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Abstract

A key component of the flexibility and complexity of the brain is its ability to
dynamically adapt its functional network structure between integrated and segregated
brain states depending on the demands of different cognitive tasks. Integrated states are
prevalent when performing tasks of high complexity, such as maintaining items in
working memory, consistent with models of a global workspace architecture. Recent
work has suggested that the balance between integration and segregation is under the
control of ascending neuromodulatory systems, such as the noradrenergic system. In a
previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed
that manipulating neural gain led to a ‘critical’ transition in phase synchrony that was
associated with a shift from segregated to integrated topology, thus confirming our
original prediction. In this study, we advance these results by demonstrating that the
gain-mediated phase transition is characterized by a shift in the underlying dynamics of
neural information processing. Specifically, the dynamics of the subcritical (segregated)
regime are dominated by information storage, whereas the supercritical (integrated)
regime is associated with increased information transfer (measured via transfer entropy).
Operating near to the critical regime with respect to modulating neural gain would thus
appear to provide computational advantages, offering flexibility in the information
processing that can be performed with only subtle changes in gain control. Our results
thus link studies of whole-brain network topology and the ascending arousal system
with information processing dynamics, and suggest that the constraints imposed by the
ascending arousal system constrain low-dimensional modes of information processing
within the brain.

Author summary

Higher brain function relies on a dynamic balance between functional integration and
segregation. Previous work has shown that this balance is mediated in part by
alterations in neural gain, which are thought to relate to projections from ascending
neuromodulatory nuclei, such as the locus coeruleus. Here, we extend this work by
demonstrating that the modulation of neural gain alters the information processing
dynamics of the neural components of a biophysical neural model. Specifically, we find
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that low levels of neural gain are characterized by high Active Information Storage,
whereas higher levels of neural gain are associated with an increase in inter-regional
Transfer Entropy. Our results suggest that the modulation of neural gain via the
ascending arousal system may fundamentally alter the information processing mode of
the brain, which in turn has important implications for understanding the biophysical
basis of cognition.

Introduction

Although there is a long history relating individual brain regions to specific and
specialized functions, regions in isolation cannot perform meaningful physiological or
cognitive processes [1]. Instead, starting at a lower scale, a few prominent features of
the brain’s basic mechanisms stand out. Firstly, neurons exist in vast numbers, each
acting as an individual element with a similar set of rules. Secondly, the response of
individual neurons to stimuli are far from linear – small changes in the surrounding
milieu can lead to abrupt changes in neural dynamics [2]. Thirdly, all neurons interact
with other neurons through synapses, and hence form a network that spans the central
nervous system [3]. Furthermore, this structural backbone supports coherence of
physiological activity at larger scales, giving rise to distributed functional networks [4].
Therefore, in every regard, the brain is a complex system whose computational power
stems from the emergent properties of coordinated interactions between its
components [5, 6]. Understanding how the topology and dynamics of these networks
give rise to its function is one of the most central questions that computational
neuroscience aims to address.

From comparing a range of physical and mathematical systems, it is known that
complex systems can exist in multiple distinct phases. For instance, groups of water
molecules can exist as a solid, liquid or gas, depending on the surrounding temperature
and pressure. By altering one or more tuning parameters (e.g. temperature in the water
example), the system can cross clearly defined critical boundaries in the parameter
space. These critical transitions are typically abrupt and often associated with
qualitative shifts in the function of a system (e.g. consider the stark differences between
ice and liquid water). They are often of great interest due to their ubiquity and the
implications for systemic flexibility [8].

Empirical observations in neural cultures, EEG and fMRI recordings provide
evidence that the brain operates near criticality [8–16] – one form of which is a
transition between two distinct states in the functional network topology [17] (see
Fig. 1c). At one extreme, different regions of the brain are highly segregated, and each
region prioritizes communication within its local topological neighbourhood. At the
other pole, the whole brain becomes highly integrated, and cross-regional
communication becomes far more prominent. Experimentally, the resting brain is found
to trace a trajectory between the two states, and can transition abruptly into the highly
integrated state when the subject is presented with a cognitively challenging task [18].

As described in Methods regarding [7], this transition across a critical boundary can
be achieved in a neural mass model by tuning two parameters: the neural gain (σ) and
excitability (γ). Fig. 1a shows how the gain parameter increases each region’s
signal-to-noise ratio by altering the shape of the input-output curve, while the
excitability scales the magnitude of the response. Biologically, the modulation in
precision and responsivity of targeted neurons is mediated by ascending noradrenergic
projections from regions such as the locus coeruleus [7, 19]. This tuning of neural gain
mediated by noradrenaline can significantly alter the functional network topology of the
brain, as characterized by graph theoretical parameters, such as the mean participation
coefficient, and temporal measures, such as the phase synchrony order parameter. In
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Fig 1. Schematic diagram showing how noradrenaline may potentially affect the
information processing structure of the brain. (a) Noradrenaline plays an important role
in tuning the neural gain of targeted neurons. The effect of neural gain and excitability,
the two tuning parameters being varied in our neural mass model, on the response of
individual neurons to stimuli are shown schematically. (b) Previous results from [7]
(reproduced under Creative Commons Attribution License CC BY 4.0) showing that
varying neural gain and excitability may cause abrupt changes in the mean phase
synchrony of the brain from modelled fMRI BOLD recordings, implying the existence of
a critical boundary between a segregated phase (low phase synchrony) and an integrated
phase (high phase synchrony) in the brain. (c) Schematic diagram of brain regions in
the segregated and integrated phases, and how changing neural gain and excitability
may lead to transitions between the two. (d) Schematic diagram of the concept of active
information storage and transfer entropy, and how they may be affected by phase
transitions. Qualitatively, active information storage (green arrow) describes
information on the next instance Xn+1 (blue sample) of a time series X provided by its

own history (X
(k)
n , green samples), whereas transfer entropy (orange arrow) describes

that provided by the past (Y
(l)
n , orange samples) of another time series Y in the context

of the target’s history. See further details on these measures in Methods.
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Fig. 1b, the sharp transition in mean synchrony requires only a small change in neural
gain, and is an illustration of the critical behaviour of the network in that region of
parameter space.

A question then arises: why might it be favourable for the brain to be in a near or
quasi-critical state in the first place? Specifically, are there computational advantages
accompanying this structure? Many have proposed that this signature may reflect an
evolutionary optimisation, allowing for both an effective balance between long- and
short-range interactions between neural regions, as well as rapid transitions between
segregated and integrated states [20, 21]. For instance, a highly segregated brain cannot
communicate effectively to share information across different sub-networks, while a
highly integrated state results in homogeneity in the flow of signals and a reduction in
meaningful interactions, as in the case of epilepsy [18]. Hence, an optimal state for the
brain is likely a flexible balance between the two extremes. Indeed, systems poised near
criticality are well-known to exhibit other distinct characteristics which could be
usefully exploited in the brain, such as increased autocorrelation times and
variance [22–24], increased coupling across the system [25,26] and maximal sensitivity
to tuning parameters [27].

Prompted by early conjecture [28], there is evidence from neural recordings and
studies of other complex systems that phase transitions are often related to changes in
the information processing structure of a system. Shew et al. [10] demonstrated
maximal information capacity (via entropy) and sharing of information (via mutual
information) near critical transitions in dynamics of neural cultures, with the transitions
investigated by manipulating excitation-inhibition ratios. Although the study referred
to the latter measure as “information transmission”, the mutual information remains a
measure of statically shared information, and information transmission and processing
in general are more appropriately modelled with measures of dynamic state updates [29].
Such measures have provided more direct evidence of changes in information processing
structure associated with phase transitions (in the brain, in preliminary results of
Priesemann et al. [30], and) in other complex systems. In artificial recurrent neural
networks for example, both information transfer and storage were observed to be
maximized close to a critical phase transition (with respect to perturbation propagation
in reservoir dynamics) [31], suggesting that these intrinsic information processing
advantages underpinned the known [32] higher performance of similar networks near the
critical point on various computational tasks. These changes in information processing
structure can also explain some of the aforementioned characteristics near the critical
point, such as increased autocorrelation times (as a result of elevated information
storage) and coupling (as a result of increased information transfer). Similar results are
seen in the well-known phase transition with respect to temperature in the Ising model,
with information transfer maximized near the critical regime [33]. Furthermore, the
dynamics of Boolean networks (models for gene regulatory networks [34]) exhibiting
order-chaos phase transitions are dominated by information storage in the ordered
low-activity phase, and information transfer in the high-activity chaotic phase [35,36].
At the critical regime, networks exhibit a balance by combining relatively strong
capabilities of both information storage and transfer. This transition in Boolean
networks can be triggered either by directly altering the level of activity in the
dynamical rules of the nodes, or by sweeping the randomness in network structure
starting with a regular lattice network (low-activity) through small-world [37] and onto
random structure (high-activity). The dynamics of the brain, being a highly analogous
system to these exhibiting phase transitions between functional segregation and
integration, may exhibit similar patterns in information storage and transfer capabilities
near the critical regime, and on both sides of the critical boundary. Hence, we aim to
examine the quantitative changes in the information processing properties of the brain
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under the framework of information theory.
From a Shannon information-theoretic perspective, we measure information as the

reduction in uncertainty about an event with an unknown outcome [38]. For a given
time series process within a larger system, such as the blood oxygen level dependent
(BOLD) data for a single voxel in the brain (i.e. the smallest identifiable region in an
fMRI scan), the sources of information regarding the next event in the process include
the history of the time series of the process itself, and the history of other processes in
the system as inputs, such as the time series of other voxels. Here, within the
framework of information dynamics [29] we model the amount of information storage as
that provided from within a time series process using the active information storage
(AIS) [39]. We model information transfer as that provided by another source to a
target process, in the context of the target past, using transfer entropy (TE) [40].
Fig. 1d provides a simple illustration of this concept.

By using computational modelling to examine the behaviour of these two
information theoretic measures across a parameter space of varying values of neural gain
and excitability, we aim to address two main questions: firstly, are there differences in
the information processing structure as a function of neural gain alteration? And
secondly, does a quasi-critical state provide computational information processing
benefits? Given the properties of the previously determined topological measures
(Fig. 1b) and how they relate to previous results on information processing around
critical regimes, we predicted differential information processing structures across the
parameter space of gain and excitability, and hypothesized that: i. the active
information storage across the system should be maximized in the subcritical region
before the critical boundary, whereas ii. the transfer entropy would be maximized after
the boundary in the supercritical region, and iii. that storage and transfer should be
relatively balanced at the critical transition. A change in information processing near
criticality may allow for rapid alterations in the balance between states dominated by
information storage in the subcritical phase and information transfer in the supercritical
phase, hence providing flexibility for the dynamical structure of the brain to quickly
adapt to and complete a wide range of tasks.

Results

Regional time series of neuronal dynamics were generated by a 2-dimensional neural
oscillator model with stochastic noise [41] built on top of a weighted, directed white
matter connectome [42], simulated with the Virtual Brain toolbox [43]. The properties
of inter-regional coupling were systematically adjusted using the parameters for gain (σ)
and excitability (γ) (see Methods for more details).

In contrast to the previous study which used the same underlying generative
model [7], we did not transform the raw data into a simulated BOLD signal. Instead,
information theoretic measures were calculated directly on each region’s average
membrane voltage (which is monotonically related to the neural firing rate) – sampled
at a rate of 2 kHz. This allowed us to construct a model of information processing that
was more closely linked with the underlying dynamics of the neural system. For each
point in the two dimensional σ-γ parameter space, information storage was calculated
for each region from its own generated time series process. Similarly, information
transfer was calculated for each directed pair of regions from their own generated time
series processes at each point in the σ-γ space. The fast sampling rate obliged us to
apply the information theoretic measures treating the data as arising from a
continuous-time process (see Methods).
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Information storage peaks in the subcritical region at
intermediate γ

The active information storage of a process measures the extent to which one can model
the next sample of a time series as being computed from (a time-delay phase space
embedding of) its past history [39] (see Methods). High active information storage
implies that the past states of a process are strongly predictive of the next observation.
For this experiment, we measured the active memory utilization rate (AM rate), which
is a formulation of active information storage suitable for continuous time processes [44]
(see Methods).

Fig. 2a plots the active memory rate (averaged over all regions) with respect to the
σ-γ space. Active memory rate peaks at what was previously identified as the
subcritical or segregated regime [7] (compare to regime identification in Fig. 1b). We
also see two types of transitions that divide the space up into four qualitative regions.
One transition occurs over variations in γ: the highest information storage occurs at
intermediate values of γ, with a sharp dropoff on either side. Within this band of
intermediate γ there is also a transition in σ, with the highest information storage
occurring at small values of σ, again with a sharp dropoff across the critical transition.

This correspondence with the previously identified regions can be observed more
clearly from Fig. 2b and Fig. 2c, which plots the average values across the σ and γ
boundaries, respectively, based on the synchronization order parameter of the model
from [7]. A qualitative change is observed at these boundaries, where the active memory
rate is highest (and peaking) in the subcritical regime with respect to σ, whilst still
exhibiting sharp transitions to higher values in the supercritical regime with respect to
γ.

Correlation of information storage to motif counts suggests
distributed memory in supercritical regime

Information storage in time-series dynamics of network-embedded processes is known to
be supported by certain loop motif structures within directed structural networks, such
as low order feed-forward and feedback loops, and under certain types of simple
dynamics an exact relationship can be derived [45]. For the dynamics used with this
model, we do not know the exact relationship, but we can still approximate the relative
local network support provided for information to be stored in the time-series process at
a particular region. This allows us to check how the influence on storage of these
relevant structural motifs changes with the parameter space. The local network support
is computed as a linear weighted path sum of different types of motifs (of length larger
than 1) originating in each region (see some examples in Fig. 2d, and Methods for
details). We correlate this local network support for each region with its active memory
rate, to examine whether and where in the phase space of dynamics these motifs are
indeed strongly supporting information storage.

Fig. 2e shows a high correlation between the active memory rate and local network
support in the supercritical phase. This fits with established results of [45] that assume
a noise-driven system. This can be contrasted with the correlation of information
storage to normalized within-region synaptic connection weight (self loop weights Aii in
(3) in Methods) in Fig. 2f, which peaks in the high γ subcritical regime. This suggests
that primarily synaptic connections internal to a region support information storage in
the segregated dynamics of the sub-critical regime, whilst during the supercritical
regime we observe the engagement of network effects via longer motifs to support more
distributed memory in the integrated dynamics. Interestingly, we note that the
subcritical regime with strongest information storage (intermediate γ, low σ) appears to
have support from both within-region synaptic connections and longer motifs.
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Fig 2. Measures of information storage. (a) Active memory utilization rate. (b) and (c)
Mean active memory rate across σ and γ phase boundaries. (d) Network motifs
supporting information storage in the dynamics of node A. (e) Correlation of AM rate
to local network support (weighted motif counts). (f) Correlation of AM rate to
normalized within-region synaptic connection weight.
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Information transfer is maximized in the supercritical region

Information transfer from one process to another is modelled by the transfer
entropy [40] as the amount of information which a source provides about a target’s next
state in the context of the target’s past (see Methods).

For this experiment on continuous-time processes, we measure the transfer entropy
rate [46]. Unless otherwise stated, we constrain the information sources considering only
those which are causal information contributors to the target (following [35,47]); these
are known from the directed structural connectome used in the simulation.

For each point in the parameter space of σ and γ, we calculate all the pairwise
transfer entropy rates to targets from each of their causal parents. These values are
averaged across all such directed pairs to give the mean (pairwise) transfer entropy rate
across the network at each σ and γ pair. Fig. 3a shows a clear separation of the
parameter space into the subcritical and supercritical regions (as defined in the previous
work [7], see Fig. 3d and Fig. 3e), with information transfer occurring almost exclusively
in the supercritical or integrated regime. An additional trend within the supercritical
region can be seen, with TE rate rising as σ and γ increases.

Higher order terms for information transfer can also be calculated in addition to the
pairwise components. Conditional transfer entropy [48,49] (see Methods) adds the
history of a third process or a collection of processes to be conditioned on in addition to
the history of the target itself. For this experiment, we calculate the conditional transfer
entropy of the causal source-target relationships, conditioned on all the other causal
parents of the target (from the directed structural connectome), and average this across
all directed causal pairs. In comparison to the pairwise TE, by conditioning on all the
other causal parents the conditional TE captures only the unique information
component which this source is able to provide that the others do not, and adds in
synergistic or multivariate information about the target that it provides only in
conjunction with the other sources. Furthermore, any information it holds about the
target which is redundant with the other sources is removed.

The collective transfer entropy [49] (see Methods) captures the total transfer of
information from a group of sources to a target. We examine the total information from
the full set of causal parents to a particular target, and average this across all target
processes. The collective TE captures all of the information provided by the sources
about the target, whether that information is provided uniquely by any single source, or
redundantly or synergistically by some set of them. Importantly, it does not “double
count” information held redundantly across multiple sources.

Overall, the mean conditional TE rate in Fig. 3b and the mean collective TE rate in
Fig. 3c show qualitatively similar trends to the pairwise TE rate in Fig. 3a, with the
same strong mean transfer in the supercritical region and trend towards high γ and σ
within that region, although this trend is even stronger with more of a skew towards
high γ. From comparing the peak values of the different figures, it can be seen that
substantial redundancies exist in the information held about the target between the
different sources. That is, the conditional transfer entropy rate is an order of magnitude
lower than the simple pairwise measure, suggesting that each causal parent is not able
to provide much additional information beyond that already apparent from the other
parents. The collective transfer entropy rate, on the other hand is an order of
magnitude higher than the simple pairwise measure. This may, however, simply be due
to the effect of adding up the transfer entropy rate from the different sources, and the
collective transfer entropy divided by the number of sources is not actually higher than
the pairwise measure. It is difficult to conclude from this whether there are network
level effects that give rise to synergies beyond looking at each region in pairwise fashion
(see Methods).

The behaviour of information transfer (Fig. 3) was observed to be complementary to
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Fig 3. Measures of information transfer. (a) Average transfer entropy rate over causal
edges (those connected source → target by the directed connectome). (b) Conditional
transfer entropy rate over causal edges. (c) Collective transfer entropy rate of causal
edges. (d) and (e) Mean TE rate across σ boundary and γ boundaries

the patterns of information storage (Fig. 2). This paints a picture of a distinct mode in
the dynamics of information processing that switches abruptly as the system moves
between the supercritical and subcritical phases. However, it should be noted that the
values for transfer entropy rate are still smaller by one or two orders of magnitude, even
in the collective case. This is partially due to the relative simplicity of our neural mass
model, and also to the regularity of the oscillations which they produce.

Correlation of information transfer with in-degree shows change
in behaviour at the phase boundaries

Fig. 4a examines the correlation of the pairwise transfer entropy rate, averaged across
all outgoing directed connections in the network for each source, with the in-degree of
the source. This correlation is expected in general (having been observed in [50,51])
because sources with higher in-degree have greater diversity of inputs, and so potentially
more available information to transfer. The expected effect is observed in the
supercritical phase, suggesting integration of the information from the different source
inputs. Fig. 4b shows the correlation of conditional transfer entropy rate to source
in-degree (again with the conditional TE rate measure averaged for all outgoing
connections for each source), showing a similar pattern to Fig. 4a.

Fig. 4c shows the correlation of the collective transfer entropy rate for each target to
target in-degree. The target in-degree is used instead of the source because one value of
collective transfer entropy is produced for each target, while the contribution over all
sources is combined. Because the collective TE rate captures the combined effect from
all sources, it can be expected that this will increase with the in-degree of the target,
and so the correlation should be quite strong. This is observed across the phase space,
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Fig 4. Correlations between information transfer and node degrees. (a) Correlation
between TE rate and source in-degree. (b) Correlation between conditional TE rate and
source in-degree. (c) Correlation between collective TE rate and target in-degree

but is slightly weaker at the critical boundary (which on inspection appears to be due to
larger non-linearities in the TE-degree relationship there).

Inter-hemisphere information transfer is high in the
supercritical region

The transfer entropy can be calculated solely for the causal edges which link regions
between the two hemispheres. Only 38 links are inter-hemispheric (out of the total of
1494, not counting self loops). The weights of these connections are also relatively low,
with an average weight of 1.07 (standard deviation of 0.86) compared to an average
weight of 1.91 (standard deviation of 0.63) over all links, not counting self loops. Despite
this, however, the average transfer entropy rate of these inter-hemisphere links in
Fig. 5a follows the same pattern as the standard pairwise transfer entropy rate seen in
Fig. 3a and the peak values are only 30% lower. This suggests that information transfer
across hemispheres is significant, especially since Fig. 5a favours the high γ, high σ part
of the supercritical region, which may help explain why this trend is seen in Fig. 3a.

Fig. 5b shows the outcome of a second test which again highlights the importance of
inter-hemisphere information transfer in the supercritical phase. This figure looks
beyond causal links to compare the proportion of total statistically significant pairwise
transfer entropy which occurs between hemispheres. The transfer entropy rate is first
calculated for all pairwise combinations of source and target (whether they are linked in
the directed connectome or not), at each point in the parameter space. However, pairs
which do not give a level of transfer entropy statistically different to zero are ignored
(see Methods). The remaining pairs are used to calculate the proportion of total
pairwise transfer entropies that are accounted for by inter-hemisphere transfer, for each
point in the parameter space. This proportion is close to half in the supercritical phase,
showing that there is a large indirect effect of the information transferred between
hemispheres. Even though there are only a few causal links between hemispheres, the
information transferred by these “long” links is novel and becomes redistributed within
the hemisphere, underpinning the higher levels of integration observed in the
supercritical phase.

Discussion

Using an information theoretic decomposition, we extend previous work [7] by
demonstrating that a gain-mediated phase transition in functional network topology is
associated with a fundamental alteration in the information processing capacity of the
whole brain network. Importantly, during this transition the underlying coupling
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Fig 5. Information transfer between hemispheres. (a) TE rate over interhemisphere
causal edges. (b) Proportion of significant TE rate occuring between interhemisphere
source and target

strength and connectivity matrix are kept constant: the local dynamics are altered due
to changes in the neural gain and excitability parameters, which then leads to changes
in the effective connectivity (being a result of both local dynamics and large-scale
structural connectivity). By modelling the distributed computation of the neural system
in terms of information storage and information transfer, our results suggest that the
shift from segregated to integrated states confers a computational alteration in the
brain, which may be advantageous for certain cognitive tasks [18]. We thus reinterpret
the gain-mediated transition in the functional configuration of the network in terms of
the effective influence that neural regions can have over one another within a complex,
adaptive, dynamical system [5]. Namely, subtle alterations in the neural gain control
parameter lead to large transitions within the state space of functional topology, even
within the constraints imposed by a hard-wired structural scaffold, with the resulting
modulation of information processing capacity of the brain represented in different
patterns of neural effective connectivity [1].

In previous work [7], we identified a distinct boundary that was mediated by
alterations in neural gain, which has long been linked to the functioning of the ascending
(noradrenergic) arousal system [19]. Extending this previous work into the domain of
information processing, we here observed a qualitative shift in regional computational
capacity on either side of the gain-mediated phase transition. Namely, information
storage (Fig. 2a) was maximal in the subcritical region (at intermediate γ), whereas
information transfer (Fig. 3) peaked in the supercritical region. This result is strongly
aligned with the observed transition in phase synchrony observed in previous related
studies. In a system of Kuromoto oscillators, Ceguerra et al. [50] showed that the
synchronization process can be modelled as a distributed computation, with larger and
increasing transfer entropy associated with more strongly synchronized or integrated
network states. In the case of our model, we expect that maintaining synchronisation in
the face of noise requires strong ongoing transfer between the relevant regions.

Despite the strong qualitative effects observed at intermediate γ, the relationship
between gain and information processing was distinctly non-monotonic. By tracking
information-theoretic measures across the parameter space, we were able to distinguish
six unique zones with qualitative differences in information processing dynamics (Fig. 6).
For example, Zone 4 contained globally-synchronized oscillations which were relatively
large, and also exhibited the strongest information transfer values. Note that this is not
directly because the absolute range of the variables is larger (information measures on
continuous-valued variables are scale independent [38]) but specifically due to variations
in the relationships between dynamics of the regions. The differences between Zone 5
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and Zone 6 – both of which occur at high γ but have distinct between-hemispheric TE
(TE6 � TE5, Fig. 5b) and AM rate (Fig. 2a, including different dependencies on local
network structure and self-loops in Fig. 2e and f) – are also of interest, as they suggest
that there may be distinct information processing signatures related to increasing
multiplicative and response gain [52] to maximal levels, as in the case of epileptic
seizures [53]. Future work should attempt to determine whether these categories are
consistent across generative models, or perhaps relate to individual differences in
topological recruitment across diverse cognitive tasks [17].
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Fig 6. Phase portrait showing six identified regions. A transparent figure of the TE
rate from Fig. 3a is shown behind for comparison. Dotted lines represent a looser
boundary, which are not observed in all measures

As a general framework for understanding distributed computation within complex
systems, the translation of the previous results into the language of information storage
and information transfer allows their comparison to other systems whose information
dynamics have been shown to undergo phase transitions, including artificial neural
networks [31], random Boolean networks [35, 36] as models for gene regulatory networks,
the Ising model [33] and indeed Kuramoto oscillators [50] as mentioned above. There
appears to be substantial universality among the results from these systems, with
similar patterns of information storage and transfer often observed around critical phase
transitions – and crucially these patterns are echoed here in transitions driven by
alterations to neural gain parameters in our neural mass model. Across all of these
systems, we consistently observe that dynamics of subcritical states are dominated by
information storage operations underpinning higher segregation, whilst information
transfer amongst the components of the networks plays a much more significant role in
the dynamics of supercritical states leading to higher integration. In contrast to both,
the dynamics of the critical state exhibit a balance between these operations of
information storage and transfer – a result which we emphasize was specifically
observed again for the neural gain driven transitions examined here.

These insights allow us to address the question posed in our Introduction: are there
computational advantages for the brain to operate in a near-critical state? In alignment
with these results from other systems, and hypothesised as discussed earlier [13,15,16],
the balance between these operations exhibited near the critical state could be expected
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to support a wide range of general purpose cognitive tasks (requiring both types of
operations), as well as in allowing flexibility for rapid transitions to either sub- or
supercritical behaviour in order to alter the computational structure and dynamics as
required. Indeed it is straightforward to identify situations that would require rapid
transitions away from criticality toward more segregated or integrated operation. A
relatively segregated, modular architecture is comprised of regions with high
information storage, suggesting that situations in which a more segregated architecture
is beneficial to cognitive performance – such as a motor-learning task [54] or visual
vigilance [55] – may retain their capacity for improved performance by promoting
heightened information storage. In contrast, cognitive states associated with integration
– such as working memory [17] or attention [56,57] – may reflect heightened
inter-regional influence, and hence, information transfer between the diverse specialist
regions housed within distinct locations in the cortex and subcortex [18]. The flexibility
inherent in operating near a critical state would be crucial in supporting rapid
transitions to support either broad type of task.

The above interpretations align with a broader conjecture regarding utility of critical
dynamics, such as in the “edge of chaos” hypothesis [28,34] as well as more specific
considerations regarding the utility of operating near criticality (but not directly at the
“edge of chaos”) for the brain [13]. This convergence of results across the aforementioned
systems suggests that the rules governing the organisation of whole brain dynamics may
share crucial homology with other complex systems, in both biology and physics.
However, inferring direct algorithmic correspondence will require more focused, direct
comparison between the different systems. Furthermore, work remains to explain
conditions leading to subtle differences in the patterns exhibited across the systems, for
example the additional maximization of information storage and transfer capabilities
near criticality in some transitions (e.g. Ising model [33]) but only a crossover without
maximization in others (such as Kuramoto model [50] and the neural dynamics here).

The approach of information dynamics also provides a computational description of
the dynamics of the system as they unfold at a local or point-wise level through time
and across space [58]. Such descriptions provide quantitative insights regarding Marr’s
“algorithmic” level [59] of how entities are represented within and operated on by a
neural system [60]. In this study, we have not focused on the temporal dynamics of any
particular task, but instead have examined the distribution of information processing
signatures across the network. In particular, we have identified how the informational
signature of brain dynamics relates to network structure as we transition across the
neural gain parameter space. While the underlying network structure does not change,
we seek to understand how its impact on the dynamics varies across the parameter
space. Our approach allowed us to tease apart the relative importance of local
network-supported versus internal mechanisms for information storage (Fig. 2), where
the local network support explained much of the storage (as suggested for different
dynamics [45]) except for within the strongly segregated regime. We also found that
source regions with large in-degrees tended to be stronger information transfer sources,
again for much of the parameter space except the strongly segregated regime. This
aligned with our hypotheses and findings in other systems [50,51], as well as related
results such as that the degree of a node is correlated to the ratio of (average) outgoing
to incoming information transfer from/to it in various dynamical models (including
Ising network dynamics on the human connectome) [61,62]. Finally, we compared the
information transfer between hemispheres with the information transfer within
hemisphere. Large proportions of information transfer could be apparently observed
between non-directly linked regions across hemispheres in the supercritical regime,
suggesting that the relatively large information transfer on the small number of
inter-hemispheric causal edges supports significant global integration in this regime.
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These local views of network structure were thus linked to whole-brain macroscopic
topology in important ways. The extent to which the patterns triggered by changes in
neural gain are targeted or global is a crucial question for future research, particularly
given the recent appreciation of the heterogeneity of firing patterns within the locus
coeruleus [63].

We note that the measures of information processing were estimated here using a
Gaussian model, assuming linear interactions between the variables. This estimator was
selected for efficient performance on the large data set. Although such estimators may
not directly capture strongly non-linear components of the interactions, they
nevertheless provide a useful descriptive statistic even when the linear-Gaussian model
is violated. We note that the linear component often dominates (e.g. [64]), and indeed
the larger embeddings such estimators support provide additional terms to indirectly
model non-linear components in AIS and TE.

The motivation for the previous study [7] was an attempt to explain the mechanistic
basis of fluctuations in functional network topology that were observed in empirical
BOLD data [17], which were hypothesized to be functionally related to ongoing
dynamics in the ascending arousal system [17,65]. However, the sluggish temporal
nature of the haemodynamic response typically clouds the interpretation of causal or
indeed effective connectivity between brain signals [66, 67]. In particular, variable delays
between neural activity and peak haemodynamic response around the brain means that
temporal precedence in the BOLD response does not necessarily imply neuronal
causality. While approaches have been suggested to address this issue [68,69], we
instead investigated information-theoretic signatures on simulated neural data, which
has a much higher effective sampling frequency than BOLD, and is also relatively
unaffected by the temporal convolution that masks neural activity in the BOLD
response. In doing so, we highlight important multi-level organisation within the
simulated neural time series, in which whole-brain topological signatures (measured
using BOLD) overlap with specific signatures of regional (neural) effective connectivity.
It remains an open question whether this relationship holds in empirical data;
Increasing availability of intracranial human sEEG data will allow this to be tested
more directly than with BOLD. In any case, our approach certainly holds promise for
advancing our interpretation of fluctuations in global network topology across cognitive
states [18,70,71].

In conclusion, we have shown that modulating neural gain in a biophysical model of
brain dynamics leads to a shift in the computational signature of regional brain activity,
in which the system shifts from a state dominated by self-referential information storage
to one distinguished by significant inter-regional effective connectivity. These results
provide a crucial algorithmic foundation for understanding the computational advantage
of whole-brain network topological states, while simultaneously providing a plausible
biological mechanism through which these changes could be instantiated in the brain –
namely, alterations in the influence of the ascending arousal system over inter-regional
connectivity.

Materials and methods

Simulation of Neural Activity

Neural activity was modelled (as per [7]) as a directed network of brain regions, with
each region represented by an oscillating 2-dimensional neural mass model [41] derived
by mode decomposition from the Fitzhugh-Nagumo single neuron model [72]. Directed
coupling between 76 regions was derived from the CoCoMac connectome [73] with
axonal time delays between regions computed from the length of fiber tracts estimated
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by diffusion spectrum imaging [43]. The model was simulated by stochastic Heun
integration [74] using the open source framework The Virtual Brain [43].

The neural mass model at each region is given by the Langevin equations 1 and 2,
which express the dynamics of local mean membrane potential (V ) and the slow
recovery variable (W ) at each regional node i:

V̇i(t) = 20
(
Wi(t) + 3Vi(t)

2 − Vi(t)3 + γIi
)

+ ξi(t), (1)

Ẇi(t) = 20(−Wi(t)− 10Vi(t)) + ηi(t). (2)

Here, all ξi and ηi are independent standard Wiener noises, and I is the synaptic
current, given by

Ii =
∑
j

AijSj(t− τij), (3)

where Aij is the connection weight from j to i in the directed connectivity matrix and
τij is the corresponding time delay from j to i. A sigmoid activation function was used
to convert membrane potentials to normalized firing rates Si, where m = 1.5 was chosen
to align the sigmoid with its typical input:

Si(t) =
1

1 + e−σ(Vi(t)−m)
. (4)

Using this model, we modulate the inter-regional coupling by varying the parameters
for gain (σ in (4)) and excitability (γ in (1)) over a range of values between 0 and 1. At
each parameter combination, membrane voltage (Vi(t)) over time for each region was
recorded as the time series input for the analysis of information dynamics. A sample
length of 100,000 values per time series was used in the following analysis,
corresponding to 50 seconds of one sample per 500 microseconds. The 2 kHz sampling
rate was selected as described regarding the transfer entropy measure below. Each
iteration was started from a different random initial condition.

Code implementing the model is freely available at
https://github.com/macshine/gain topology [75].

Measures of Information Dynamics

The framework of information dynamics uses information theoretic measures built on
Shannon entropy to model the storage, transfer and modification of information within
complex systems. It considers how the information in a variable Xn+1 at time n+ 1 can
be modelled as being computed from samples of this and other processes at previous
times. Information modelled as being contributed from the past of process X is labelled
as information storage, while information modelled as contributed from other source
processes Y is interpreted as information transfer.

The Java Information Dynamics Toolkit (JIDT) [76] was used to calculate these
measures empirically using the time series of neuronal membrane voltage from the 76
regions. For each combination of σ and γ parameter values, the active memory rate was
calculated for each region, and the transfer entropy rate was calculated for each
combination of two regions. Collective and conditional transfer entropy rates were also
calculated. Each of these measures is explained in the following sections. The
linear-Gaussian estimator in JIDT was utilized in these calculations (which models the
underlying processes as multivariate Gaussians with linear coupling). As per our
Discussion, this remains a useful descriptive statistic even when the assumed model is
violated.
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Active Information Storage

Active Information Storage (AIS) [39] models the contribution of information storage to
the dynamic state updates of a process X by measuring how much information from the
past of X is observed in its next observation Xn+1. It is defined as the expected mutual

information between realizations x
(k,τ)
n of the past state X

(k,τ)
n at time n and the

corresponding realizations xn+1 of the next value Xn+1 of process X [39]:

AX(k, τ) = I(X(k,τ)
n ;Xn+1). (5)

Formally, the states x
(k,τ)
n =

{
xn−(k−1)τ , . . . , xn−τ , xn

}
are Takens’ embedding

vectors [77] with embedding dimension k and embedding delay τ , which capture the
underlying state of the process X for Markov processes of order k. In general, an
embedding delay of τ ≥ 1 can be used, which may help to better empirically capture the
state from a finite sample size. (Note that non-uniform embeddings can be used [78]).

The determination of these embedding parameters followed the method of Garland
et al. [79] finding the values which maximize the AIS, with the important additional
inclusion of bias correction (because increasing k generally serves to increase bias of the
estimate) [80]. For several sample σ, γ pairs in both the sub- and supercritical regimes
we examined these parameter choices across all regions (up to k, τ ≤ 30), and found the
optimal choices to be consistently close to k = 25 and τ = 12 for all variables (for the
sampling interval ∆t = 0.5 ms). As such, k = 25 and τ = 12 were used for all
investigations.

Note that while a larger AIS is likely to give rise to a larger auto-correlation time,
there are significant differences between the two which make AIS a much more powerful
measure, and directly relevant for modelling the utilisation of information storage
(unlike autocorrelation). Primarily these differences stem from AIS examining the
relationship between multiple past values (as the embedded past) to the current value of
the time series, taking into consideration whether those past values are providing the
same information redundantly or unique information, or indeed are synergistically
providing more when they are considered together. Auto-correlation values in contrast
only ever examine relationships from one past value to the current, and are unable to
resolve such complexities in the process. (As an information-theoretic measure, AIS can
also capture non-linear interactions, although in this study we only use a linear
estimator). This leads to the AIS providing very different values to auto-correlation,
and indeed much richer insights. For example, significant reductions were observed in
AIS in multiple regions of ASD subjects versus controls [81], indicating significantly
reduced use or precision of priors in dynamic state updates of ASD subjects. In contrast,
no such differences were observable using auto-correlation times or signal power.

Because of the fast sample rate (∆t = 0.5 ms) of the neuronal time series, proper
analysis requires using a formulation of the information theoretic measures suitable for
continuous time processes. In general, this means that information storage and
information transfer are conceptualized as measures that accumulate over some finite
time interval at an associated rate [44]. Both the accumulated and rate measures,
however, diverge in the limit as the time step approaches zero. Intuitively, for
continuous processes such as those here, this is because all information about the next
time step can be captured by the previous time step in the limit as the two samples
become essentially identical. These divergent properties can be circumvented by
decomposing active information storage into components, AX = IX + ṀX∆t+O(∆t2),
comprising [44]:

• the instantaneous predictive capacity which measures the information storage
from the immediately previous time step, IX = I(Xn;Xn+1), and
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• the active memory utilisation rate (AM rate) which measures the additional
accumulation rate of information storage from time steps before that,

ṀX = I(X
(k−1)
n−1 ;Xn+1|Xn)/∆t.

The instantaneous predictive capacity inherits the divergent nature of the active
information storage, while the active memory utilization rate takes on the intuitive
representation of memory as a rate [44]. Crucially, ṀX converges to a limiting value as
∆t→ 0 for well-behaved continuous processes such as those considered here unlike AX
and IX (see full details in [44]), and thus only ṀX is used in our investigations here. As
a rate, the units of measurement of ṀX are in bits per second. As recommended by
Spinney et al. [44, 46], ∆t = 0.5 ms was selected on confirming that the transfer entropy
rate (see next subsection) and ṀX are stable to ∆t in this regime and appear to have
converged to a limiting value as ∆t→ 0.

Transfer Entropy

Transfer entropy [40,82] models the contribution of information transfer from a source
process Y to the dynamic state updates of a destination (or target) process X by
measuring the amount of information that Y provides about the next state of process X
in the context of the destination’s past. This perspective of modelling of information
transfer after first considering storage from the past contrasts the two operations, and
ensures that no information storage is attributed as having been transferred [82].

Quantitatively, this is the expected mutual information from realizations y
(l,ω)
n of

the state Y
(l,ω)
n of a source process Y to the corresponding realizations xn+1 of the next

value Xn+1 of the destination process X, conditioned on realizations x
(k,τ)
n of its

previous state X
(k,τ)
n :

TY→X(k, τ, l, ω) = I(Y(l,ω)
n ;Xn+1 | X(k,τ)

n ) (6)

In general, an embedding of the source state y
(l,ω)
n with l > 1 could be considered as

this would allow Y to be a Markovian process where multiple past values of Y in
addition to yn are information sources to xn+1. However for this analysis only l = 1
previous time step of the source process is used (denoted TY→X(k, τ)), in line with the
known function of the neural model in (1)-(4).

In order to best model information transfer, the source processes for TE
measurements are constrained to the known causal information contributors [47]. In this
case these are the upstream parents of the target in the structural connectivity matrix.

As mentioned in the previous subsection, the small time steps of the neuronal time
series requires us to consider continuous-time formulations, meaning we compute a
transfer entropy rate, ṪY→X(k, τ) = TY→X(k, τ)/∆t [44, 46].

The use of the linear-Gaussian estimator in JIDT for TE estimation makes the
calculated transfer entropy (rate) equivalent, up to a constant, to Granger causality
(rate) [83,84].

Finally, note that transfer entropy estimations can be non-zero even where the
source and destination processes have no directional relationship, due to estimator
variance and bias (see summary in [82, Sec. 4.5.1]). As such, one can make a statistical
test of whether a transfer entropy estimate is statistically different from the null
distribution of values that would be observed for source and destination processes with
similar properties but no directed relationship. We perform a test of statistical
significance for each directed pair of processes in producing Fig. 5b, retaining there only
the transfer entropies for pairs that were determined to be statistically significant
against the null distribution against a p-value threshold of α = 0.05. This test is carried
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out analytically for the Gaussian estimator, as described in [76, App. A.5], with a
Bonferroni correction for all directed pairs that are tested.

Conditional and Collective Transfer Entropy

Higher order terms of information transfer can capture the multivariate effects from
multiple sources to a single target. Two higher order terms which were calculated are
the conditional and collective transfer entropies.

Conditional transfer entropy [48,49,85] extends the basic form of transfer entropy by
conditioning on the history of another source process, Z. This captures the mutual
information between the past of source Y and the next value of target X, conditioned

on both the history X
(k,τ)
n of X and the history of conditional source Z:

TY→X|Z(k, τ) = I(Yn;Xn+1 | X(k,τ)
n , Zn) (7)

Of course, the above may in general incorporate embeddings for both Y and Z, and can
be extended to condition on several other sources Z (excluding Y ) at once. It should be
noted that a conditioned transfer entropy can be either larger or smaller than the
unconditioned measure, in the same way that a conditional mutual information can
both increase due to the addition of synergistic information that can only be decoded
with knowledge of both the source and conditional, as well as decrease due to a removal
of redundant information provided by both the source and conditional. The conditional
transfer entropy thus includes unique information from the source but not the
conditional, and synergistic information provided by the source and conditional
together, in the context of the past of the target [48,86]. These components cannot be
pulled apart using the tools of traditional information theory, but efforts are being made
by approaches of Partial Information Decomposition (PID) [87–89].

At the same time, collective transfer entropy [49,90] models the total information
transfer from a set of sources to a target, capturing unique information from each source,
avoiding double-counting redundant information across the sources, and capturing
multivariate synergistic effects. Given a multivariate set of sources Y, this refers to the
measure TY→X(k, τ) (again ignoring possible embeddings on the Y processes).

For these experiments, we compute conditional transfer entropy rate and collective
transfer entropy rate, similar to the pairwise transfer entropy rate. Only the highest
order conditional transfer entropy is calculated (known specifically as complete transfer
entropy [48,49]). This means that for each causal source, the conditional transfer
entropy to a particular target involved conditioning on all the other causal sources to
that target, as identified from the directed connectome. Also, we calculated the
collective transfer entropy to a given target from all causal sources to that target region,
as identified from the directed connectome.

Network Motifs

The 76 regions of this model are connected by a directed, weighted network Aij (see (3))
derived from the CoCoMac connectome [73]. The information storage of each region is
expected to be related to the number of certain network motifs which provide
feedforward and feedback loops involving that region. For linearly-coupled Gaussian
processes the active information storage can be calculated as a function of weighted
counts of these motifs [45]. However, for the more complex dynamics of this system, we
cannot derive an exact relationship. Instead, we approximate how well we expect the
network structure to support storage at a particular node or region a with a weighted
linear combination of these motif counts. This local network support for memory is
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then correlated with the observed active memory rate (across all nodes for a given σ, γ)
to see where in the parameter space this expectation held true.

The motifs which were considered (based on those identified in [45]) incorporated
feedback loops including the target node a and feedforward loops terminating at node a
(see Fig. 2d). The weighting given to each motif depends on the number of incoming
links to a and their edge weights (which are derived from the coupling strengths Aij).
First the edge weight of each link is normalized (taking inspiration from generation of
normalized Laplacians [91]) by the total incoming edge weight for each target (excluding
self loops) to generate C = D−1(A− diag(A1,1, A2,2, . . . , A76,76)), where
D = diag(d1, d2 . . . , d76) with di =

∑
j 6=iAij . The local network support Ψa at node a

is then computed as a linear sum of the relevant motifs at node a using the normalized
weights C:

Ψa =
∑
b

CbaCab +
∑
bc

CbaCcbCac +
∑
bc

CbcCabCac +
∑
bcd

CcdCbcCabCad. (8)

Note that the four weighted motif counts in the equation for Ψa correspond respectively
to the four motifs shown in Fig. 2d to contribute to storage in the dynamics of node a.
The contribution from longer motifs diminishes with length due to the normalisation,
and so we limit (8) to the shortest two contributing feedback and feedfoward motifs
(except for any self-loop at a).

Note that the self-loops were ignored in the local network support measure in order
to consider relative support for memory from distributed network effects only in Ψa.
The relative contribution of self-loops Aii (i.e. synaptic connections between neurons
within the same brain region) to memory was instead analysed separately. A similar
weighting was applied to self loops in order to normalize their contribution with respect
to total incoming edge weights (this time including the self loop). Here, we first
computed F = G−1A, where G = diag(g1, g2 . . . , g76), gi =

∑
j Aij . Then, in order to

evaluate the relative strength of contribution of self-loops to memory across the
parameter space, we correlated the Fii with the observed active memory rate across all
nodes for each given σ, γ pair. Note that we focus here on the synaptic connections
between neurons within the same brain region modelled by Aii, which is mediated by
the neural gain parameters. This analysis does not include the feedback terms in V and
W in (1) and (2) which correspond to self-coupling in the oscillatory dynamics of
individual neurons that make up the population. We do not include those terms because
they are constant across regions and are not moderated by the neural gain parameters.
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