Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The structural evolution of host-pathogen protein interactions: an integrative approach

View ORCID ProfileAnderson F. Brito, View ORCID ProfileJohn W. Pinney
doi: https://doi.org/10.1101/581637
Anderson F. Brito
Department of Life Sciences, Imperial College London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anderson F. Brito
John W. Pinney
Department of Life Sciences, Imperial College London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John W. Pinney
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

The evolution of protein-protein interactions (PPIs) is directly influenced by the evolutionary histories of the genes and the species encoding the interacting proteins. When it comes to PPIs of host-pathogen systems, the complexity of their evolution is much higher, as two independent, but biologically associated entities, are involved. In this work, an integrative approach combining phylogenetics, tree reconciliations, ancestral sequence reconstructions, and homology modelling is proposed for studying the evolution of host-pathogen PPIs. As a case study, we analysed the evolution of interactions between herpesviral glycoproteins gD/gG and the cell membrane proteins nectins. By modelling the structures of more than 12,000 ancestral states of these virus-host complexes it was found that in early times of their evolution, these proteins were unable to interact, most probably due to electrostatic incompatibilities between their interfaces. After the event of gene duplication that gave rise to a paralog of gD (known as gG), both protein lineages evolved following distinct functional constraints, with most gD reaching high binding affinities towards nectins, while gG lost such ability, most probably due to a process of neofunctionalization. Based on their favourable interaction energies (negative ΔG), it is possible to hypothesize that apart from nectins 1 and 2, some alphaherpesviruses might also use nectins 3 and 4 as cell receptors. These findings show that the proposed integrative method is suitable for modelling the evolution of host-pathogen protein interactions, and useful for raising new hypotheses that broaden our understanding about the evolutionary history of PPIs, and their molecular functioning.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 18, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The structural evolution of host-pathogen protein interactions: an integrative approach
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The structural evolution of host-pathogen protein interactions: an integrative approach
Anderson F. Brito, John W. Pinney
bioRxiv 581637; doi: https://doi.org/10.1101/581637
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The structural evolution of host-pathogen protein interactions: an integrative approach
Anderson F. Brito, John W. Pinney
bioRxiv 581637; doi: https://doi.org/10.1101/581637

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4658)
  • Biochemistry (10313)
  • Bioengineering (7636)
  • Bioinformatics (26241)
  • Biophysics (13481)
  • Cancer Biology (10648)
  • Cell Biology (15361)
  • Clinical Trials (138)
  • Developmental Biology (8463)
  • Ecology (12776)
  • Epidemiology (2067)
  • Evolutionary Biology (16794)
  • Genetics (11372)
  • Genomics (15431)
  • Immunology (10580)
  • Microbiology (25087)
  • Molecular Biology (10172)
  • Neuroscience (54233)
  • Paleontology (398)
  • Pathology (1660)
  • Pharmacology and Toxicology (2883)
  • Physiology (4326)
  • Plant Biology (9213)
  • Scientific Communication and Education (1582)
  • Synthetic Biology (2545)
  • Systems Biology (6761)
  • Zoology (1458)