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Abstract  
The differential production of transcript isoforms from gene loci is a key cellular mechanism. Yet, 

its impact in protein production remains an open question. Here, we describe ORQAS (ORF 

quantification pipeline for alternative splicing) a new pipeline for the translation quantification of 

individual transcript isoforms using ribosome-protected mRNA fragments (Ribosome profiling). We 

found evidence of translation for 40-50% of the expressed transcript isoforms in human and 

mouse, with 53% of the expressed genes having more than one translated isoform in human, 33% 

in mouse. Differential analysis revealed that about 40% of the splicing changes at RNA level were 

concordant with changes in translation, with 21.7% of changes at RNA level and 17.8% at 

translational level conserved between human and mouse. Furthermore, orthologous cassette 

exons preserving the directionality of the change were found enriched in microexons in a 

comparison between glia and glioma, and were conserved between human and mouse. ORQAS 

leverages ribosome profiling to uncover a widespread and evolutionary conserved impact of 

differential splicing on the translation of isoforms and in particular, of microexon-containing ones. 

ORQAS is available at https://github.com/comprna/orqas 
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The alternative processing of transcribed genomic loci through transcript initiation, splicing, and 

polyadenylation, determine the repertoire of RNA molecules in cells 1. Differential production of 

transcript isoforms, especially through the mechanism of alternative splicing, is crucial in multiple 

biological processes such as cell differentiation, acquisition of tissue-specific functions, and DNA 

repair 2–4, as well as in multiple pathologies 5–7. Although analysis of RNA sequencing (RNA-seq) 

data from multiple samples has indicated a large diversity of transcript molecules 8, genes express 

mostly one single isoform in any given condition and this isoform may change across conditions 
9,10. 

  

Computational and in-vitro studies have provided evidence that a change in relative isoform 

abundances can lead to the production of protein variants that impact the network of protein-

protein interactions in different contexts 11–14. In contrast, quantitative proteomics of naturally 

occurring proteins has identified much fewer protein variants than those predicted with RNA 

sequencing 15,16. Using state-of-the arts proteomics, it was recently shown that splicing changes at 

RNA level lead to changes in the sequence and abundance of proteins produced, although this 

was detectable for a limited number of transcripts 16. The difficulty in establishing a 

correspondence between transcript and protein variation may be due to limitations in current 

proteomics technologies, but also to the stability and translation regulation of transcripts 17,18. 

Despite the evidence about its functional relevance 3, it is still debated whether differential splicing 

leads to fundamentally different proteins and how widespread this might be 19–21. Of particular 

interest are microexons, which can be as short as 3 nucleotides and carry out conserved neuronal-

specific functions, and whose misregulation is linked to autism 22–24. Despite their involvement in 

protein-protein interactions 23,25, the detection of protein variation associated to differential 

microexon inclusion using unbiased proteomics is currently not possible.  

 

Sequencing of ribosome-protected RNA fragments, i.e. ribosome profiling, provides information on 

the messengers being translated in a cell. In particular, it allows the identification of multiple 

translated open reading frames (ORFs) in the same gene and the discovery of novel translated 

genes 26–29. However, ribosome profiling studies have been mainly oriented to gene-level analysis 
26,28,30. Recently, reads from ribosome profiling have been mapped across the exon-exon junctions 

of alternative splicing events 31, suggesting that alternative splicing products may be engaged by 

ribosomes and potentially translated to produce different protein isoforms. A potential limitation of 

that approach is that ribosomal profiling reads also contain signals from native, non-

ribosomal RNA-protein complexes 32. As exon boundaries are profusely bound by RNA binding 

proteins and splicing factors 33, the mapping of ribosome reads to these regions is not necessarily 

indicative of active translation.  Additionally, ribosome activity is associated to signal periodicity 

and uniformity along open reading frames 34, which has not yet been tested in relation to transcript 
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isoforms and alternative splicing. Thus, the extent to which alternative splicing, and in particular 

microexon inclusion, leads to the translation of alternative ORFs remains largely unknown. 

 

In this article, we describe a new method, ORQAS (ORF quantification pipeline for alternative 

splicing), to quantify translation abundance at individual transcript level from ribosome profiling 

taking into account Ribosome signal periodicity and uniformity per isoform. We validated the 

translation quantification of isoforms using independent data from polysomal fractions and 

proteomics. We further found a concordance between differential splicing and differential 

translation, and obtained evidence for the differential translation of microexons that is conserved 

between human and mouse. ORQAS provides a powerful strategy to study the impacts of 

differential RNA processing in translation.  

 

Results 
 

Translation Abundance estimation at isoform level from Ribo-seq 

 

We developed a new method, ORQAS (ORF quantification pipeline for alternative splicing), for the 

estimation of isoform-specific translation abundance (Fig. 1a) (Methods). ORQAS quantifies the 

abundance of open reading frames (ORFs) in RNA space from RNA sequencing (RNA-seq) in 

transcript per million (TPM) units, and assigns ribosome sequencing (Ribo-seq) reads to the same 

ORFs using RiboMap 35. After the assignment of Ribo-seq reads to isoform-specific ORFs, 

ORQAS calculates for each ORF two essential metrics to determine their potential translation: 

Uniformity, calculated as a proportion of the maximum entropy of the read distribution, and the 3nt 

periodicity along the ORF (Methods).  

 

We analyzed with ORQAS Ribo-seq and matched RNA-seq data from human and mouse glia and 

glioma 30, mouse hippocampus 36, and mouse embryonic stem cells 37 (Supp. Table 1). To 

determine which values of uniformity and periodicity would be indicative of an isoform being 

translated, we selected as positive controls genes with a single annotated ORF and with evidence 

of protein expression in all 37 tissues recorded in the Human Protein Atlas (THPA) 38. We 

considered translated those ORFs within the 90% of the periodicity and uniformity distribution of 

these positive controls (Fig. 1b) (Supp. Fig. 1). This produced a total of 20709-20785 translated 

ORFs in human, and 13,019-17,515 in mouse (Supp. Table 2). Interestingly, a large fraction of the 

expressed protein-coding genes had multiple translated isoforms: 52,3%-54,9% of the genes in 

human (Figs. 1c and 1d) and 29.1%-35.9% in mouse  (Supp. Figure 2).  
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Figure 1. Estimation of translated isoforms. (a) The ORF quantification pipeline for alternative splicing (ORQAS) 

quantifies transcript abundances (ATXT) in transcripts per million (TPM) units from RNA-seq with Salmon 54 and in ORFs 

per million (OPM) units with Ribomap 35. Coverage and periodicity are calculated for every ORFs with TPM > 0.1, and 

candidate translated isoforms are estimated by comparing to a set of single-ORF house keeping genes with protein 

expression evidence across 37 tissues.  (b) Uniformity (x axis) versus periodicity (y axis) for all tested ORFs with RNA 

expression TPM > 0.1 and at least 10 Ribo-seq reads assigned (in yellow). Uniformity is measured as the percentage of 

maximum entropy and periodicity is measured in the first annotated frame. Single-ORF house keeping genes are 

indicated in blue. We show the data for human glia and glioma. Other samples are shown in Supp. Fig. 1. (c) Distribution 

of the number of different ORFs translated per gene in the human glia and glioma samples. Other samples are shown in 

Supp. Fig 2. (d) Number of ORFs predicted to be translated per sample, separated according to whether the ORF is 

encoded by: a single-ORF gene (Single), the most abundant isoform according to RNA-seq abundance in a gene with 

multiple isoforms (Main isoform), the second most abundant (Secondary isoform), or by any of the remaining isoforms in 

the abundance ranking (Other isoforms). Tested ORFs that are not predicted to be translated are depicted in gray (Not-

translated). (e) Average density of Ribo-seq reads along ORFs in housekeeping singleton genes, in ORFs from the most 
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abundant isoform according to RNA-seq abundance in a gene with multiple isoforms, and in the second most abundant 

isoform.  

 

Overall, the majority of translated isoforms correspond to either single-isoform genes or the 

isoform with the highest expression in a sample (main isoform) (Fig. 1d). However, from those 

genes with multiple isoforms expressed at the RNA level, 3,471-3,570 (52.6%-55.5%) of genes in 

human and 577-898 (27.6-34%) in mouse have an alternative isoform translated (Fig. 1d). From all 

translated isoforms, 47.3%-49.2% in human, and 28.3%-34.9% in mouse, correspond to 

alternative isoforms (secondary or other isoform, Fig. 1d). In genes with multiple isoforms, the main 

isoform showed the highest average Ribo-seq coverage compared to secondary isoforms, albeit 

not as high as for the single-ORF genes used as positive controls (Fig. 1e). As a quality control, we 

considered the proportion of isoforms with low or no RNA expression that fell inside our periodicity 

and uniformity cutoffs and found only 0.7-0.9% across the human samples and 0.1-1.5% in the 

mouse samples (Supp. Table 3).  

 

Ribosome profiling discriminates translation abundance at isoform level 

 

As an initial validation of the estimation of isoform-specific translation, we compared our 

predictions in human with immunohistochemistry data available from The Human Protein Atlas 38. 

We observed that genes with translated isoforms are more frequently validated at all levels of 

protein expression (Fig. 2a). Furthermore, the majority (96%) of genes with translated ORFs show 

some evidence of protein expression using a combination of protein features (Fig. 2b). To further 

validate our approach, we compared the translated isoforms predicted with ORQAS with the 

sequencing of RNA from polysomal fractions from the same human neuronal and embryonic stem 

cell samples 39. ORQAS predicted 27,552 translated isoforms in stem cells, and 25,034 in neurons 

(Supp. Fig. 3). We found that translated isoforms were enriched in polysomal fractions, whereas 

isoforms with RNA expression but not predicted to be translated with ORQAS were enriched in 

monosomal fractions (Fig. 2c), providing further support to our predictions. This is also consistent 

with a small proportion of our predicted translated isoforms to be associated with NMD targets, 

which are generally associated with monosomes 40.  

 

Cross-species conservation is a strong indicator of stable protein production 41. We thus decided to 

test the conservation of our translated isoforms in human and mouse, using glia and glioma 

samples available for both species. To this end, we used an optimization method to determine the 

human-mouse protein isoform pairs most likely to be functional orthologs (Methods) (Fig. 2d). 

From 15824 human-mouse 1-to-1 gene orthologs, we identified 18574 human-mouse protein 

isoform pairs representing potential functional orthologs. Moreover, 7,112 (64%) of the 1-to-1 gene 
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orthologs had more than one orthologous isoform pair. We found that orthologous isoform pairs 

were significantly enriched in translated isoforms in both species (p-value < 2.2e-16 in all datasets) 

(Fig. 2e), providing further support for our predictions. 

 
Figure 2. Validation of predictions. (a) For the candidate translated isoforms (translated), the cases that did not pass 

the threshold of uniformity and periodicity (not-translated), and those without enough read data to be tested (not 

evaluated), the plot shows the proportion of cases in which the corresponding gene has evidence from 

immunohistochemistry, separated as high, low, and medium expression, from the Human Protein Atlas 38. We also 

indicate the cases not detected in the immunohistochemistry experiments (not-detected). The comparison was made for 

the human glia Ribo-seq. Singletons (single-ORF genes) were not included. (b) The plot shows the number of genes 

with predicted translated ORFs that have evidence of protein expression in the Human Protein Atlas from a combination 

of features: Mass Spectrometry, Immunohistochemistry and Uniprot. Translation predictions correspond to human glia 

Ribo-seq. Singletons were not included. (c) We show the distribution of the relative abundance in high polysome (left 

panels) and monosome (right panels) fractions for translated isoforms and for isoforms with RNA expression (TPM>0.1) 

but predicted as not translated. The plot shows the results for the two replicates for monosome (replicate 1 p-value = 

3.61e-82 and replicate 2 p-value = 1.60e-152) and high polysome fractions for embryonic stem cells (replicate 1 p-value 

= 1.09e-230 and replicate 2 p-value = 2.41e-253). The results for neuronal cells are given in Supp. Fig. 3. (d) Cross-

species conservation of protein isoforms. Protein isoforms from a 1-to-1 orthologous gene pair are compared and 
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candidate orthologous pairs are assigned using an optimization approach (Methods). (e) For the set of ORFs encoding a 

human-mouse orthologous protein pair (orthologous) and for those encoding proteins without an orthologous pair in 

mouse (non-orthologous) we plot the percentage that are predicted to be translated (translated) and the ones with RNA 

expression (TPM>0.1) but predicted as not translated (not-translated). We show here the results for human glia (p-value 

= 1.41e-140 Fisher test) and glioma (p-value = 3.63e-85), and for mouse glia (p-value = 1.143e-130) and glioma (p-value 

= 7.462e-53), Other mouse samples are shown in Supp. Fig. 3. 

 

 

To perform an additional validation of our findings, we considered isoform-specific regions (Fig. 

3a). We identified sequences that are unique to a specific isoform, since evidence mapped to 

these regions can be unequivocally assigned to the isoform. Additionally, we defined isoform-

specific ORFs as sequences shared between two isoforms but with a different frame in each 

isoform, since protein evidence mapped to it can be confidently assigned to a specific ORF. Both 

region types in translated isoforms showed a higher density of reads per nucleotide compared with 

other isoforms (Fig. 3b) (Supp, Fig. 4a). 

 

We further used peptides from Mass Spectrometry (MS) experiments 42 to match our predictions 

from Ribo-seq from the same tissue type (Methods). Overall we validated 86%-87% of translated 

single-ORF genes. Validation rate decreased with region length (Fig. 3c), as expected for MS 

experiments 41.  

 

Additionally, since ORQAS quantification is performed for the entire ORF and not looking at 

specific regions within the ORF, we used the raw read data to validate the unique sequence 

regions. In total, 91-97% of unique sequence regions of length >200nt harbored uniquely mapping 

Ribo-seq reads (Fig. 3d) (Supp Fig. 4b), and 87-89% unique ORF regions of length > 200nt 

contained P-sites predicted from the mapped reads (Supp, Fig. 4c). Overall, we were able to 

validate 56-80% of the isoform-specific sequence regions tested and 48%-73% of the isoform-

specific ORFs tested. 

 

In summary, from all the protein-coding transcript isoforms considered from the annotation (84,024 

in human and 48,928 in mouse), 58-59% in human and 63-65% in mouse showed RNA expression 

> 0.1 TPM (Supp. Table 3). From these expressed isoforms, about 40% in human, 41-54% in 

mouse, were predicted to be translated by ORQAS, and 23-43% were validated using independent 

data, including conservation (Fig. 3e). Furthermore, about 10% of all the annotated alternative 

isoforms in human and mouse had evidence of translation and these represented 60% of all 

translated isoforms (Fig. 3f) (Supp Table 4). Our analyses thus indicate that, although they are a 

small fraction of all expressed transcripts, alternative transcript isoforms are often translated into 

protein. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2019. ; https://doi.org/10.1101/582031doi: bioRxiv preprint 

https://doi.org/10.1101/582031
http://creativecommons.org/licenses/by/4.0/


 
Figure 3. Validation with Isoform-specific regions. (a) Isoform-specific sequence regions (left panel) defined as the 

parts of an isoform ORF that are not present in any other isoform from the same gene (left panel). Isoform-specific ORFs 

(right panel) are defined AS a region shared between two isoforms, but with a different frame in each isoform. (b) For the 

mouse samples of glia (mmu glia) and hippocampus (mmu hipp) we show the density of Ribo-seq reads per nucleotide 

over the isoform-specific regions. The left panels show the counts per nucleotide based on the estimated P-site positions 

over region length in log2 scale for isoform-specific ORFs. The right panels show the uniquely mapping read-count over 

region length in log2 scale for isoform-specific sequences. Distributions are given for predicted translated isoforms, for 

isoforms that did not pass the threshold of uniformity and periodicity (not translated), and for the isoforms with low 

expression (TPM<0.1) (not evaluated). Other samples are shown in Supp Fig. 4. (c) Validation with mass spectrometry 

peptides. For the mouse samples of glia (mmu glia) and hippocampus (mmu hipp), the plot shows the percentage of 

ORF-specific regions with 1 or more peptides, separated according to region length. We show these results for both 
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types of regions: isoform-specific ORFs sequences and isoform-specific ORFs. Other samples are shown in Supp Fig. 4. 

(d) For the mouse samples of glia (mmu glia) and hippocampus (mmu hipp) the plot shows the percentage of regions 

with at least 10 uniquely mapping Ribo-seq reads in isoform-specific sequences over the total number of isoforms with 

an isoform-specific sequence defined according to the length of the region. Other samples are shown in Supp Fig. 4. (e) 
Proportion of isoforms expressed predicted to be translated and that have been validated using one or more sources of 

evidence: conservation, uniquely mapped Ribo-seq reads in specific sequences, counts per base in specific ORFs and 

peptides. For each sample, and for all ORFs with sufficient RNA-seq expression (TPM > 0.1), we show the proportion 

predicted to be translated from Ribo-seq reads and the proportion that were validated. The proportions are colored to 

indicate the fraction that is not included in the more restricted set: expressed > translated > validated. (f) For each 

sample, and for all ORFs with sufficient RNA-seq expression (TPM > 0.1), we show the proportion of main isoforms and 

alternative isoforms predicted to be translated from Ribo-seq reads and the proportion that were validated. These plots 

do not include the genes with a single protein-coding isoform. 

 

Conserved impact of differential splicing on translation 

 

Differential splicing is often assumed to lead to a measurable difference in protein production. 

However, at genome scale, this has only been shown for a limited number of cases 16. We 

addressed this question using our more sensitive approach based on Ribo-seq. We used SUPPA 
43,44 to obtain 37,676 alternative splicing events in human and 17,339 in mouse that covered 

protein coding regions (Methods). Using the same SUPPA engine to convert isoform abundances 

to event inclusion values 43,44, we estimated the proportion of translation abundance, relative 

abundance (RA), explained by a particular alternative splicing event, using the isoform translation 

abundances (Fig. 4a). Accordingly, in analogy to a relative inclusion change (ΔPSI) in RNA space, 

we were able to measure the relative differences in ribosome space in relation to the inclusion or 

exclusion of particular alternative exons, or ΔRA. 

 

Comparing the glia and glioma samples in human, we found 856 events with a significant change 

in RNA splicing (|ΔPSI|>0.1 and p-value<0.05), and 590 events with significant differential 

translation (|ΔRA|>0.1 and p-value<0.05), with a significant overlap of 363 events between them 

(Jaccard index, z-score=89.386 comparing to the Jaccard index distribution of the overlaps from 

subsample sets of the same size) (Fig. 4b). Similarly, in mouse we found an overlap of 179 events 

(Jaccard index z-score=65.326), between 471 events with a significant change in RNA splicing 

(|ΔPSI|>0.1 and p-value<0.05) and 240 with significant change in translation (|ΔRA|>0.1 and p-

value<0.05) (Supp. Fig. 5a). Furthermore, considering the direction of change from all events in 

RNA and ribosome space, the concordance of the change was found to be significant for human 

(Pearson R=0.9904, p-value = 5.309e-312) and mouse (Pearson R=0.9937, p-value = 2.113e-

170); and in particular for the events that were significant in both tests (Fig. 4c) (Supp. Fig. 5b). 
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Figure 4. Differential translation linked to differential splicing. (a) Description of how SUPPA was used to calculate 

the differential inclusion of events in ribosome space. The abundance of open reading frames (ORFs) is calculated in 

ORFs per million (OPM) units. OPMs are transferred to events using SUPPA definition of events, using only exon-intron 

structures overlapping ORFs. For each event a relative abundance (RA) is obtained, analogous to a PSI. (b) Overlap of 

events changing significantly (dPSI > 0.1 and p-value < 0.05) with RNA-seq and with Ribo-seq for human. (c) Correlation 
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of changes in splicing and translation in events in human. (d) We show the proportions of events calculated in RNA 

space (upper panel) or in ribosome space (lower panel). In red we show the proportion of alternative splicing events 

calculated with SUPPA from the annotated coding regions in transcripts in human, whereas in blue we show the events 

that show a significant change using RNA-seq from mouse glia and glioma. Even types are: alternative 3’ss (A3) and 

5’ss (A5), alternative first (AF) and last (AL) exon, mutually exclusive (MX) exon, retained introns (RI) and skipping exon 

(SE). There is significant enrichment for SE events for RNA (Fisher’s test p-value = 3.90e-06) and Ribo-seq (p-value = 

7.46e-07), for A3 events for RNA (p-value = 1.02e-05) and Ribo-seq (6.22e-06), for A5 events for RNA (4.55e-03) and 

Ribo-seq (8.73e-03); and significant depletion for AL events for RNA (1.73e-32) and Ribo-seq (2.43e-43) and for MX 

events for RNA (6.06e-04) and Ribo-seq (1.83e-03). These proportions for mouse are shown in Supp. Fig. 4. (e) 

Enrichment of microexons with an impact in RNA splicing and ORF translation in human from the comparison of glia and 

glioma samples. In the figure, dPSI is used to indicate the difference in relative abundance in both RNA and Ribosome 

spaces. (f) Enrichment of microexons with an impact in RNA splicing and ORF translation in human from the comparison 

of Embrionic Stem Cells (ESC) and neuronal samples. As before, dPSI indicates the difference in relative abundance in 

both RNA and Ribosome spaces. (g) Difference in high polysome fraction, measured as dPSI, between neuronal 

samples and ESCs (y axis) for microexons with a significant change in Ribosome space. As before, dPSI indicates the 

difference in relative abundance in Ribosome space. 

 

We further observed a similar proportion of event types changing significantly in RNA and 

ribosome space, with an enrichment of exon skipping events in human (Fig. 4d) and mouse (Supp. 

Fig. 5c). In particular, microexons, defined to be of length ≤51nt 45, were enriched in the events 

changing between glia and glioma in both human (p-values 1.382e-12 for RNA-seq and 5.602e-10 

for Ribo-seq) (Fig. 4e) and mouse (p-values 6.386e-16 for RNA-seq and 3.446e-06 for Ribo-seq) 

(Supp. Fig. 5d). We repeated the same analysis using data from human neuronal differentiation 39 

and found that microexons were also enriched in the comparison between embryonic stem cells 

and neuronal cells in human for RNA splicing and translation changes (p-values 8.435e-06 for 

RNA-seq and 6.597e-05 for Ribo-seq) (Fig. 4f). Furthermore, using RNA sequencing from 

polysome fractions from the same stem cell and neuronal samples we were able to validate the 

change in inclusion patterns of microexons under the same conditions (Fig. 4g). These results 

provide evidence that differential splicing leads to a qualitative and quantitative change in the 

proteins produced from a gene locus. Our results are also consistent with a functional relevance of 

the inclusion of microexons in protein-coding transcripts in neuronal differentiation and their 

inclusion loss in brain-related disorders 22,23. 

 

To further test the relevance of our findings, we considered a set of 1,487 alternative exons 

conserved between human and mouse (Fig. 5a). A high proportion of them changed in the same 

direction between glia and glioma (66% in RNA-seq and 78% in Ribo-seq) (Fig. 5b). Moreover, we 

observed that microexons were enriched in these concordant changes in both species, with a 

general trend towards less inclusion in glioma (p-value 5.389e-05 in RNA-seq and 5.521e-4 for 

Ribo-seq) (Fig. 5c). Among the microexons with a differential pattern of splicing and translation, we 

identified one in the gene GOPC, which was linked before to glioblastoma 46, and one in the gene 
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CERS6 (Fig. 5d). To test further the potential relevance of the identified microexons with 

conserved differential pattern, we calculated their RNA splicing inclusion patterns across other 

normal and tumor brain samples. In particular, we analyzed samples from glioblastoma multiforme 

(GBM) from TCGA 47, Neuroblastoma (NB) from TARGET 48 (Fig 5e), and samples from cortex and 

hippocampus from GTEX 49. Microexons with a conserved impact on translation recapitulate the 

pattern of decreased inclusion in GBM compared with the postmortem normal brain regions (Fig. 

5e). Differentially translated microexons may explain tissue differentiation as well as tumor specific 

properties, as they differentiate tissues and tumor types (Supp. Fig. 5e), whereas conserved 

microexons appear to be more representative of the tissue differentiation (Supp. Fig. 5f).  
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Figure 5. A conserved program of differential RNA usage and translation. (a) Conserved alternative splicing events 

were obtained by mapping with LiftOver the coordinates of the alternative exon (s2, e2), and the internal coordinates of 

the flanking exons (e1, s3). We considered those alternative exons as conserved if at least (s2, e2) were conserved. (b) 

Directionality of the changes in conserved alternative exons longer than 51nt in Ribosome space. As before, dPSI 

indicates here the difference in relative abundance in both RNA and Ribosome spaces. (c) Directionality of the changes 

in evolutionary conserved alternative microexons (≤51nt) in Ribosome space. As before, dPSI indicates here the 

difference in relative abundance in both RNA and Ribosome spaces. (d) Examples of microexons that change 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2019. ; https://doi.org/10.1101/582031doi: bioRxiv preprint 

https://doi.org/10.1101/582031
http://creativecommons.org/licenses/by/4.0/


significantly in RNA and ribosome space between glia and glioma. For the genes GOPC and CERS6 we show Ribo-seq 

reads mapping to the microexon region and its flanking exons (left panels) and the number of Ribo-seq reads crossing 

the microexon junctions (right panels) in both glia (in blue) and glioma (in orange). (e) Patterns of inclusion of conserved 

differentially translated microexons in normal hippocampus (Hipp) samples from GTEX, gliblastoma multiforme (GBM) 

from TCGA, and neuroblastoma (NB) from TARGET. The heatmap shows the difference of the median PSI with respect 

to normal brain cortex tissue from GTEX.  

 

Discussion 
 

We have described a new method, ORQAS, to obtain abundance estimates at isoform level in 

ribosome space (https://github.com/comprna/orqas). ORQAS allows the identification of multiple 

protein products from a gene and the study of differential translation associated to alternative 

splicing and differential transcript usage between conditions. Our approach presents several 

novelties with respect to previous analyses 31,35,39 : i) we calculated the periodicity and uniformity 

for each isoform; ii) we validated our predictions using both sequence and ORF specific regions in 

isoforms, regardless whether these regions could be encoded into an standard alternative splicing 

event; and iii) we provided an isoform quantification in ribosome space that can be reused with 

other tools, like SUPPA. Additionally, ORQAS uses RNA-seq quantification to guide the isoform 

abundance estimation in ribosome space, unlike previous approaches that used directly Ribo-seq 

reads to quantify isoforms, which presents important limitations 39. 

 

We estimated that in total about 40-50% of the protein coding isoforms with RNA expression 

showed some evidence of translation, and that around 20,700 proteins are produced in human and 

13,000-17,500 in mouse in the tested conditions. Additionally, about 5,700-5,800 genes in human, 

2,600-3,900 in mouse, produce more than one protein in those conditions. These estimates are far 

from what is generally predicted from RNA expression only 8. This may be explained by the limited 

coverage of Ribo-seq reads, but may be also due to the fact that RNA-seq artificially amplifies 

fragments of unproductive RNAs leading to many false positives. Nonetheless, our data indicates 

that many more ORFs are translated in a given sample than what is detectable by current 

proteomics methods and the number of protein products are close to estimates using a 

combination of proteomics and sequence conservation 41. Importantly, we found that multiple 

ORFs are translated from the same gene and at different abundances across conditions.  

 

Around 40% of the events detected with differential RNA splicing showed consistent measurable 

changes in Ribo-seq in the same direction, which supports the notion that changes in RNA 

processing of genes have a widespread impact in the translation of ORFs from a gene. In 

particular, we found that a pattern of decreased inclusion of microexons in glioma with respect to 

normal brain samples is recapitulated in translation, providing in vivo evidence that the splicing 
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changes in microexons have an impact in protein production. Microexon inclusion is a hallmark of 

neuronal differentiation 22,23,44, and glia partly recapitulates the pattern of microexon inclusion found 

in neurons 23. The decreased inclusion of microexons observed in glioma suggests a 

dedifferentiation pattern as has been described before for other tumors 50, but could also be 

indicative of a difference in the content of neuronal cells in the samples compared. In either case, 

the evolutionary conservation of the change at RNA expression and protein production indicates a 

conserved functional program between the glia and glioma samples.  

 

Our capacity to predict RNA splicing variations from RNA-seq data currently exceeds our power to 

evaluate the significance of those events regarding protein production with current proteomics 

technologies 51. Despite this limitation, mass spectrometry can show for a small number of cases 

that splicing changes impact the abundance of proteins produced by a gene 16. Our findings are in 

agreement with these results, and moreover overcome current limitations to determine genome-

wide impacts of RNA processing changes on protein production. Furthermore, our analyses 

indicate that for the majority of genes producing multiple protein isoforms, these do not vary in 

more than 25% of the length of the most highly expressed isoform, suggesting that for most part, 

the functional impacts from alternative splicing are mediated by slight modifications in the protein 

sequences 25, rather than through the production of essentially different proteins. In summary, 

ORQAS leverages ribosome profiling to provide a genome-wide coverage of genes and transcript 

isoforms and allow a more effective testing of the impacts of splicing in protein production, as well 

as the identification and validation of multiple proteins from the same gene locus. 

 

 

Online Methods 
  

Pre-processing of RNA-seq and Ribo-seq datasets  

 

RNA-seq and Ribo-seq datasets were downloaded from Gene Expression Omnibus (GEO) for the 

following samples: normal glia and glioma from human and mouse (GSE51424) 30, mouse 

hippocampus (GSE72064) 36, mouse embryonic stem cells (GSE89011) 37, and three steps of 

forebrain neuronal differentiation in human (GSE100007) 39. Adapters in RNA-seq and Ribo-seq 

datasets were trimmed using cutadapt v.1.12 with additional quality filters (-hq = 30 -lq = 10) 52. We 

further discarded reads that mapped to annotated rRNAs and tRNAs. Remaining reads in RNA-

seq and Ribo-seq datasets were filtered by length (>= 26 nucleotides). 

 

Quantification of transcripts and open reading frames 
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We used the Ensembl annotation v85 for human (hg19) and mouse (mm10) removing 

pseudogenes, short isoforms (< 200 nt) and annotated isoforms with incomplete 5’ or 3’ regions. 

For the analysis of RNA-seq data we used Salmon v0.7.2 (Patro et al. 2017) to quantify transcript 

abundances in transcripts per million (TPM) units using the annotation of unique open reading 

frames (ORFs). To quantify coding sequences (CDS) at the isoform level with the Ribo-seq data 

we applied a modified version of Ribomap (Wang et al. 2016). As default, Ribomap uses the RNA-

seq reads aligned to the transcriptome sequences with STAR 53. Instead, we provided a direct 

quantification of the ORFs with RNA-seq using Salmon, to be used as priors by RiboMap. We 

calculated the translation abundances of each ORF based on Ribo-seq in ORFs Per Million (OPM) 

units, analogously to the TPM units:  

OPMi =10
6 ni / li

nj / l j
j
∑

 

where ni is the estimated Ribo-seq counts in ORF i and li is the effective length of the same ORF.  

 

Identification of actively translated isoform coding sequences 

 

We identified actively translated ORFs by calculating two parameters read periodicity and read 

uniformity 34. The periodicity is based on the distribution of the reads in the annotated frame and 

the two alternative ones. In order to calculate the read periodicity, we previously computed the 

position of the P-site, corresponding to the tRNA binding-site in the ribosome complex. This was 

obtained by calculating the distance between annotated ATG start codons and the leftmost 

position covered by Ribo-Seq reads, for each read length, The uniformity was measured as the 

proportion of maximum entropy (PME) defined by the distribution of reads along the ORF: 

 

𝐻 𝑋 =  
𝑁!
𝑁

∗ 𝑙𝑜𝑔!
𝑁!
𝑁

!

!!!
 

𝑃𝑀𝐸 =  
𝐻(𝑋)

max (𝐻)
 

 

Where N represents the total number of reads, Ni iis the number of reads in each region i and 

max(H) is the entropy assuming that the reads are equally distributed across the ORF. The 

maximum value is 1, and indicates a completely even distribution of reads across codons. These 

values were obtained for each sample by pooling the replicates and we only considered ORFs with 

10 or more assigned Ribo-seq reads, and with RNA-seq abundance TPM > 0.1. 

 

Polysomal fraction analysis 
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We used RNA-seq from high polysomal, low polysomal and monosomal fractions from embryonic 

stem cells and neuronal cell culture in human (GSE100007) 39 to quantify isoforms with Salmon 54. 

Only ORFs from protein-coding isoforms were used for quantification. For each isoform we 

calculated the polysomal relative abundance as before 17 by dividing the abundance in high 

polysomal fraction in TPM units, by the sum of abundances in (high and low) polysomes and 

monosomes.  

 

Validation of isoform-specific regions 

We defined two different types of isoform-specific regions that were analysed differently. Isoform-

specific sequences are regions with a unique nucleotide sequence among the isoforms of the 

same gene. Isoform-specific ORFs are defined as regions that will give rise to different amino-acid 

sequences within the proteins of the same gene, either because of the presence of isoform-

specific sequences or frame-shifted common sequences (Fig. 3A). According to the annotation, we 

identified 34553 isoforms containing isoform-specific sequences in human and 29447 in mouse 

and 44298 isoforms containing isoform-specific ORFs in human and 34329 in mouse. For the 

validation of isoform-specific sequences we considered uniquely mapping Ribo-seq reads from the 

STAR output falling entirely inside these regions or in the junction of the specific sequence with the 

common region. Read densities inside those regions where calculated as the total number of 

uniquely mapping reads in the region divided by the length of the isoform-specific sequence. The 

validation of isoform-specific ORFs instead was performed using the profiles of counts in each 

base of the ORF considering the expected position of the P-site. For isoform-specific ORFs the 

read densities where established as total number of counts in the region divided by the length in 

nucleotides of the isoform-specific ORFs.  

 

Proteomics evidence in translated isoform coding sequences 

We mined the proteomics database PRIDE (Vizcaino et al. 2016) to search for peptide matches to 

ORFs. We only considered peptide datasets from mouse corresponding to tissues analyzed in this 

study: brain (PRD000010, PXD000349, PXD001786), hippocampus (PRD000363, PXD000311, 

PXD001135), and embryonic cell lines (PRD000522).  This corresponded to a total of 328,200 

peptides. We searched for peptide matches in translated ORFs and only kept peptides that had 

one perfect match to an ORF and did not have a match with 0, 1 or 2 amino acid mismatches to 

any other annotated ORF isoform from the same or different genes.  

 

Differential inclusion of events at RNA and translation level 

We used SUPPA 43,44 to generate alternative splicing events defined from protein-coding 

transcripts and covering the annotated ORFs. The relative inclusion of an event was calculated 

with SUPPA in terms of the transcript abundances (in TPM units) calculated from RNA-seq and in 
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terms of the ORF abundances (in OPM units) calculated from Ribo-seq. The test for significant 

differential inclusion of the events was applied in the same way for both cases by testing the 

difference between the observed change between conditions and the observed change between 

replicates, as described before 44. 

 

Calculation of orthologous isoforms 

We considered the set of 1-to-1 orthologous genes between human and mouse from Ensembl 

(v85) 55. For each pair of orthologous genes we calculated all possible pairwise global alignments 

between the human and mouse proteins encoded by these genes using MUSCLE 56. For each 

alignment we defined a score as the fraction of amino acid matches over the total length of the 

global alignment, and kept only protein pairs with score >= 0.8. From all the remaining protein pairs 

in each orthologous gene pair, we selected the best human-mouse protein pairs using a symmetric 

version of the stable marriage algorithm 57  
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