a, right two panels). To break Constraint 1 (ge-
ometrically spaced eigenvalues), linearly spaced eigenvalues in the same range were used in
constructing the matrix Λ instead of geometrically spaced eigenvalues. To break Constraint 2
(translation-invariant eigenvectors), a random vector was added to each row of the matrix U
where each entry was sampled from N (0, 1), making each motif different. As a result, both
manipulations generated activity that was no longer scale-invariant (Figure 3a, bottom right
two panels).

3.2 Complex single-cell tuning curves

Temporal coding needs not result in a bell-shaped sequential code. Instead, it could also be
embedded in the collective activity of neuronal population where single neurons may exhibit
highly complex dynamics (Machens et al. (2010)). In this subsection we show that the frame-
work we presented above is sufficiently rich to allow for more complex single cell dynamics. In
the previous example, the connectivity matrix has real eigenvalues. Therefore it can only give
rise to single cell dynamics that are linear combinations of exponential functions. On the other
hand, in this subsection we are going to show that more complex temporal dynamics can be
generated if the connectivity matrix has complex eigenvalues.

Following a similar procedure as detailed in Section 3.1, the connectivity matrix with N = 10
neurons was set up so that all of its eigenvalues were complex, and their real and imaginary
parts both formed geometric series. The real part of the eigenvalues were geometrically spaced
between -0.1 and -1.6. The imaginary part of the eigenvalues were geometrically spaced be-
tween 0.5 and 8. Since the eigenvalues for real matrices come in complex conjugate pairs, we
also included those eigenvalues. The motif was chosen to be [1,-1], same as the example in
Section 3.1. The simulated and rescaled activity are shown in Figure 3b (left). The neural
activity exhibits more complex dynamics at the same time maintaining scale-invariance.

We also broke each of the two constraints using similar protocols as in the previous example.
To break Constraint 1, eigenvalues with linearly spaced real and imaginary parts in the same
range were used instead of geometrically spaced ones. To break Constraint 2, a random vector
was added to each row of the matrix U where each entry was sampled from N (0, 1), making
each motif different. As shown in Figure 3b (right two panels), the resulting neural activity is
no longer scale-invariant.

3.3 A special case: Laplace and inverse Laplace transforms

It should be noted that the geometric series of time constants required by Constraint 1 do
not necessarily have to be an emergent property of the network, but can instead be driven
by physiological properties of single cells (Loewenstein and Sompolinsky (2003); Fransén et al.
(2002); Tiganj et al. (2015); Liu et al. (2018)). Consequently, scale-invariant sequential activity
could also be generated by feedforward networks where the neurons in the first layer receive
inputs and decay exponentially with a geometric series of intrinsic time constants, and the
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Figure 3: Generating scale-invariant neural sequences with simple (a) and complex
(b) single neuron dynamics. Using the analytical result, we constructed networks with
specific connectivity matrices so that they generate scale-invariant sequential activity (left col-
umn). We also broke each of the two constraints derived in Section 2 and showed that the
resulting network activity breaks scale-invariance (middle and right columns) a. The network
with real eigenvalues gives rise to bell-shaped single cell temporal receptive fields (a, left top,
each line represents the activity of one neuron in the network). The activity of different neurons
overlap with each other when rescaled according to their peak times (left bottom). The net-
work activity becomes not scale-invariant when Constraint 1 was broken by choosing linearly
spaced eigenvalues or Constraint 2 was broken by choosing random motifs (a, middle and right
columns, see text for details). b. The network with complex eigenvalues gives rise to more
complex single cell dynamics while the neural sequence is still scale-invariant (b left). When
each of the two constraints are broken in the same way as in a, the network activity becomes
not scale-invariant (right two columns).
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neurons in the second layer are driven by the first layer via translation-invariant synaptic
weights, implementing the eigendecomposition in Equation 3 explicitly.

One such model has been proposed by Shankar and Howard (Shankar and Howard (2013)).
It is a two-layer feedforward neural network. In that model, the first layer neurons F encode the
Laplace transform of the input and have exponentially decaying firing rates with a spectrum of
decay constants.

dFi(t)

dt
= −λiFi(t), i = 1, 2, ..., N. (9)

The activity of the first layer constitutes a scale-invariant sequential activity (see Equation 2).
It is also the basis functions that make up any general scale-invariant sequential activity (see
Equation 3).

To generate bell-shaped single cell tuning curves, the neurons in the second layer f̃ compute
the inverse Laplace transform of the first layer under the Post approximation (Post (1930)).

f̃ = LkF, (10)

where Lk is a discretized approximation of the inverse Laplace transform of the kth order
(Shankar and Howard (2013)).

From Equation 9 and Equation 10, the feedfoward dynamics above is equivalent to a linear
recurrent dynamics involving only the second layer neurons f̃ :

d

dt
f̃ = LkSL−1

k f̃ ≡MTILTf̃ , (11)

where S is a diagonal matrix consisting of the single cell time constants λi’s in Equation 9.
Therefore the dynamics of the neurons in the second layer are equivalent to the one generated

by a linear recurrent network with connectivity matrix MTILT. Because the matrix representa-
tion of the inverse Laplace transform Lk is approximated by taking derivatives of nearby nodes,
it has the same motif across columns (for details see Shankar and Howard (2013)). Therefore,
the model in Shankar and Howard (2012), although a feedforward network, is a special case in
the family of linear recurrent networks that can generate scale-invariant sequential activity. It
might be the case that that the exponentially decaying basis functions are indeed maintained
by a separate population of neurons, and the downstream neurons consititute a “dual” popula-
tion. Such exponentially decaying cells have recently been identified in lateral entorhinal cortex
(Tsao et al. (2018)), whose downstream regions have been identified as locations for time cells
(MacDonald et al. (2011); Salz et al. (2016)).

4 Comparison with common network models

Scale-invariance puts stringent constraints on the architecture of recurrent neural networks.
To illustrate this, in this section we consider two widely-used neural network models that do
not generate scale-invariant sequential activity. Section 4.1 considers a simple chaining model;
the following section considers a random network. We will see that the connectivity matrices
for these two widely-used models violate the constraints derived above in Section 2 and that
these models do not support scale-invariant sequential activity. By means of comparison we will
compare these two networks with the two scale-invariant example networks described previously.
All the networks in this section are simulated with N = 20 neurons.

4.1 Simple Feedforward Chaining Model

The simplest possible model to generate sequential activity is a simple feedforward chaining
model. In this subsection we will analyze a simple feedforward chaining model and demonstrate
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that a chaining model composed of elements with the same time constant cannot meet the
requirements for scale-invariant sequential activity.

In this simple model the activity of the ith neuron in a chain of N neurons obeys

dxi
dt

=

{
−xi + xi−1, 1 < i ≤ N

−xi, i = 1
(12)

Note that all of these neurons have the same time constant which is here set to one. Because an
activation in the first unit spreads gradually across the network, this model generates sequen-
tial activity. Each neuron does not respond instantaneously to its input but has some finite
integration time resulting in a spread of activity across time. As the activation spreads across
the chain, the spread in time accumulates. However, as can be shown via the Central Limit
theorem, the sequential activity is not scale-invariant because peak time of the ith unit goes
up linearly in i but the width of the peak goes up with

√
i (Liu et al. (2018)). Here we show

that the eigenvalues and eigenvectors of the connectivity matrix of this simple model (Eq. 12)
do not satisfy the constraints derived from Section 2.

Figure 4a (left) shows the connectivity matrix of the chaining model described in Eq. 12.
This connectivity matrix has a simple motif that repeats across rows; the self-interaction term
gives a -1 on the diagonal and the chaining term gives a +1 at the off-diagonal. This connectivity
matrix has a single degenerate eigenvalue of -1 (Figure 4a, middle left), violating Constraint 1
that the network must have geometrically spaced eigenvalues. In addition, the connectivity
matrix has only a single distinct eigenvector (Figure 4a, middle right). Because each eigenvector
is identical, they are not translated versions of one another, violating Constraint 2. Therefore,
although the network generates sequential activity (Figure 4a, left top), the activity of different
neurons are not rescaled versions of each other (Figure 4a, left bottom).

For contrast, Figure 4b illustrates the connectivity matrix, eigenvalues and eigenvectors for
the scale-invariant network that described previously in Section 3.1. In illustrating the con-
nectivity matrix, we have ordered the neurons according to the sequence in which they are
activated and we have only included the neurons in the sequence (the same for the complex
example below). Recall that this matrix was constructed to obey the two constraints and has
already been shown to generate scale-invariant sequential activity. Consequently, by construc-
tion, the eigenvalues are geometrically spaced and the eigenvectors are translated versions of
one another. Although the connectivity matrix clearly has a rich structure, the rows of the
connectivity matrix are certainly not translated versions of one another. The entries above the
diagonal tend to be more negative, indicating that the connections from neurons later in the
sequence to the neurons earlier in the sequence tend to be more inhibitory than the connections
in the opposite direction. It is not at all obvious why this specific connectivity matrix yields
scale-invariant sequential activity. This is much more clear from examining the eigenvalues and
eigenvectors.

4.2 Random recurrent networks

Nonlinear neural networks with random connectivity matrices are able to generate chaotic
activity (Sompolinsky et al. (1988)). With appropriately trained weights, they are also able
to generate sequential neural activity similar to that obtained in actual recordings (Rajan
et al. (2016)). However, generic random neural networks without training cannot produce
scale-invariant, sequential activity due to the conflict with the two constraints derived above
in Section 2.

Random neural networks have eigenvalue spectrums that are uniformly distributed inside
a unit disc in the complex plane (Rajan and Abbott (2006); Girko (1985)), therefore not
geometrically spaced as required by scale-invariance (Section 2.2). We simulated the activity of
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an instance of a linear network with a random connectivity matrix and computed its eigenvalues
and eigenvectors (Figure 4c). The network dynamics is described by

dx(t)

dt
= −x(t) + Mx(t) = (M− I)x(t), (13)

where each element in M was sampled from a Gaussian distribution with mean 0 and variance
1
N

.
The connectivity matrix M− I is shown in Figure 4c (left). The eigenvalues of the con-

nectivity matrix are approximately uniformly distributed in a unit disc centered at (-1,0) (Fig-
ure 4c, middle left), confirming the results from Rajan and Abbott (2006) and Girko (1985).
The eigenvectors also apparently do not have any translation-invariant structure (Figure 4c,
middle right). Consequently, the network activity does not have the scale-invariant property
(Figure 4c, right).

In contrast, the network constructed in the same way as in Section 3.2 has complex eigen-
values whose real and imaginary parts are both geometrically distributed (Figure 4d, middle
left) and eigenvectors that consist of the same motif (Figure 4d, middle right). Consequently,
it allows scale-invariant sequential activity (Figure 4d, right). The connectivity matrix has a
structure where the connections from neurons later in the sequence to the ones earlier in the
sequence tend to be more inhibitory (Figure 4a, notice neurons 10-18 correspond to the complex
conjugate eigenvalues and hence have the same activity as neurons 1-9).

5 Discussion

In this paper we studied the constraints on the connectivity of a linear network for it to
generate scale-invariant sequential neural activity. It is analytically shown that two necessary
conditions need to hold for the structure of the connectivity matrix. First of all, it must have
geometrically-spaced time constants. Second, its eigenvectors must contain the same motif with
a translation-invariant structure. Intuitively, the same motif in different eigenvectors pick out
different timescales by the same proportion, and the geometric spacing of timescales further
ensures the activity of different cells are rescaled with each other. The generated activity is
highly dynamic, providing a possibility for the dynamic coding of working memory (Stokes
(2015)).

The first constraint we derived requires that the connectivity of the neural network has a
spectrum of geometrically spaced eigenvalues. Geometrically spaced network eigenvalues can
generically emerge from multiplicative cellular processes (Amir et al. (2012)). Mechanistically,
a spectrum of timescales could be generated by positive feedback in recurrent circuits. It
could also be an inhearent property of single neurons. We noted in our procedure to generate
connectivity matrices that if the eigenvectors are sparse, the spectrum of timescales in the
connectivity matrix would come mainly from the single cell time constants (notice the gradient
in the diagonal elements of the connectivity matrices in Figure 4b, d). If the eigenvectors are
dense, the spectrum of timescales would be a consequence of the network interaction.

In vitro slice experiments and modeling works have shown that a spectrum of slow timescales
can be obtained in single cells by utilizing the slow dynamics of calcium-dependent currents
(Loewenstein and Sompolinsky (2003); Egorov et al. (2002); Fransén et al. (2002); Mongillo et al.
(2008); Tiganj et al. (2015); Liu et al. (2018)). In vivo experiments also showed a spectrum of
timescales in cortical dynamics, both on the single cell and the population level. Bernacchia et
al. (2011) showed that in monkey prefrontal, cingulate and parietal cortex, reward modulates
neural activity multiplicatively with a spectrum of time constants (Bernacchia et al. (2011)).
Murray et al. (2014) showed that the autocorrelation function of the spontaneous activity of
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Figure 4: Comparison with common network models. a, b Comparison between the
simple feedfoward model (a) and a network constructed from Section 3.1 that generates scale-
invariant sequential activity (scale-invariant network (real), b). For the simple feedforward
chaining model, the eigenvalues of its connectivity matrix are not geometrically spaced (a,
middle left) and the eigenvectors do not consist of the same motif (a, middle right). Therefore,
the network activity does not have the scale-invariant property (a, right). In contrast, the scale-
invariant network has eigenvalues that are geometrically spaced (b, middle left) and eigenvectors
that consist of the same motif (b, middle right, aside from the boundary effect), resulting in
the connectivity that consists of excitation from neurons earlier in the sequence to the ones
later in the sequence and inhibition in the opposite direction (b, left, only neurons in the
sequence are shown. Same below.). Consequently, it allows scale-invariant sequential activity
(b right). c, d Same comparison between an instance of a random recurrent network (c) and a
network constructed from Section 3.2 (scale-invariant network (complex), d). The eigenvalues
of the connectivity of a random network are not geometrically spaced (c, middle left). The
eigenvectors do not consist of the same motif (c, middle right). Consequently its activity is
not scale-invariant (c, right). In contrast, the connectivity of the scale-invariant network has
eigenvalues whose real and imaginary parts both form geometric series (d, middle left). Its
eigenvectors also contain a repeating motif (d, middle right). Consequently the scale-invariant
network supports scale-invariant sequential activity (d, right).
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single neurons decay with a spectrum of time constants. The time constants increase from
sensory to prefrontal areas (Murray et al. (2014)).

The second constraint we derived requires that the eigenvectors of the connectivity matrix
need to consist of the same motif localized at different entries. It is hard to imagine how this
kind of translation-invariant eigenvectors could arise generically in neural circuits. However the
eigenvectors that satisfy this constraint are a special case of “localized eigenvectors”, which have
been studied extensively first in condensed matter physics and later in theoretical neuroscience.
Anderson first argued that the eigenvectors of matrices where interactions are random and
concentrated on the diagonal are exponentially localized (Anderson, P. (1958)). Later numerical
and analytical studies confirmed that localized eigenvectors indeed arise in neural networks in
the presence of a gradient in the strength of the local interactions (Chaudhuri et al. (2014))
as well as global inhibition, as in the case of ring attractor networks (Tanaka and Nelson
(2018)). However, it should be pointed out that the procedures described in this paper do not
necessarily generate local interactions where the elements Mij decays with |i − j|, as can be
seen in Figure 4b, d. Furthermore, our constraint on the eigenvectors is more stringent than
only requiring them to be localized — the different localized “patches” need to be the same as
well.

In a recent study, Cueva et al. (2019) showed that the cumulative dimensionality of the
population activity during working memory increases with a decreasing speed (Cueva et al.
(2019)). This is consistent with the network activity generated by linear networks that satisfy
the two constraints we derived. Translation-invariant eigenvectors ensure that each eigenmode
contributes one unique dimension to the activity. Geometrically spaced eigenvalues ensure that
one eigenmode would be suppressed per unit time on a logarithmic scale. Therefore the cumu-
lative dimensionality for the scale-invariant sequential activity described by our model would
increase with the logarithm of time. Furthermore, notice that any affine transformation on the
state space would not change the cumulative dimensionality. Therefore the same relationship
for cumulative dimensionality would hold even if the eigenvectors are not translation-invariant.
A geometrically spaced eigenvalues is sufficient to generate linear dynamics whose cumulative
dimensionality increases with the logarithm of time.

Goldman (Goldman (2009)) proposed a class of linear recurrent network models that are able
to generate sequential activity. In these networks, the feedforward dynamics are constructed
by building up feedforward interactions between orthogonal Schur modes and are hidden in the
collective network dynamics (Goldman (2009)). Thanks to the hidden feedforward dynamics,
the networks can sustain its activity far longer than the timescale constrained by the eigenvalue
spectrum of the network. The example studied in Section 4.1 is the simplest model proposed in
Goldman (2009). Although this simple model does not allow scale-invariant sequential activity
as shown in Section 4.1, it does not indicate that any network constructed in the way in Goldman
(2009) cannot generate scale-invariant activity. It is just that eigenvalue decomposition provides
a much more clear view to look at the problem of scale-invariance.

Shankar studied a model where the activity of individual nodes can be effectively described
by a filtered input through a set of scale-invariant kernel functions with different timescales
(Shankar (2015)). It was shown that if this transformation were to be implemented by a
network involving only local (possibly non-linear) interactions between nodes corresponding to
similar timescales, the forms of the kernel functions are strongly constrained: the only possible
form of the network activity are given by a linear combination of inverse Laplace transforms (see
Section 3.3). In this work we considered a slightly different problem: the interactions between
different nodes were constrained to be linear, but non-local interactions were also allowed since
the connectivity matrix was not constrained to be local. In this case, the activity given by the
inverse Laplace transform (Equation 11) covers a subspace of all possible solutions. It is still
noticeable that these two related approaches converge on similar results.
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