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Abstract 
Single cell segmentation is typically one of the first and most crucial tasks of              
image-based cellular analysis. We present a deep learning approach aiming          
towards a truly general method for localizing nuclei across a diverse range of             
assays and light microscopy modalities. We outperform the 739 methods          
submitted to the 2018 Data Science Bowl on images representing a variety of             
realistic conditions, some of which were not represented in the training data.            
The key to our approach is to adapt our model to unseen and unlabeled data               
using image style transfer to generate augmented training samples. This          
allows the model to recognize nuclei in new and different experiments without            
requiring expert annotations. 
 
Identifying nuclei is the starting point for many microscopy-based cellular          
analyses. Accurate localization of the nucleus is the basis of a variety of             
quantitative measurements, but is also a first step for identifying individual cell            
borders, which enables a multitude of further analyses. Until recently, the dominant            
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approaches for this task have been based on classic image processing algorithms            
(e.g. CellProfiler 1) which were sometimes guided by shape and spatial priors 2. A              
drawback of these methods is the need for expert knowledge to properly adjust the              
parameters, which typically must be re-tuned when experimental conditions         
change.  
 
Recently, deep learning has revolutionized an assortment of tasks in image           
analysis, from image classification 3 to face recognition 4, and scene segmentation            
5. It is also responsible for breakthroughs in diagnosing retinal images 6, classifying             
skin lesions with superhuman performance 7, as well as incredible advances in 3D             
fluorescence image analysis 8. However, aside from initial works from Caicedo et            
al. 9 and Van Valen et al. 10, deep learning has yet to significantly advance nucleus              
segmentation performance. 
 
The 2018 Data Science Bowl (DSB) organized by Kaggle, Booz Allen Hamilton            
and the Broad Institute, challenged participants to push the state-of-the-art in           
nucleus segmentation. The goal of the challenge was to develop fully automated            
and robust methods capable of working in a variety of conditions, including            
differing cell lines, treatments, and types of light microscopy. The challenge           
attracted thousands of data scientists from around the world. Approaches using           
deep learning dominated the competition, achieving scores that shattered what was           
previously possible: the best performing traditional methods we submitted ranked          
no higher than 1,000 out of 3,891 submissions in Stage 1. The top deep              
learning-based methods relied on only a handful of different architectures; the           
factors that participants commonly believed influenced their method’s ranking         
were related to data: the amount of data, the pre-processing, and methods used to              
augment the data.  
 
Our approach was unique among the top-25 submissions in applying image style            
transfer11. It aims to overcome one of the greatest challenges of deep learning, the              
extent of the annotated training set. We augment the training samples by creating             
realistic-looking artificial sample images with the texture, coloration, and pattern          
elements from source images not included in the training set (Figure 1 ).            
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Combining this with a segmentation network based on Mask R-CNN 12 , along with             
boundary correction using U-Net13 (Supplementary Fig. S4) and mathematical         
morphology, our method outperforms all other methods reported on the final Data            
Science Bowl leaderboard (post-competition) . We also demonstrate that our         1

method outperforms similar baselines on public fluorescent and histology datasets.          
It does not require parameter tuning or specialized knowledge to use, and can be              
applied on a wide variety of conditions and imaging modalities. 
 
Our approach (Figure 1a , Figure S1 and Online Methods) begins by rescaling the             
images such that nuclear size is approximately uniform, as we found that the             
performance of the network is improved if the nuclear size is fixed during training              
and inference (see Online Methods and Supplementary Figure S3 ). To do this,            
we estimate the typical nucleus size in the provided images with a Mask             
R-CNN-based network pre-trained on a large set of diverse images with nuclear            
segmentations, and fine-tuned using the provided training data and label masks.           
The output of this network is an initial segmentation we use to estimate the typical               
nucleus size. Alternatively, if the typical cell size is known a priori, it can be               
defined manually and the images rescaled accordingly.  
 
Next, to adapt our model to handle a wide variety of cell types, staining methods,               
and imaging modalities, even those for which no segmentation annotations are           
available, we augment the training set with an artificially generated set of            
representative image/label pairs. This is accomplished using image style transfer.          
We begin by clustering the images into similar styles based on their appearance             
(Figure 1b ). For each cluster of similar image types, a style transfer network11 is              
trained to generate synthetic images of the desired style with nuclei at specified             
locations. Nucleus annotations are used to train the style transfer network when            
provided, otherwise we use nucleus masks output from the initial segmentation           
network. After a style transfer network is trained for each image style, we generate              
a set of artificial nucleus masks representative of the shape, size and spatial             
distribution of nuclei belonging to that style. For this, we collected ~100,000            

1 Our method achieved the top-score after the competition ended. An early version of our approach 
placed 27th out of 739 submissions in round 2 of the competition. 
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manually labeled single nucleus masks from the DSB set. A subset of these nuclei              
is selected that represent the shape distribution of the original morphologies and            
they are placed such that they follow the spatial distribution of the image style (see               
Online Methods ). With trained style networks and representative nucleus masks in           
hand, we generate synthetic images in the desired style with nuclei in locations             
defined by the artificial masks. The synthetic image/mask pairs make up the            
augmented data set; samples are shown in Figure 1b . The augmented data is added              
to the training data. For this experiment, we generated 20 synthetic image/mask            
pairs for each of the 134 style clusters we identified in the final round data. 
 

 
Figure 1. Overview of our approach. a) Upper row of boxes presents the nucleus segmentation               
and pre-processing; an initial Mask R-CNN network estimates typical nucleus sizes, then images             
are rescaled such that mean nucleus size is uniform and a Mask R-CNN network trained on                
images with uniform nucleus size predicts segmentations. A contour refinement step using a             
U-Net based network with a morphology operation is applied to obtain the final segmentation              
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result. The data augmentation pipeline is depicted in the bottom row, the training set is               
augmented with an artificially generated set of images similar to the test set, and a pretrained                
Mask R-CNN method is fine-tuned using the augmented images. Augmentation and training            
steps may be iteratively repeated as the gray dashed line suggests. Upper row depicts the               
inference pipeline, bottom row training. Solid lines indicate data flow, dashed lines indicate             
transfer of a trained model. b) Image style-transfer based data augmentation. To adapt our model               
to handle image types for which we have no segmentation labels, we synthesize new training               
data by first clustering images into similar groups, then learning a style transfer model. The style                
transfer model is provided with simulated nucleus masks which mimic the number, shape, and              
size of the unseen nuclei, and then synthetic training image/label pairs are generated using the               
masks and the style transfer models. This data is added to the standard training data provided to                 
Mask R-CNN, and the network learns to segment nuclei in the new domain. 
 
Finally, the ultimate Mask R-CNN segmentation model is trained on the combined            
augmented and rescaled training data. Unseen images are adjusted such that the            
estimated nuclei size is uniform. To refine the segmentations for high pixel-level            
accuracy, the edges of each detected nucleus are corrected using a U-Net-based            
model trained on the same data, followed by some mathematical          
morphology-based post processing (see Online Methods ). This step may be          
skipped if such accuracy is unnecessary for the application, for example if simply             
counting nuclei. 
 
We evaluated our approach on four different data sets: the DSB Stage 1, DSB              
Stage 2, a set of fluorescence microscopy images, and a set of histology images              
from various sources (DSB1, DSB2, fluo, and hist, respectively). Details of the            
images are presented in Supplementary Table S2. We compare our approach           
against submissions from other teams on DSB1 and DSB2 (nearly 3,000 in Stage 1,              
and 739 in Stage 2). As benchmarks, we include the results reported in the first and                
second positions of the leaderboard which was frozen at the close of the             
competition (https://www.kaggle.com/c/data-science-bowl-2018/leaderboard), a   
recent deep learning method, unet4nuclei 9, a widely used Otsu threshold based            
method with object splitting 1, ilastik 14, and a more sophisticated but still classical              
gradient vector flow (GVF) based method 15 (Fig. 2 and Supplementary Table            
S1). Unet4nuclei is based on a U-Net 13 structure, GVF is an active contour-based              
method that drives the contour to edges using gradient vectors pointing to bright             
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regions, and ilastik is a pixel-based classification software (see Supplementary          
Software 2). Notably, the DSB Stage 2 evaluation is performed on an unknown             
subset of the provided test images, many of which are outside the domain of the               
training images, truly challenging the ability of the model to generalize. We            
provide additional benchmarks and variations of our approach for comparison in           
Online Methods  and Supplementary Figure S2.  
 
The evaluation metric (DSB-score, see definition in Online Methods ) used in the            
2018 Data Science Bowl measures a modified mean average precision of detected            2

nuclei. For each image, the accuracy of nucleus segmentation is averaged across a             
set of different intersection-over-union (IoU) thresholds ranging from 0.5 to 0.95           
with steps of 0.05. IoU measures segmentation quality as the ratio between the             
area where the segmented region overlaps a true nucleus and the union of the              
segmented region and the nucleus.  
 
On the DSB Stage 2 test set, our method scores higher (0.633) than the top ranked                
(0.631, the highest of 739 teams) and has a simpler architecture with fewer             
parameters. Results for a traditional Otsu-based baseline segmentation are provided          
for reference (0.528)1. All DSB2 results are presented in Figure 2a . In addition,             
our proposed method outperformed all prior published results on hist, a diverse set             
of histology images and on fluo , a fluorescent image set (BBBC039 9) (see             
Supplementary data for details). A deeper comparison of our results against six            
other methods evaluated with additional metrics is provided in Supplementary          
Table S1 and Figure S5  (see details in Online Methods ). 
 

2 As defined on the competition website. 
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Figure 2. Results. a) DSB scores with error bars for four image sets: Histology, Fluorescent,               
DSB Stage 1, DSB Stage 2 (see details in Online Methods ). Highest scores are marked with                
dashed lines and red color. b) Segmentation results for various methods on sample image crops               
with difficult cases (two example images of each); rows match those of (a) (note: ground truth is                 
not public for DSB Stage 2). A crop of the original image is provided in the first column,                  
followed by segmentation results predicted by various methods. The color-coding of the results             
is explained in the legend at the bottom. 
 
 
We proposed a deep learning-based nucleus segmentation approach, using image          
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style transfer to augment our training data with valuable out-of-domain samples.           
Our segmentation network learned from these artificially-generated image/mask        
pairs which mimic the patterns of new data types. This approach helped the             
network adapt to a diverse set of test data outside the domain of the training data,                
outperforming every other deep learning and classical method tested. Our software           
is open source and freely available (Supplementary Software 1 at          
https://github.com/spreka/biomagdsb). Pre-trained networks for DSB, fluorescent      
and histology data can be applied to new images via CellProfiler (Supplementary            
Software 2) or through an online interface at www.nucleAIzer.org. The idea of            
augmenting difficult-to-obtain data using style transfer has enormous potential not          
only for nucleus detection, but more broadly in bioimage analysis. 
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Online Methods 
 
  
1. Overview of the pipeline 
As a first step, pre-segmentation of the input images is performed using a pre-trained deep               
convolutional model (which we refer as preseg ) to estimate nuclei sizes as well as to create a                 
mask input for image style transfer learning. Simultaneously, we cluster similar images of the              
input data into groups, and learn styles on these clusters (see Fig.1.b and 2.1.2-2.1.3 for details).                
As a next step, we extend the training data with artificially created style transferred images for                
fine-tuning a Mask R-CNN 12 pre-trained on our nucleus segmentation dataset. For inference on              
unseen data, we use the refined Mask R-CNN network incorporating knowledge about estimated             
cell sizes. The resulting contours are refined with U-Net 13 and a morphology step. 
 

 
Figure S1. A detailed overview of the proposed pipeline. 
 
2. Details of implementation 
The proposed method consists of procedures for training and inference, as shown in Fig. S1 .               
Inference merely requires unannotated images as its input – provided the pre-trained models are              
available. Training the network produces a learned segmentation model, and requires a set of              
annotated training data and a pre-trained segmentation network (pre-segmentation network), as           
well as any available unannotated images that can be used for data augmentation. The pretrained               
segmentation network is crucial to both the training and inference procedures, so we discuss it               
first and then continue with training and prediction steps. 
 
2.1. Training and style transfer data augmentation 
2.1.1. Pre-segmentation 
The architecture for the segmentation networks is based on the Mask R-CNN architecture. The              
pretrained segmentation network (pre-segmentation network) is used to make rough estimates           
about the nucleus size and shape while being robust to changes in imaging modality or               

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2019. ; https://doi.org/10.1101/580605doi: bioRxiv preprint 

https://paperpile.com/c/6zDrux/yVqT
https://paperpile.com/c/6zDrux/lCUE
https://doi.org/10.1101/580605
http://creativecommons.org/licenses/by-nc-nd/4.0/


magnification. The network is initialized with pretrained weights from the MS-COCO dataset,            
which contains images and segmentation masks for 91 object types including people, trucks,             
sheep, dogs, etc. For details about the original COCO competition see http://cocodataset.org or             
the corresponding publication 16 (Lin et al. 2014, arXiv). The network was trained using a diverse               
set of annotated images containing various imaging modalities, cell lines, magnifications, etc.            
For more information see Section 3.2. The annotations consisted of segmentation masks for the              
nuclei. Augmentation was used during training including geometric transformations, intensity          
stretching, cropping, noise, and blur (see Supplementary Software 1 documentation for           
details). 
 
The resulting network, which we refer to as preseg, already performed reasonably well on              
unannotated images in the test set ( Fig. S2 ), although this was not its purpose. The preseg                
network is used to: estimate properties of nuclei in new unannotated images (size, shape, and               
area) in 2.1.2, and to generate rough segmentations on unannotated images for the style transfer               
data augmentation step described in 2.1.3. 
 

 
Figure S2. Results from Figure 2 in more detail. a) DSB scores with error bars for the image sets                   
tested. b) Segmentation results for various methods. preseg , NOstyle, AUTOstyle, GTstyle and            
postComp refer to variations of our approach. See sections 3.2. and 3.4-3.5. for details. 
 
2.1.2. Clustering for style transfer learning  
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Images without annotations are automatically clustered to define multiple groups with similar            
properties: textures, imaging modalities, cell lines, sample type (tissue or culture), etc. These             
groups are used as data sources to learn style transfer models to generate additional synthetic               
data that mimics the properties of each cluster of unannotated images. 
  
To perform the clustering, we use a pairwise similarity metric between feature vectors describing              
each unannotated image. Features were extracted using CellProfiler 1 modules including intensity           
and texture and a similarity metric was computed by a shallow fully connected neural network17.               
This similarity network was trained on the DSBtrain1 data set, where images taken with the same                
condition are given a label of 1 and images from different conditions are given a label of 0. The                   
output of this network on the unannotated data yielded a similarity matrix which we clustered               
with k-means. The number of clusters, k=134, was chosen to over-segment the groups to avoid               
accidental mixing of the true underlying groups. Ideally, each obtained cluster of unannotated             
images represents a “style” or distribution of data which can be augmented with style transfer               
(e.g. digital slides of H&E stained breast cancer histology samples at 63x magnification, or              
fluorescent images of Human MCF7 cell nuclei at 40x). 
 
 
 
2.1.3 Learning image style transfer models 
We use the pix2pix11 framework for image style transfer         
( https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix). The architecture consists of two      
adversarial networks, a generator tasked with synthesizing realistic looking images, and a            
discriminator tasked with identifying real images from synthesized images. This model learns to             
map one image domain to another through an adversarial loss that encourages the generator to               
learn to fool the discriminator. The input to the generator in our case is a binary mask containing                  
1’s at the locations of the desired nuclei, and 0’s elsewhere. The input of the discriminator is an                  
image/mask pair (either a real pair, or a synthetically generated pair). The generator learns to               
transform the binary mask into the desired style of the real images from the cluster, and the                 
discriminator encourages this by trying to identify real image/mask pairs from fakes. We use the               
rough segmentations provided by the preseg network as masks for the unannotated images in the               
style cluster during learning. We train a pix2pix style transfer network to synthesize realistic              
images from masks for each of the style clusters.  
 
2.1.4 Synthesizing new image/mask pairs 
Using our set of 134 trained style transfer networks, we synthesized 20 new image/mask pairs for                
each of the styles in the unannotated data. A crucial step for this task was to generate novel                  
binary masks to provide as input to the style transfer network, which uses the mask to generate a                  
realistic image of the cells with nuclei in the locations defined in the mask. We generated the                 
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masks algorithmically as a combination of 1) fetching real nuclei masks from a database, and 2)                
synthesizing nuclei using software (simcep18). Approximately 50% of the nucleus masks were            
created using each approach. In this manner, we generated 20 masks for each of the 134 style                 
clusters, and then used the style transfer network to generate the corresponding images. 
 
2.1.5. Training the Mask R-CNN segmentation network 
The synthetic image/mask pairs generated by the style transfer network were added to the              
annotated training data to update the Mask R-CNN segmentation network. We used the             
implementation of Matterport ( https://github.com/matterport/Mask_RCNN ) and wrote handler       
scripts in Python to create the appropriate data structures and call functions. Training was              
performed in 3 steps with decreasing learning rate and targeted different layers of the Mask               
R-CNN network, as described in the documentation of the aforementioned Matterport repository. 
 
The loss function was as defined in 12 (Kaiming He et al): it comprises of classification,                
localization and segmentation mask losses: L=Lcls+Lbox+Lmask by ROIs, and defines mask loss as             
follows. Given the k-th region does belong to ground truth class k it takes the average binary                 
cross-entropy loss which is formulated as 

−  Lmask = 1
m2 ∑

 

1≤i,j≤m
y y  (1 ) [ ij • log  ˆk

ij + 1( − yij) log  − ŷk
ij ] (1) 

where y ij is the true label of a cell ( i,j ) from a ROI of mxm size on the ground truth mask of class                       
k and is the predicted class label of the same cell. The formula only includes masks for  ŷk

ij                 
ground truth class k  that are associated with the k-th class. 
 
2.1.6. Data augmentation and image resizing to uniform nucleus size 
The performance of deep learning networks is known to scale with the size of the dataset 19.                 
Therefore, we use a number of approaches to augment the training data. The first, as we                
described above, is to add new synthetic image/mask pairs generated in the style of unseen               
examples to the existing annotated training data. Each minibatch contained 10-50% synthetic            
images. We also used standard data augmentation techniques including random cropping, colour            
channel swapping, intensity modification by histogram stretching or equalization and inversion,           
rotation to an arbitrary degree and translation as geometric transformations and finally, to better              
resemble low-quality images, blur and additive noise were used as well. These operations were              
applied to all the input training data – style transfer results too – with a random probability.  
 
Mask R-CNN is reasonably robust to changes in scale, but superior performance is obtained if               
the nucleus size is approximately 40 pixels in diameter for the data and parameters we used                
( Supplementary Figure S3 ). Another preprocessing step was to resize the images by a scaling              
factor to obtain a training dataset homogeneous both in cell and image size. The scaling factors                
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were computed from the size estimation of the preseg nucleus masks such that the resulting               
mean cell size is set to 40 pixels diameter. Images were then either cropped or padded so that the                   
resulting image was 512 x 512 pixels.  

 

 
Figure S3. Mask R-CNN nucleus segmentations are reasonably robust to changes in scale, but              
we found that best performance can be achieved if nucleus size is fixed to 40 pixels diameter (at                  
1.0 scale factor). 
 
2.2. Inference 
2.2.1. Mask R-CNN prediction 
The Mask R-CNN model trained as described above is used to predict segmentation masks when               
new images are provided as input. The images are resized before they are input to the network as                  
described in Section 2.1.6. 
 
2.2.2. Post-processing and U-Net correction 
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We found that the segmentations could be further improved by postprocessing and refining             
nucleus contours using U-Net 13. This encouraged better boundary reasoning between adjacent           
nuclei, and finer segmentations with the background. First, outlier objects were removed or             
merged as follows: 1) Smaller objects that were entirely within another object were eliminated.              
2) objects that were surrounded by another object more than p1% were merged, and 3) objects                
smaller than p2 pixels area were removed. Next, U-Net based correction was performed ( Fig.              
S4): 3) an optimal threshold p3 for U-Net probability values was determined, 4) a soft margin                
around the Mask R-CNN contour was defined for each object, with an extension of p4 pixels                
inwards and p5 outwards. The contour was extended/shrunk based on the U-Net predictions. 5)              
objects that had in total less than p6 mean U-Net probability were removed. Parameters p1..p6               
were optimized on the training set. Best values were: (0.17, 44, 0.9375, 1, 1, 0.8). 
 

 
Figure S4. Post-processing contour correction with U-Net. Mask R-CNN segmentation contour           
was refined within a given maximum margin using U-Net segmentation. See Section 2.2.2 for              
details.  
 
 
3. Kaggle competition 
3.1. Description 
We designed our pipeline to recognize nuclei as accurately as possible in a wide variety of                
images acquired with different microscopes, under varying imaging conditions with different           
stains for nuclei of various cell types. This was the challenge set forth in the 2018 Data Science                  
Bowl (DSB) by Kaggle, Booz Allen Hamilton and the Broad Institute. The competition included              
a preparatory stage 1, to which teams could submit their solutions during a four-month period               
and a 4-day long stage 2 final scoring period. 
 
Existing nucleus segmentation methods do not generalize well, they perform well only on the              
limited experimental conditions they are designed or tuned for. The Data Science Bowl was              
highly successful in the sense that many robust solutions were developed that pushed the              
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state-of-the-art in terms of segmentation performance and insensitivity to image type and quality.             
Solutions such as ours are now being developed into toolkits for biologists that will accelerate               
science by improving automation in identifying nuclei. 
 
3.2. Data 
The official dataset for the challenge is composed of a training set and two tests sets, one for                  
each stage. The number of images in each set is 670 (training), 65 (stage 1 test), and 3019 (stage                   
2 test), stage 1 test masks were released in the second stage. The final evaluation of the teams’                  
performance was measured on a subset of the stage 2 test set (the identity of the subset remained                  
hidden to the competitors). Many of the competitors used additional data besides the provided              
training data, as this was permitted as long as participants shared their sources on the official                
competition website ( https://www.kaggle.com/c/data-science-bowl-2018 ). Our annotated training      
data included 12 additional data sources besides the DSBdata, including some data sources             
annotated by experts in our institution. This extended the total number of training image/mask              
pairs from 735 to 1,102, and the number of annotated nuclei from 33,814 to 80,692 (not                
including the synthetic data). A summary of the data we used is provided in Table S2. 
 
Using style transfer, we augmented our training data with synthetic image/mask pairs generated             
in the style of k=134 clusters of images from the DSB Stage 2 set, as described in Sections                  
2.1.2-2.1.4. This added 2,680 synthetic image/mask pairs to the training data (approximately            
263,701 annotated nuclei). 
 
We tested various versions of our method along with several competing methods on four test               
datasets: DSB test1, DSB test2, fluo, and hist. DSB test1 and DSB test2 are heterogeneous test                
sets from the Kaggle challenge (stage 1 and stage 2). The fluo dataset is fluorescence images of                 
U2OS cells in a chemical screen taken from the Broad Bioimage Benchmark Collection             
(BBBC039)9. The hist dataset is a mixture of histology images collected from the internet and               
prostate H&E stained slides collected in-house. 
 
A fraction of the histological images manually annotated in our lab were used as test set hist (see                  
Supplementary Data). BBBC039 9 images were used to train a fluorescent segmentation model,             
we refer as fluo . The hist  and fluo  test sets are disjoint from the respective training data. 
 
3.3. Evaluation metrics 
The evaluation metric used for the DSB competition is based on the mean average precision at                3

different intersection-over-union (IoU) thresholds. A successful nucleus detection was         
determined by an IoU test (also known as the Jaccard index): 

3 As defined on the competition website 
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oUI (x, )y = x∩y| |
x∪y| | = x∩y| |

x + y − x∩y| | | | | | (2) 
which measures the overlap between prediction pixels x and the annotation pixels y over the               
intersection of the two areas. Using a threshold ranging from 0.5 to 0.95, true positive ( TP )                
detections, false positives ( FP ) detections and false negative ( FN ) detections were identified. For             
a threshold of 0.5, a predicted object is considered a “hit” if the IoU is greater than 0.5. For each                    
threshold t , a a modified version of precision was calculated  

SB coreD − s (t) = T P (t)
T P (t)+F P (t)+F N (t)+ε (3) 

for all thresholds in (0.5, 0.95). These scores were averaged for all thresholds, and then the mean                 
of the average scores is reported over the images in the test dataset. In addition to the DSB-score,                  
we evaluated our results with three additional metrics based on the IoU detection test: mean               
average precision- (mAP), recall and F1-score. We used the same t, TP, FP and FN values as                 
above. We also added a small value to the denominators.ε = 10−40  

recisionp (t) = T P (t)
T P (t)+F P (t)+ε (4) 

ecallr (t) = T P (t)
T P (t)+F N (t)+ε (5) 

1 core  F − s (t) = 2 •  precision(t) • recall(t)
precision(t)+recall(t)+ε (6) 

The same strategy was used to calculate mean values for these measures as was for the                
DSB-score, taking the average over various thresholds t , and the mean among the test images.               
In the following sections, we refer to these measures as mAP (mean average precision), mAR               
(mean average recall), and mF1 (mean average F1-score). 
 
3.4 Methods used for comparison 
Our tests included several variations of our method along with six competing methods and              
several variations of our approaching using different style augmentation: NOstyle did not contain             
style augmented images, AUTOstyle used nuclei masks generated by the preseg network, and             
GTstyle used hand annotated ground truth to generate nuclei masks. CellProfiler ( CP ) 1 is a               
widely-used bioimage analysis software incorporating several methods to segment, measure and           
analyze cellular compartments. We created multiple pipelines for the different image types of the              
test sets – except for our fluorescent set which comprised of a single experiment. Preseg refers to                 
our general scale-independent pre-segmentation model while postComp is our final refined           
post-competition submission (an AUTOstyle model customized for DSB test2). 
 
We compared against several other approaches including ilastik 14, which provides a pixel             
classification setup where users can manually annotate regions of the input images to desired              
classes and obtain predictions as either probability maps or segmented images. Segmentations            
were obtained by applying a threshold to probabilities from ilastik (with additional object             
splitting). Unet4nuclei 9 is an implementation of the popular U-Net deep learning approach to              
segmentation. GVF 15, or gradient vector flow, is an active contour-based segmentation method             
suitable if objects are bright regions on a dark background. Pipelines of these compared methods               
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are provided in Supplementary Software 2. DSB1 and DSB2 are the first and second place               
entries on the final Kaggle leaderboard. The approach from DSB1          
( https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741) uses a very deep U-Net      
architecture along with prediction of touching borders. DSB2 also uses a U-Net approach, and              
forces the network to predict relative locations within each nucleus          
( https://github.com/jacobkie/2018DSB).  
 
3.5. Results 
We tested the methods outlined in Section 3.4 on four test datasets: DSB test1, DSB test2, fluo,                 
and hist , described in Section 3.2. The resulting DSB-scores are presented in Table S1. When               
running these tests, the test data was never included in the data to train the model, e.g. when                  
testing on DSB test1, the DSB test1 data was held out from the training set. Similarly, when                 
testing on hist, biomag2 and biomag6 subsets were held out. 
 

Table S1: DSB scores 

method dataset 
  fluo hist DSB test1 DSB test2 

preseg 0.651 0.403 0.453 0.483 
CP 0.600 0.301 0.274 0.528 
unet4nuclei 0.650 0.006 0.065 - 
GVF 0.517 0.055 0.205 0.168 
NOstyle 0.686 0.414 0.510 0.621 
AUTOstyle 0.638 0.447 0.562 0.633 
GTstyle 0.704 0.453 0.531 - 
postComp 0.709 0.499 0.539 0.633 
Ilastik 0.584 0.319 0.319 - 
DSB1 - - - 0.631 
DSB2 - - - 0.614 

 
Table S1. DSB scores. We tested the methods described in Section 3.4 on four test datasets:                
DSB test1, DSB test2, fluo , and hist. Fluo was the BBBC039 9 image set of 200 DAPI-labelled                 
fluorescent images while hist was a randomly selected set of 50 in-house labeled histological              
images. DBS test1 and test2 are the official test sets of the DSB 2018 competition. The                
DSB-score is the mean average precision at different intersection-over-union (IoU) thresholds           
(see Section 3.3). GTStyle is not reported for DSB test2 because annotations are not available, as                
a result the postComp model is the same as AUTOstyle . The best performing method’s score is                
highlighted in bold for each test set. 
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Figure S5. Evaluation of the methods on fluo, hist, and DSB test1 using different metrics: mAP:                
mean average precision, mAR: mean average recall, mF1: mean average F1-score, mIoU: mean             
intersection over union. See definitions in 3.3. a) test set fluo, b) test set hist, c) test set DSB                   
test1 . postComp is highlighted in light pink shade. Methods are sorted by mIoU. Results on DSB                
test2 are not reported because ground truths are not available. 
 
 
The results demonstrate that our style transfer approach improves performance in test sets             
containing data from heterogeneous sources: hist, DSB test1 and DSB test2. We also see              
excellent performance on single domain fluorescence data, fluo . Comparing the results of our             
method with and without style transfer augmentation, we see a clear trend towards increased              
performance with style transfer augmentation. If we have access to ground truth nucleus masks              
( GTstyle) our performance improves, though in many realistic scenarios such masks will not be              
available. Figure S2 shows the output of the various methods we tested on challenging examples               
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(note that DSB1 and DSB2 are not reported because we did not have access to their code). In                  
Figure S5 , we present mAP, mAR, mF1 and mIoU metrics for the various methods on each                
dataset. As expected, there is a strong correlation between the metrics. 
 
4. Computational environment 
4.1. Software 
Our pipeline is implemented using a shell script to allow continuous execution of the entire               
pipeline. Python 3 scripts execute the training and inference of Mask R-CNN, U-Net, and              
pix2pix which rely on the TensorFlow, Keras, and PyTorch environments. The clustering,            
post-processing, and initial steps of style transfer are implemented in Matlab. Our software is              
available for download at: https://github.com/spreka/biomagdsb. 
 
The entire pipeline can be run both under Linux and Windows. In a typical use case, it is not                   
necessary to retrain any of the models. Calling the postComp method without post processing              
provides excellent results. Alternatively, an online version of our method is available at             
www.nucleAIzer.org . 
 
 
4.2. Hardware 
Our methods were trained and tested on a variety of Nvidia graphics cards, including GTX 1070,                
1080Ti, and Titan Xp.  
 
5. Related work 
5.1. Mask R-CNN 
Kaming He et al. 12 published Mask R-CNN as an extension of Faster R-CNN to allow                
simultaneous instance detection and segmentation. The network architecture is similar to that of             
Faster R-CNN: feature extraction uses ResNet (50 or 101 layers) or alternatively Feature             
Pyramid Network (FPN), while head is as in Faster R-CNN extended with a fully convolutional               
mask prediction branch. A detailed discussion of extended R-CNN versions can be found in 20 . 
 
5.2. U-Net 
U-Net 13 was specifically created for bioimage segmentation with an encoder-decoder           
architecture and skip connections between layers of the encoding branch and decoding branch to              
provide the decoder with access to spatial information to reason about upsampling the             
segmentation.  
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Additional supplementary info: 
Supplementary Table 2.: 
https://docs.google.com/document/d/1DhtWss5zFskrDLU9Isqs556ygBRtxgRkZdUJlJX_OtI/edit
?usp=sharing 
 
Supplementary Data 1.: 
https://drive.google.com/file/d/1x_-EM8q4Mawu-GEV02Y6kFTuw8EznJGU/view?usp=sharing  
 
Supplementary Software 1.:  
https://github.com/spreka/biomagdsb . 
 
Supplementary Software 2: 
https://drive.google.com/file/d/111aWsov8nuyLSGx1TDnT7XyV8-BFRZRw/view?usp=sharing  
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