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Abstract: Despite advances in sampling and scoring strategies, Monte Carlo modeling methods 1 

still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or 2 

proteins of complex topologies. Previous approaches have addressed these shortcomings by 3 

leveraging sparse distance data gathered using site-directed spin labeling and electron 4 

paramagnetic resonance spectroscopy (SDSL-EPR) to improve protein structure prediction and 5 

refinement outcomes. However, existing computational implementations must choose between 6 

coarse-grained models of the spin label that lower the resolution and explicit models that lead to 7 

resource-intense simulations. Existing methods are further limited by their reliance on distance 8 

distributions, which are calculated from a primary refocused echo decay signal and may contain 9 

artifacts introduced during this processing step. Here, we addressed these challenges by developing 10 

RosettaDEER, a scoring method within the Rosetta software suite capable of simulating distance 11 

distributions and echo decay traces between spin labels fast enough to fold proteins de novo. We 12 

demonstrate that the accuracy of resulting distance distributions match or exceed those generated 13 

by more computationally intensive methods. Moreover, decay traces generated from these 14 

distributions recapitulate intermolecular background coupling parameters,  allowing RosettaDEER 15 

to discriminate between poorly-folded and native-like models even when the time window of EPR 16 

data collection is  truncated,  rendering them unsuitable for accurate transformation into distance 17 

distributions. Finally, we demonstrate that one decay trace per nine residues is sufficient to predict 18 

the folds of Bax and the C-terminus of ExoU, two soluble proteins with surface-exposed 19 

amphipathic structural features that prevent the Rosetta energy function from correctly identifying 20 

native-like models in the absence of experimental data. These benchmarking results confirm that 21 

RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling 22 

applications built into the Rosetta software suite. 23 
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Introduction: Structural biology increasingly relies on integrated methods to model the structure 1 

and dynamics of proteins and protein assemblies1,2. Multiple complementary experimental 2 

methodologies, when integrated with computation, can describe the structure and dynamics of 3 

proteins that elude structure determination from a single technique, such as integral membrane 4 

proteins, conformationally flexible proteins, and those that fall outside the size limitations of 5 

solution-state nuclear magnetic resonance and cryo-electron microscopy. Computational 6 

approaches are used to integrate experimental data from multiple approaches and build physically-7 

realistic models also in regions with sparse experimental data. One promising experimental 8 

approach to feed into integrated structural biology combines site-directed spin labeling and 9 

electron paramagnetic resonance spectroscopy (SDSL-EPR). Previous studies have employed 10 

SDSL-EPR and computation in tandem to predict protein structures de novo 3–10,  model 11 

conformational changes11–14, and dock rigid-bodies15–17. 12 

Existing modeling methods largely focus on data gathered using four-pulse double electron-13 

electron resonance spectroscopy18 (DEER, also called PELDOR), which can report on distances 14 

of up to 60 to 80 Å between stable unpaired electrons conjugated to the protein backbone by 15 

SDSL19,20. However, incorporation of these distances as interatomic restraints is confounded by 16 

the conformational freedom of the most commonly used probe, the methanethiosulfonate spin label 17 

(MTSSL). The central challenge is to convert interspin distance information of a mutant protein 18 

into backbone restraints for the wild-type21–23. The need to incorporate two spin labels into the 19 

protein sequence per restraint results in sparse structural coverage of the experimental data that 20 

can introduce ambiguities into computational modeling6. Only a few experimental restraints are 21 

generally available to describe the protein’s conformational details. 22 
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These sparse datasets have nonetheless been leveraged for protein structure prediction and 1 

refinement by a range of computational modeling approaches that represent the spin labels either 2 

implicitly or explicitly. Implicit models such as the motion-on-a-cone (CONE)3 model use 3 

knowledge-based potentials to translate inter-spin distance values into backbone restraints, 4 

typically between Cβ atoms. Introducing these restraints led to measurable improvements in de 5 

novo structure prediction benchmarks by programs employing Monte Carlo sampling strategies3,5–6 

7,23,24, gradient minimization4,10, and molecular dynamics25. However, because these potentials 7 

account for neither the residues’ surrounding environment nor their relative orientations, they tend 8 

to be relatively imprecise26. Explicit methods, by contrast, model spin labels as either individual 9 

side chains14,27–30, ensembles of side chains15,31–33, or ensembles of dummy atoms34. The added 10 

detail improves accuracy of modeling but makes implementations too computationally intensive 11 

for de novo protein structure prediction and limits the utility of these methods to validating 12 

experimental distance distributions35 and modeling small-scale conformational changes11,12,14. 13 

Despite their diversity, these methods largely share a common limitation in their reliance on 14 

distance distributions, rather than the primary spectroscopic readout. Other computational 15 

methodologies directly incorporate primary experimental data, such as two-dimensional NMR 16 

spectra36 and cryo-EM electron density maps37 to fold and refine proteins. The feasibility of using 17 

DEER dipolar coupling decay traces as modeling restraints, by contrast, has only recently been 18 

explored14. Whereas processing spectroscopic decay traces into distance distributions risks the 19 

introduction of artifacts, simulating a decay trace from a distance distribution is well-described 20 

and mathematically straightforward20. 21 

Here we introduce RosettaDEER, a method in the macromolecular modeling suite Rosetta capable 22 

of rapidly simulating distance distributions and DEER decay traces between spin labels as well as 23 
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evaluating a model’s agreement with experimental data. RosettaDEER’s increased computational 1 

efficiency enables prediction of protein structures de novo with greater accuracy than the default 2 

energy function or the previously reported CONE model3. Owing to Rosetta’s Monte Carlo 3 

sampling strategy38, the experimental data can be used directly without analysis or background-4 

correction. Thus, the quality of the primary spectroscopic data can be significantly poorer than 5 

what would ordinarily be required for rigorous transformation into distance distributions. This 6 

method reinforces the utility of DEER in conjunction with computational modeling to accurately 7 

model proteins structures. 8 

Results: 9 

Modeling nitroxide spin labels using RosettaDEER. A strategy to model proteins using DEER data 10 

must reliably simulate distance distributions between spin-labeled residues. To quantify the 11 

computational cost and efficiency of this task, we considered a panel of five proteins where both 12 

atomic-detail structures and experimental DEER data were available (Table S1). Distance 13 

distributions were simulated with each method between residue pairs that have been previously 14 

studied experimentally, and the resulting error was quantified as the difference between the 15 

average values of the simulated and experimental distance distributions (Figure 1A). In addition, 16 

we measured the time required by each program for in silico spin-labeling of a single residue 17 

(Figure 1B). Consistent with previous results8,26,32, the average values of experimental distance 18 

distributions gathered in monomeric proteins, but not the homodimer CDB3, agree more closely 19 

with those of simulated distributions than their corresponding Cβ-Cβ distances, from which 20 

restraints such as the CONE model are derived3 (Table S2). By contrast, none of the methods 21 

examined here reliably reproduced the width of the experimental distributions. This is likely 22 

attributable to oversampling of available conformational space of the spin label, which results from 23 
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the exclusive use of van der Waals repulsive energies to limit side chain configurations and, by 1 

extension, electron positions for distance measurements. Finally, the data revealed how simulation 2 

times both varied substantially between these methods and failed to correlate with accuracy. 3 

Because these results suggested that computational complexity was not a determining factor in the 4 

accuracy of simulations of distance distributions between spin labels, RosettaDEER’s design 5 

prioritized computational speed over accuracy (see Methods). Rather than measure distances from 6 

full-atom rotamers or mobile dummy atoms, RosettaDEER instead uses a probability density 7 

function to capture the likely positions that would be explored by MTSSL conformations. High-8 

occupancy electron positions are mapped on the protein structure (Figure 1C, 1D). For each 9 

electron position, a clash evaluation was performed between a centroid atom representing the 10 

nitroxide ring’s center of mass and the protein backbone. Placing this coordinate at an idealized 11 

location, consistent with spin-labeled protein structures in the Protein Databank (Figure S2, Table 12 

S3), reduced the number of atoms for clash evaluation to one per rotamer, thus maximizing 13 

computational efficiency. Figures 1A and 1B demonstrate that, compared to other methods, 14 

RosettaDEER’s simplified representation of the spin label allows the generation of distance 15 

distributions three to five orders of magnitude faster than other approaches but with comparable 16 

accuracy. 17 

Comparison of simulated with experimental DEER decay traces. We then explored approaches to 18 

simulating DEER decay traces using these distance distributions, a task complicated by the fact 19 

that experimental decays have contributions from coupling between unpaired electrons both within 20 

and between macromolecules20 (Figures 2A-C). Model-free analytical methods such as Tikhonov 21 

regularization rely on appropriate time collection windows to isolate, and thus correct for, the 22 

intermolecular signal. Our approach instead borrows from Gaussian-based modeling approaches 23 
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that fit the data directly by treating the intermolecular contribution as an exponential function 1 

consisting of a slope (k, the background decay) and a y-intercept (λ, the modulation depth; see 2 

Methods)39. We tested this strategy on our benchmark set and found that both parameters agreed 3 

with experimentally determined values (Figures 2D, 2E), with r2 values of 0.92 and 0.95 for k and 4 

λ, respectively. Perhaps unsurprisingly, the outliers in this respect tended to be the decay traces 5 

with the fewest oscillations (Table S4, Figure S3). This functionality enables RosettaDEER to 6 

directly evaluate structural models while avoiding the shortcomings associated with 7 

transformation to distance distribution.  8 

Enrichment of native-like models using experimental decay traces. The extent to which the added 9 

capability of directly simulating decay traces could improve the identification of correct protein 10 

structural models was evaluated using misfolded and misdocked structural models. We generated 11 

one to two thousand incorrectly folded models for each of the proteins mentioned above. In 12 

addition, we generated one thousand misdocked models of the homodimer CDB3 (Figure 3). The 13 

root mean square deviation over secondary structures normalized to a 100 residue protein 14 

(RMSD100SSE40) ranged from near-native models (0.5 Å Cα RMSD100SSE) to incorrectly folded 15 

(>15 Å Cα RMSD100SSE). To assess enrichment of high-quality models, we calculated the 16 

logarithm of the number of models in the top ten percentile by agreement with DEER data that 17 

also fell in the top ten percentile by RMSD100SSE as previously described7 (see Methods). This 18 

resulted in a metric ranging from -1 (no high-quality models in the top 10%) to 1 (only high-quality 19 

models in top 10%), with a value of 0 indicating no enrichment. This scoring scheme was repeated 20 

for the native Rosetta energy function41 and the CONE model (Figure S4). To examine the 21 

synergistic effect of using both the energy function and either RosettaDEER or the CONE model, 22 
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the combined Z-scores were compared for each model and plotted to highlight the level of 1 

enrichment (Figure S4).  2 

For the monomeric proteins considered here, decay traces simulated from native-like models more 3 

closely corresponded to experimental data than those from incorrectly folded models. In all cases 4 

examined, RosettaDEER identified correctly folded models as well as correctly-docked CDB3 5 

models more effectively than the CONE model and the Rosetta energy function on its own. In 6 

contrast, misfolded models of CDB3 were not identifiable using either RosettaDEER or the CONE 7 

model with the experimental data available. In fact, the use of the experimental data alongside the 8 

Rosetta energy function impeded the latter’s identification of native-like models. This may reflect 9 

the fact that the experimental data gathered in CDB3 is limited to interdimeric distance restraints, 10 

which reflect the relative position of a residue from the center of symmetry, rather than structural 11 

features within the protein fold.  12 

Because a robust simulation of the intermolecular background is dependent on the time window 13 

of experimental DEER trace collection, we examined the influence of the decay duration on the 14 

enrichment of correctly-folded protein structural models (Figure S4). Model-free analytical 15 

approaches require approximately 0.8 oscillations and 1.6 oscillations to accurately identify the 16 

average and standard deviation of a distance distribution, respectively20. Therefore, we artificially 17 

truncated the experimental data and measured enrichment as a function of oscillations (see 18 

Methods, Figure S4). Strikingly, with RosettaDEER highly truncated decay traces (<0.5 19 

oscillations) could still identify correctly folded models of Bax, ExoU, Rhodopsin, and Mhp1, 20 

albeit to a reduced degree. In these cases, as well as for misdocked CDB3 models, enrichment 21 

increases with duration up to approximately one oscillation and largely plateau thereafter (Figure 22 

S4).  23 
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De novo folding of Bax and ExoU. To further illustrate RosettaDEER’s capability to identify 1 

native-like models, we folded Bax and ExoU de novo.. Few of the ten thousand structural models 2 

generated using Rosetta without experimental restraints resembled the native fold. Moreover, 3 

native-like models did not correspond to their respective global energy minima as judged by the 4 

Rosetta energy function. (Figure 4A). Therefore, we supplemented this de novo fold prediction 5 

protocol with one experimental restraint per nine residues using either the CONE model or 6 

RosettaDEER (Figure S5). Whereas using the CONE model to transform the distances into 7 

restraints led to a measurable improvement in the number of correctly folded structural models 8 

(<7.5 Å Cα RMSD100SSE) of Bax, no such improvement was observed when folding ExoU. By 9 

contrast, using these restraints with RosettaDEER substantially increased the number of correctly 10 

folded models of both proteins (Figure 4A). 11 

Although agreement between models and experimental structures loosely correlated with both 12 

RosettaDEER score and Rosetta score for both proteins, an abundance of incorrectly-folded 13 

models obscured this trend (Figure 4B; RosettaDEER and Rosetta scores were jointly considered 14 

by adding the Z-scores of each). As a result, the Rosetta energy function, RosettaDEER, and the 15 

CONE model all failed to isolate and identify native-like models for either Bax of ExoU from 16 

score values alone. The ten best-scoring models by these metrics were generally incorrectly folded 17 

(5-10 Å Cα RMSD100SSE) and buried amphipathic features found on the surface of the native 18 

model. 19 

This shortcoming was addressed by clustering all models with a radius of 7.5 Å Cα RMSD100 20 

using Durandal42 and evaluating the size of each cluster and their average agreement with both the 21 

experimental DEER data and the Rosetta energy function. Correctly-folded protein models have 22 

previously been identified near the center of large clusters43, suggesting an additional venue to 23 
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identifying correctly folded models. To test this hypothesis, we computed the Z-scores of both the 1 

average Rosetta energy score and RosettaDEER score for models within each cluster and ranked 2 

the clusters by their combined Z-scores. The cluster with the lowest average combined Z-score for 3 

both proteins also had the lowest average RMSD100SSE (Figure 4B). In both cases, the cluster 4 

center was substantial closer than its average (data not shown). Finally, selecting for the top five 5 

clusters with the lowest combined Z-scores eliminated 85.3% of Bax models and 61.3% of ExoU 6 

models while maintaining the majority of correctly folded models. 7 

Each cluster at this stage represented a broad population of models that satisfied the DEER 8 

restraints and were considered energetically favorable by the Rosetta energy function. We 9 

hypothesized that refining models in the absence of restraints would reveal the native fold by 10 

allowing false positives to be structurally optimized away from conformations consistent with the 11 

data. For this purpose, models from the top five clusters were recombined using a recently 12 

published refinement protocol44. During each of five iterations, a subset of twenty input models 13 

were hybridized in the absence of DEER restraints into 240 models using RosettaCM45. The 14 

models generated this way were then clustered and analyzed as previously described. Consistent 15 

with our prediction, the most native-like cluster retained its agreement with the DEER data, 16 

whereas the others refined toward conformations inconsistent with the experimental data. After 17 

further Cartesian minimization46, the best-scoring model from these clusters had near-native folds 18 

(<3.5 Å Cα RMSD100SSE; Figure 5). 19 

Discussion: RosettaDEER predicts and refines protein structures by integrating DEER 20 

spectroscopy data and Rosetta computational modeling. The novel aspects of this method are a 21 

simplified representation of MTSSL and a strategy to rapidly simulate DEER decay traces for 22 

comparison to uncorrected experimental traces. The robustness of the method was demonstrated 23 
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by benchmarking every step on five sparse datasets. Despite the simplified spin label 1 

representation, the distance distributions simulated by RosettaDEER are comparable to those 2 

generated using more computationally complex rotamer library approaches. Moreover, despite the 3 

imperfect fit to the experimental distance distributions and the decay traces, the combined 4 

approach efficiently identifies conformations that simultaneously satisfy the data and the Rosetta 5 

energy function. 6 

Our de novo folding benchmark with the small soluble proteins ExoU and Bax highlights 7 

the success of this strategy. Both proteins possess surface-exposed amphipathic substructures that 8 

insert into the membrane. Bax transitions from a soluble monomer into a membrane-bound 9 

oligomer using its C-terminal helix47, whereas ExoU is hypothesized to move into the membrane 10 

using a flexible loop between its two C-terminal helices48. Consistent with previous results8,9, the 11 

Rosetta energy function favored models that packed these substructures in the protein core, leading 12 

to incorrectly folded models and lack of correlation of the Rosetta score with model accuracy. As 13 

a result, orthogonal experimental data that define the structure are critical to de novo folding. Our 14 

benchmark suggests that even a small number of experimental DEER measurements is sufficient 15 

to achieve fold-level accuracy. Moreover, our model analysis suggests that even low-quality data 16 

can discriminate correctly-folded from incorrectly-folded models more effectively than the Cβ-17 

based CONE model. 18 

The strategy of RosettaDEER to predict the structures of these two proteins (Figure S6) 19 

leverages the experimental data by folding and optimizing protein structures with and without 20 

restraints, respectively. The first step leads to a substantial reduction in the search space and a 21 

concomitant increase in models that satisfy the restraints, although not all of these models are 22 

correctly folded. After clustering the models to remove those that correspond to narrow energy 23 
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minima, the second step, optimization without restraints, allows clusters with incorrectly folded 1 

models to adopt alternative folds. This is an effective filtering procedure that restores the 2 

experimental data’s ability to identify native-like models. Although the most correct models of 3 

Bax and ExoU at this stage were not the best-scoring, they were the most consistent with the 4 

experimental data. This protocol therefore minimizes both the generation of incorrectly-folded 5 

structures that overfit that data and the conformational search space inherent to the protein folding 6 

problem. 7 

Despite its success illustrated here, the current implementation of RosettaDEER’s assumes 8 

that a single conformation describes the data. For example, the distance distributions of Mhp1, the 9 

most conformationally flexible protein examined in this dataset, were generally more poorly 10 

simulated using available methods than those collected in other proteins. Experimental 11 

applications of the DEER technique often focus on monitoring ensembles of protein conformations 12 

and require computational methods that interpret this data with the capability to generate multiple 13 

models and examine their consistency with sparse experimental data.  This is the next step of the 14 

development of RosettaDEER. Further, a Rosetta de novo folding protocol for membrane-15 

associated proteins that includes a model membrane would be desirable for proteins such as Bax 16 

and ExoU. 17 

Methods: 18 

Assembly of diverse experimental datasets. RosettaDEER was implemented in the Rosetta 19 

software suite38 (Figure S6), trained on distance data gathered in T4 Lysozyme obtained from the 20 

laboratory of Hassane S. Mchaourab, and tested and cross-validated using both raw spectroscopic 21 

and analyzed distance data gathered in five laboratories. Data for the ExoU C-terminus, Bax, and 22 

Mhp1 were obtained from and analyzed by the laboratories of Jimmy Feix, Enrica Bordignon, and 23 
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Hassane S. Mchaourab, respectively; previously unpublished ExoU double-cysteine mutants were 1 

purified, spin labeled, and measured as previously described9. Raw data for CDB3 and bovine 2 

rhodopsin were obtained from the laboratories of Albert Beth and Wayne Hubbell, respectively, 3 

and were analyzed using DEERAnalysis201649. The last 200ns and 500ns were removed from 4 

experimental decay traces shorter and longer than 1.5 us, respectively. 5 

Generation of DEER distance distributions. Distance distributions were obtained from a variety of 6 

methods on Bax (PDB: 1F16 model 8), ExoU (PDB: 3TU3), CDB3 (PDB: 1HYN chains R/S), 7 

Rhodopsin (PDB: 1GZM chain A), and Mhp1 (PDB: 2JLN) using MMM31, MDDS34, 8 

MtsslWizard32, Pronox33, and TagDock16. MMM2017 was run locally on both cryogenic mode 9 

(175 K) and ambient mode (298 K) using default settings. MDDS was run using the CHARMM-10 

GUI web server50 on default settings. MtsslWizard was run locally from Pymol 1.7.2.1 using tight 11 

fitting unless no rotamers could be placed, in which case loose fitting was used (because Mhp1 12 

residue 324 could not be labeled using loose fitting, distances between it were omitted). Pronox 13 

was run from the USC web server using a bias of 0.9 and a van der Waals radius scaling factor of 14 

0.75, the latter of which was reduced to 0.4 if rotamers could not be placed. TagDock was run 15 

locally with SCWRL4 and a bump radius of 0.85. Measurements using the CONE model were 16 

determined by adding 1.79 Å to the Cβ-Cβ distance. 17 

RosettaDEER design. The Rosetta MTSSL rotamer library29 served as the basis for the coarse-18 

grained rotameric ensemble used in this study. Each rotamer’s nitroxide bond midpoint was 19 

transformed into a common coordinate frame defined by the Cα atom at the origin, the backbone 20 

nitrogen along the Z-axis, and the backbone carbonyl carbon in the X-Y plane. Centroid atoms 21 

with a van der Waals radius of 2.2 Å representing the nitroxide ring center of mass were placed at 22 

87.5% of the distance between each electron and an idealized Cβ coordinate. Electrons whose 23 
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respective centroids clashed with backbone atoms and other side chains were eliminated and 1 

downweighted, respectively. Inter-electron distances were transformed into Gaussian distributions 2 

with bin sizes and standard deviations of 0.5 Å and amplitudes equal to the product of the 3 

respective electron weights. All distributions generated this way were added to generate a 4 

simulated distance distribution for comparison to experimental values and simulation of DEER 5 

decay traces. 6 

Coordinate positions and weights were optimized using a training set of forty-nine experimental 7 

distance distributions between 37 residues in T4 Lysozyme34. Coordinates were clustered into 8 

between two and 53 coordinates using K-means clustering and superimposed over spin-labeled 9 

residues. During each of half a million iterations, the weight of an electron was randomly modified 10 

and either accepted or rejected using a Monte Carlo Metropolis criterion based on the resulting 11 

distributions’ improved agreement with experimental distributions. One thousand repeats were 12 

performed for each cluster size. The electron set that led to the greatest agreement with 13 

experimental distributions contained 17 coordinates, four of which were downweighted to zero. 14 

This set was introduced as the default for RosettaDEER and used for subsequent experiments. 15 

Simulation of DEER dipolar coupling decay traces. The intramolecular form factor (Vintra(t)) was 16 

generated from each 0.5 Å bin of a distance distribution between 15 Å and 100 Å: 17 

𝑉 (𝑡) =  𝑠𝑖𝑛𝜃 ∗ cos (
(1 − 3𝑐𝑜𝑠 𝜃)

𝑟
∗

2𝜋𝜇 𝑔 𝑔

4𝜋ħ
∗ 𝑡)𝑑𝜃 18 

where t is the time point of a trace in μs, r is the bin distance in nm, μB is the Bohr magneton, gX 19 

is the G-factor of electron X, and θ is the angle between the interelectron vector and the bulk 20 

magnetic field. The intermolecular background consists of the modulation depth (λ) and an 21 
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intermolecular coupling parameter (k). These parameters were determined using linear regression 1 

by incrementing λ with step size 0.01 and linearizing the remainder of the signal: 2 

ln
𝐸𝑥𝑝(𝑡)

1 − 𝜆(1 − 𝑉 (𝑡)
= 𝑘𝑡 3 

where Exp(t) represents the experimental data at time point t provided by the user. 4 

Model generation and evaluation. Diverse sets of models were generated with RosettaCM45 using 5 

either full-length or truncated native models as inputs. Additional low-quality models were 6 

generated using de novo protein folding. Bax, ExoU, and CDB3 were scored using the ref2015 7 

energy function41, and Rhodopsin and Mhp1 were scored using RosettaMembrane51. The 8 

transmembrane regions for Rhodopsin and Mhp1 were predicted using OCTOPUS52. Oscillation 9 

frequencies of decay traces for distributions with an average distance ravg were calculated as 
. ∗

 10 

μs53. Decay traces with fewer than three oscillations were not used to evaluate enrichment as a 11 

function of decay trace duration. 12 

De novo protein structure prediction. Ten thousand models were generated using extended chain 13 

AbInitio with either RosettaDEER restraints, CONE model restraints, or no restraints. This 14 

protocol relies on insertion of fragments obtained from a July 2011 database; homologous protein 15 

structures were excluded from these fragment libraries. The Z-scores of each model’s agreement 16 

with DEER data and energy function score was calculated, and all models were clustered to 7.5 Å 17 

Cα RMSD100 using Durandal42. After eliminating sparsely populated clusters (<5% the size of the 18 

largest cluster), the top ten models from each of the top five clusters by combined Z-score were 19 

iteratively hybridized for five iterations as previously described44 without RosettaDEER restraints. 20 

The models generated this way were again clustered at 7.5 Å Cα RMSD100, and the best-scoring 21 

model from the cluster with the best average combined Z-score was treated as the predicted model. 22 
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Figure 1. Simulations of distance distributions between nitroxide probes using RosettaDEER. A) Difference 3 
between average values of simulated and experimental distance distributions. Error bars reflect the standard deviation. 4 
B) Estimated average time required for in silico spin labeling of one residue (*the lower limit of quantitation exceeded 5 
the Cβ-Cβ distance compute time). C) Coarse-grained rotameric ensemble representation of MTSSL. Centers of mass, 6 
shown in purple, are used for clash evaluation, while electron coordinates, shown in grey, serve as measurement 7 
coordinates. D) Distance distributions between residues are simulated by superimposed coordinates, evaluating 8 
clashes, and measuring all resulting pairwise distances 9 
  10 
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Figure 2. RosettaDEER simulations of distance distributions and decay traces. The forward approach taken by 3 
RosettaDEER contrasts with the ill-posed inverse problem that must be addressed by Tikhonov regularization. A) 4 
Simulated and experimental distance distributions between T4 Lysozyme residues 93 and 123. B) RosettaDEER then 5 
simulates the resulting intramolecular decay trace and determines the background parameters, k and λ, which result in 6 
the generation of a trace that best fits the experimental data (C). E and F) Recovery of experimental background 7 
coupling decay parameters. 8 
  9 
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Figure 3. Evaluation of models using DEER decay traces. Models with Cα RMSD100SSE ranging from 0.5 Å to 3 
20.0-30.0 Å were scored using both the Rosetta energy function and RosettaDEER. 4 
  5 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581181doi: bioRxiv preprint 

https://doi.org/10.1101/581181
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

  1 

 2 

Figure 4. De novo folding of Bax and ExoU using DEER decay data. A) De novo protein folding of native-like 3 
models using DEER decay restraints with RosettaDEER, Cβ-Cβ distance restraints with the CONE model, or no 4 
restraints. Inset: Spread of all models generated using these three methods. B) Accuracy of de novo folded models 5 
(gray dots) and clusters (black circles) as a function of combined DEER and Rosetta Z-score. 6 
  7 
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Figure 5. Predicted models of A) Bax and B) ExoU at 3.2 and 2.1 Å Cα RMSD100SSE, respectively. Models were 3 
obtained from ten thousand de novo folded models, the best-scoring of which were refined into 1200 additional 4 
models. Native models shown in white. 5 
  6 
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