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Abstract 35 

Instantaneous brain states have consequences for our sensation, perception, and 36 

behaviour. Fluctuations in arousal and neural desynchronization likely pose 37 

perceptually relevant states. However, their relationship and their relative impact on 38 

perception is unclear. We here show that, at the single-trial level in humans, local 39 

desynchronization in sensory cortex (expressed as time-series entropy) versus pupil-40 

linked arousal differentially impact perceptual processing. While we recorded 41 

electroencephalography (EEG) and pupillometry data, stimuli of a demanding auditory 42 

discrimination task were presented into states of high or low desynchronization of 43 

auditory cortex via a real-time closed-loop setup. Desynchronization and arousal 44 

distinctly influenced stimulus-evoked activity and shaped behaviour displaying an 45 

inverted u-shaped relationship: States of intermediate desynchronization elicited 46 

minimal response bias and fastest responses, while states of intermediate arousal gave 47 

rise to highest response sensitivity. Our results speak to a model in which independent 48 

states of local desynchronization and global arousal jointly optimise sensory processing 49 

and performance.  50 
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Introduction 51 

The way we sense and perceive our environment is not determined by physical input 52 

through the senses alone. The dynamics of ongoing brain activity affect the build-up 53 

of sensory representations and our conscious perception of the physical world. 54 

Recently, instantaneous fluctuations of both pupil-linked arousal (McGinley et al., 55 

2015b; Lee et al., 2018; Pfeffer et al., 2018) and neural desynchronization (Curto et al., 56 

2009; Marguet and Harris, 2011; Pachitariu et al., 2015) have been highlighted as 57 

sources of such sensory and perceptual variation: Arousal and cortical 58 

desynchronization are two ways of characterizing the brain state, which strongly 59 

influences sensory cortical responses, the encoding of information, thus perception 60 

and ultimately behaviour.  61 

The term arousal here and henceforth is used to refer to the general level of 62 

alertness which likely traces back to neuromodulatory activity and is associated with 63 

the ascending reticular activating system (ARAS). Pupil-linked arousal, which captures 64 

locus coeruleus-norepinephrine activity (LC–NE; Aston-Jones & Cohen, 2005; Joshi, Li, 65 

Kalwani, & Gold, 2016; Reimer et al., 2016) has been shown to influence sensory evoked 66 

activity (McGinley et al., 2015a, 2015b; Gelbard-Sagiv et al., 2018) and the processing 67 

of task-relevant information (Murphy et al., 2014; Lee et al., 2018). Despite evidence for 68 

an inverted u-shaped relation of tonic LC–NE activity to performance long suspected 69 

from the Yerkes-Dodson law (Yerkes and Dodson, 1908), the precise associations 70 

between arousal, sensory processing, and behaviour are underspecified: Although 71 

optimal performance at intermediate levels of arousal has reliably been observed 72 

(Murphy et al., 2014; McGinley et al., 2015b, 2015a; van den Brink et al., 2016; Faller et 73 

al., 2019), reports of linear effects on performance (Gelbard-Sagiv et al., 2018) or 74 

evoked activity (Neske and McCormick, 2018) in different tasks and species complicate 75 

this picture. 76 

In a separate line of experimental work in non-human animals, relatively high neural 77 

desynchronization yielded improved encoding and representation of visual (Goard 78 

and Dan, 2009; Pinto et al., 2013; Beaman et al., 2017) as well as auditory input (Marguet 79 

and Harris, 2011; Pachitariu et al., 2015; Sakata, 2016). Such periods of 80 

desynchronization are characterized by reduced noise correlations in population 81 

activity, and these patterns are commonly referred to as desynchronized cortical 82 

states. They likely result from subtle changes in the balance of excitatory and inhibitory 83 

activity (Renart et al., 2010; Haider et al., 2012). Notably, behaviourally relevant changes 84 

in cortical desynchronization have been suggested to trace back to attention-related 85 

changes in thalamo-cortical interactions (Harris and Thiele, 2011). Thus, such 86 

desynchronization states can be expected to be of local nature and be limited to 87 

sensory cortical areas of the currently attended sensory domain (Beaman et al., 2017). 88 

Although local desynchronization and perceptual performance are positively linked in 89 

general (Beaman et al., 2017; Speed et al., 2019), the exact shape of their relationship 90 

(e.g., linear vs. quadratic) is unclear. Most notably, evidence for a similar mechanism in 91 

humans has remained elusive.  92 

On the one hand, a tight link of pupil size and desynchronization has been claimed 93 

(McCormick, 1989; McCormick et al., 1991; McGinley et al., 2015a; Vinck et al., 2015). On 94 

the other hand, both measures have also been found to be locally unrelated (Beaman 95 

et al., 2017; Okun et al., 2019). As of now, pupil-linked arousal and local cortical 96 

desynchronization may or may not be distinct signatures of the same underlying 97 
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process: Varying noradrenergic and cholinergic activity could influence both, local 98 

cortical activity and the more global measure of pupil size via afferent projections from 99 

brain-stem nuclei (Harris and Thiele, 2011). In sum, it is, first, unclear how pupil-linked 100 

arousal and local cortical desynchronization precisely shape sensory processing and 101 

perceptual performance in humans. Second, the interrelation of both measures and 102 

their potentially shared underlying formative process lacks specification. 103 

Here, we set out to test the relationship of local desynchronization states and 104 

pupil-linked arousal, and to specify their relative impact on sensory processing and 105 

perception in healthy human participants. We recorded EEG and pupillometry while 106 

participants performed a challenging auditory discrimination task. We modelled 107 

ongoing neural activity, sensory processing, and perceptual performance based on 108 

both local cortical desynchronization and pupil-linked arousal. This way we were able 109 

to test the interrelations of both measures but also to directly inspect their shared as 110 

well as exclusive influence on sensory processing and behaviour. Specifically, the effects 111 

of local cortical desynchronization and pupil-linked arousal on perceptual sensitivity as 112 

well as response criterion were analysed. 113 

A closed-loop real-time algorithm calculated on-line an information theoretic 114 

proxy of auditory cortical desynchronization (weighted permutation entropy, WPE; 115 

Fadlallah, Chen, Keil, & Príncipe, 2013; Waschke, Wöstmann, & Obleser, 2017) based on 116 

EEG signal arising predominantly from auditory cortices. Of note, WPE as a proxy of 117 

desynchronization is tailored to the analysis of electrophysiological time series: It 118 

captures oscillatory as well as non-oscillatory contributions as a time-resolved estimate 119 

of desynchronization (see methods for details). Importantly, EEG entropy calculated for 120 

a previously published data set (Sarasso et al., 2015) aptly tracks changes in excitatory 121 

and inhibitory (E/I) cortical activity that occur under different anaesthetics (Fig. 2 122 

supplement 1). Also, EEG entropy as measured in the present data aligns closely with 123 

the spectral exponent, a previously suggested measure of E/I (Fig. 2 supplement 1; Gao, 124 

Peterson, & Voytek, 2017; Waschke et al., 2017). Entropy of EEG signals thus is not only 125 

sensitive to the basic features of desynchronization (e.g. reduced oscillatory power) but 126 

also captures changes in a central underlying mechanism (E/I balance). 127 

We used this measure of ongoing desynchronization to trigger stimulus 128 

presentation during relatively synchronized and desynchronized states, respectively. A 129 

continuously adapting criterion enabled us to effectively sample the whole 130 

desynchronization state space (Jazayeri and Afraz, 2017). Such a closed-loop set up 131 

allows for selective stimulation during specific states of brain activity while accounting 132 

for changes in the appearance of those states and hence represents a powerful tool with 133 

a multitude of potential applications in research but also therapy (Sitaram et al., 2016; 134 

Ezzyat et al., 2018). To evaluate the interrelation of pre-stimulus desynchronization with 135 

simultaneously acquired pupil-linked arousal as well as their influence on stimulus-136 

related activity we employed linear mixed-effect models. Furthermore, psychophysical 137 

models were used to evaluate the impact of desynchronization and arousal on 138 

perceptual sensitivity, response criterion, and response speed.  139 

Although local cortical desynchronization and pupil-linked arousal were weakly 140 

positively correlated, both did not only shape the ongoing EEG activity into distinct 141 

states, but also differentially influenced sensory processing at the level of single trials: 142 

On the one hand, phase-locked activity in low frequencies as well as stimulus-related 143 

gamma power over auditory cortices was highest following intermediate levels of pre-144 
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stimulus desynchronization. On the other hand, induced low-frequency power during 145 

and after a stimulus increased linearly with pre-stimulus arousal. Response criterion and 146 

speed exhibited an inverted u-shaped relationship with local cortical 147 

desynchronization, where intermediate desynchronization corresponded to minimal 148 

response bias and fastest responses. An analogous relationship was found for arousal 149 

and sensitivity, revealing highest sensitivity at intermediate arousal levels.  150 

Our results speak to a model in which global arousal states and local 151 

desynchronization states jointly influence sensory processing and performance. While 152 

fluctuations in arousal are likely realized by afferent cholinergic and noradrenergic 153 

projections into sensory cortical areas (Robbins, 1997; Carter et al., 2010), 154 

desynchronization states might result from efferent feedback connections (Harris and 155 

Thiele, 2011; Zagha et al., 2013). 156 

  157 
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 159 

Figure 1. Illustration of the real-time closed-loop setup to track states of 160 

desynchronization (a) Setup: EEG signal was spatially filtered before entropy 161 

calculation. Pupil size was recorded and monitored consistently. Pure tone stimuli 162 

were presented via in-ear headphones during states of high or low entropy of the 163 

incoming EEG signal. (b) Schematic representation of the real-time algorithm: spatially 164 

filtered EEG signal (one virtual channel) was loaded before entropy was calculated 165 

using a moving window approach (illustrated for 18 samples in the upper box; 200 166 

samples were used in the real-time algorithm). Voltage values were transformed into 167 

rank sequences (“motifs”) separated by one sample (lower box; Eq. 1 in Methods; 168 

different colours denote different motifs), and motif occurrence frequencies were 169 

weighted by the variance of the original EEG data constituting each occurrence 170 

(equation 3 & 4). Each entropy value was calculated based on the resulting conditional 171 

probabilities of 200 samples, before the window was moved 10 samples forward (i.e., 172 

effectively down-sampling to 100 Hz). Inset: The resulting entropy time-course was 173 

used to build a continuously updated distribution (forgetting window = 30 s). Ten 174 

consecutive entropy samples higher than 90% (or lower than 10%) of the currently 175 

considered distribution of samples defined states of relatively high and low 176 

desynchronization, respectively. Additionally, pupil size was sampled continuously. 177 

  178 
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Results 179 

We recorded EEG and pupillometry while participants (N = 25; 19–31 years old) 180 

performed an auditory pitch discrimination task. On each trial participants were 181 

presented with one tone, taken from a set of seven pure tones (increasing pitch from 182 

tone 1 through tone 7), and had to decide whether that tone was rather high or low in 183 

pitch with regard to the overall set of tones. Participants thus compared each tone to 184 

an implicit standard, the median (= mean) pitch of the set. This yielded in all 185 

participants a valid psychometric function mapping stimulus pitch to perceptual 186 

decisions (see Fig. 5 supplement 2).  187 

Critically, by means of a real-time closed-loop algorithm (see Fig. 1), tones were 188 

presented during states of relatively high or low entropy of auditory cortical EEG, a 189 

proxy of local cortical desynchronization. By collapsing offline across the whole 190 

experiment, we obtained data that covered the whole range of desynchronization 191 

states occurring in a given participant (Jazayeri and Afraz, 2017). We then combined 192 

(generalized) linear mixed-effects models and psychophysical modelling to test the 193 

effects of local cortical desynchronization as well as pupil-linked arousal on (1) ongoing 194 

as well as sensory-related EEG activity, and on (2) perceptual performance. 195 

 196 

Real-time closed-loop algorithm dissociates desynchronization states 197 

Entropy of EEG signals emerging from auditory cortices was calculated with the help 198 

of an established, functional–localizer-based spatial filter (see Fig. 2a; de Cheveigne & 199 

Simon, 2008; Herrmann, Maess, & Johnsrude, 2018a) and a custom real-time algorithm 200 

(Fig. 1). Source projection of localizer data which were used to construct the subject-201 

specific spatial filters revealed predominantly auditory cortical regions as generators 202 

(Fig. 2a). 203 

Note that the distribution of entropy values which provided the basis for the 204 

classification of relatively high vs. relatively low desynchronization states was updated 205 

continuously, with two crucial consequences: First, this approach minimized the 206 

potential impact of slow drifts in desynchronization on brain state classification. 207 

Second, the continuously updated criterion allowed us to, effectively, sample the 208 

whole state space of local desynchronization states: Depending on the current 209 

distribution, the same absolute entropy value could be classified as a high state, for 210 

example in the beginning of the experiment, and as a low state half an hour later. This 211 

focus on local, short-lived states resulted in widely overlapping pre-stimulus entropy 212 

distributions of high and low states (Fig. 2c) which were then used as continuous 213 

predictor alongside the equally continuous pupil-size in all subsequent analyses. 214 

Demonstrating the performance of the real-time algorithm, average entropy 215 

time-courses were elevated for all classified-high compared to all classified-low states 216 

in a 200 ms pre-stimulus window (all P < .001, FDR corrected; Fig. 2b). Note that this 217 

result is non-trivial. Since we continuously updated the criterion for state detection, in 218 

theory, states classified online as high and low could have yielded the same average 219 

entropy across the entire experiment. 220 

In contrast, pupil diameter time-courses did not differ between high and low 221 

entropy states at any point in time (all P > .1) nor did the distributions of pre-stimulus 222 

pupil diameters (Fig. 2c). In line with previous research (Reimer et al., 2014), pupil size 223 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/582353doi: bioRxiv preprint 

https://doi.org/10.1101/582353
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

and entropy in the pre-stimulus time window were positively related (β = .02, SE = .01, 224 

P = .02). Pupil size explained less than 1% of the variance in EEG entropy.  225 

Furthermore, auditory cortical desynchronization and pupil linked arousal, as 226 

approximated by EEG entropy and pupil size, displayed different autocorrelation 227 

functions (Fig. 2b). While EEG entropy states were self-similar on an approximate ~500 228 

ms scale, states of pupil size extended over several seconds. 229 

Most relevant to all further analyses, we conclude that states of local cortical 230 

desynchronization in auditory cortex and pupil-linked arousal predominantly occurred 231 

independently of each other. 232 

 233 

Figure 2. Evaluation of the real-time closed-loop setup for states of local 234 

desynchronization and arousal. (a) Grand average spatial filter weights based on 235 

data from an auditory localizer task (top) and grand average source projection of the 236 

same data (masked at 70% of maximum; bottom). (b) Autocorrelation functions for EEG 237 

entropy (red) and pupil size time courses (blue). Entropy states are most self-similar at 238 

~500 ms (~2 Hz) and pupil states at ~2 s (~0.5 Hz). (c) Grand average time-courses of 239 

entropy (upper panel) and pupil diameter (lower panel) for low-entropy (blue) and 240 

high-entropy states (orange) ± standard error of the mean (SEM). Subject-wise 241 

averages in the pre-stimulus time-window (-200–0 ms, grey boxes) in right panels. 242 

Entropy was logit transformed and baseline corrected to the average of the preceding 243 

3 seconds for illustration. Pupil size was expressed as percentage of each participant’s 244 

maximum pupil diameter across all pre-stimulus time-windows. (d) Histograms and 245 

fitted distributions of absolute z-scored pre-stimulus entropy (top) and z-scored pupil 246 

size (bottom) for low-entropy states (blue), high-entropy states (orange), and both 247 

states combined (grey). Note the independence of entropy states and pupil states. 248 

The following figure supplements are available for figure 1: 249 

Figure 2 supplement 1. EEG entropy as a marker of E/I balance based on anaesthesia 250 
recordings from Sarasso et al. (2015) 251 
  252 
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Local cortical desynchronization and pupil-linked arousal pose distinct states of ongoing 253 

activity 254 

To dissociate the corollaries of local cortical desynchronization and pupil-linked 255 

arousal on ongoing EEG activity, we modelled single trial pre-stimulus oscillatory 256 

power over auditory cortical areas as a function of pre-stimulus entropy and pupil 257 

diameter by jointly including them as predictors in linear mixed-effects models. Of 258 

note, non-baselined values of EEG entropy and pupil size were used as predictors but 259 

baseline values of EEG entropy were included as covariates to control for the influence 260 

of slow temporal drifts. This approach has been suggested previously (Senn, 2006), is 261 

widely used in functional imaging (Kay et al., 2008), and is more reliable than 262 

conventional baseline subtraction methods (Alday, 2019). All analyses of ongoing or 263 

stimulus-related EEG activity were carried out on the spatially filtered EEG signal, 264 

allowing us to concentrate on brain activity dominated by auditory cortical regions. 265 

As expected based on the definition of entropy and earlier results (Waschke et 266 

al., 2017), these analyses revealed a negative relationship of entropy and oscillatory 267 

power within the pre-stimulus time window (-200–0 ms; Fig. 3). With increasing pre-268 

stimulus entropy, low-frequency pre-stimulus power decreased (1–8 Hz, linear: β = -269 

.18, SE = .01, P < .001; quadratic: β = .03, SE = .009, P < .005; Table S1). Gamma power 270 

(40–70 Hz) also decreased (linear: β = -.18, SE = .01, P < .001; Table S2). Gamma power 271 

was lowest at intermediate entropy levels (quadratic effect; β = .06, SE = .009, P < .001). 272 

Furthermore, EEG entropy was negatively related to pre-stimulus alpha power (8–12 273 

Hz, β = -.29, SE = .01, P < .001; Figure 3 supplement 1 & Table S3) and beta power (14–274 

30 Hz, β = -.32, SE = .01, P < .001, Figure 3 supplement 1 & Table S4). Auditory EEG 275 

entropy hence aptly approximates the degree of auditory cortical desynchronization 276 

over a wide range of frequencies. 277 

Analogously, pupil size was associated with a decrease in pre-stimulus low-278 

frequency power (1–8 Hz, linear: β = -.04, SE = .01, P < .001; quadratic: β = .016, SE = 279 

.006, P < .05; Table S2) but did not display a substantial relationship with gamma power 280 

(all P > .2 see Fig. 3; Table S3). Notably, pupil size was positively related with pre-281 

stimulus beta power (14–30 Hz, β = .04, SE = .01, P < .001; Figure 3 supplement 1 & 282 

Table S4) but not with alpha power (all P > .3). 283 

To directly compare the relative contribution of EEG entropy and pupil size on 284 

ongoing EEG activity, respectively, we computed a Wald statistic (ZWald). The Wald 285 

statistic puts the difference between two estimates from the same model in relation to 286 

the standard error of their difference. The resulting Z-value can be used to test against 287 

equality of the two estimates. The stronger negative linear link of EEG entropy with 288 

low-frequency power compared to pupil size was supported by the Wald test (ZWald = 289 

9.1, P < .001). Put differently, in these stimulus-free periods in auditory cortex, low-290 

frequency power was low given strong desynchronization, while it was additionally, 291 

yet more weakly, influenced by pupil-linked arousal. Notably, both patterns of results 292 

did not hinge on the exact choice of frequency ranges. 293 

High-desynchronization states were thus characterized by reduced oscillatory 294 

broad-band power overall, while high-arousal states were accompanied by a decrease 295 

in low-frequency power and an increase in higher-frequency (beta) power. 296 

  297 
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 298 

Figure 3. Contribution of pre-stimulus entropy and pupil size to ongoing auditory 299 

cortical EEG activity. (a) Grand average gamma power across time (40–70 Hz, 300 

baselined to the whole trial average, in dB) for low states (left), high states (middle) and 301 

the difference of both (right). Entropy states are shown in the upper panel, pupil states 302 

in the lower panel. Dashed line represents tone onset, white rectangle outlines the pre-303 

stimulus window of interest. (b) As in (a) but for 0–40 Hz. (c) Mean-centred single 304 

subject (dots) and grand average gamma power (black lines) in the pre-stimulus time-305 

window (-.4–0 s), residualized for baseline entropy and pupil size, shown for five bins 306 

of increasing pre-stimulus entropy (left) and pupil size (residualized for entropy 307 

baseline and pre-stimulus entropy, middle). Grey line represents average fit, red 308 

colours show increasing entropy, blue colours increasing pupil size. Effects of entropy 309 

and pupil size are contrasted in the right panel. (d) As in (c) but for low-frequency 310 

power (1–8 Hz). Note the different y-axis range between entropy and pupil effects. All 311 

binning for illustrational purposes only. ***P < .0001, **P < .001 312 

The following figure supplements are available for figure 3: 313 

Figure 3 supplement 1. Ongoing activity in the alpha and beta band as a function of 314 
EEG entropy and pupil size. 315 

Figure 3 supplement 2. Supplementary Table S1 corresponding to panel b and d. 316 

Figure 3 supplement 3. Supplementary Table S2 corresponding to panel a and c. 317 
 318 

Differential effects of local desynchronization and pupil-linked arousal on auditory evoked 319 

activity  320 

Next, to investigate the influence of those pre-stimulus states on sensory processing, 321 

we tested the impact of local cortical desynchronization and pupil-linked arousal in 322 

this pre-stimulus time window on auditory, stimulus-evoked EEG activity. Analogous 323 

to the procedure outlined above, we used linear mixed-effects models to estimate the 324 

effects of entropy and pupil size on sensory evoked power and phase coherence over 325 

auditory cortices. Note that we modelled continuous variables instead of an artificial 326 

division into high vs. low states. While low-frequency phase coherence quantifies how 327 

precise in time neural responses appear across trials, low-frequency power captures 328 
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the magnitude of neural responses regardless of their polarity (Tallon-Baudry et al., 329 

1996; Makeig et al., 2004). In addition, high-frequency power after stimulus onset likely 330 

originates from sensory regions and depicts sensory processing (Tiitinen et al., 1993). 331 

If EEG entropy and pupil size entail perceptual relevance, they should also influence 332 

sensory processing as approximated by the outlined measures. Please note that all 333 

measures of sensory processing were based on artefact-free EEG data. 334 

First, we found low-frequency single-trial phase coherence after stimulus onset, 335 

a measure quantifying the consistency of phase-locked responses on a trial-wise basis 336 

(see Methods for details), to increase with pre-stimulus entropy (1–8 Hz, 0–400 ms; β = 337 

.05, SE = .01, P < .001, Fig. 4a, d). Additionally, phase coherence did not only increase 338 

with pre-stimulus entropy but saturated at intermediate levels, as evidenced by a 339 

negative quadratic effect (β = -.02 SE = .009, P = .02, supplementary Table S9). 340 

Of note, there was no comparable relationship of pupil size and single-trial 341 

phase coherence (1–jITC, see methods for details; β = -.005, SE = .006, P = .5; ZWald = 1.5, 342 

P = .1; Table S9). Phase-locked responses hence increased with pre-stimulus auditory 343 

cortical desynchronization but were unaffected by variations in arousal. 344 

Second, we observed a linear decrease of low-frequency power after stimulus 345 

onset, as a function of pre-stimulus entropy (1–8 Hz, 0–400 ms; β = -.02, SE = .01, P = 346 

.017, Fig. 4b, e). In contrast, pre-stimulus pupil size did not affect post-stimulus power 347 

(β = .015, SE = .011, P = .2; Table S5). Visual inspection of figure 4 yields increased post-348 

stimulus desynchronization that occurs after the evoked response as the likely source 349 

of the EEG entropy related decrease in stimulus-evoked low-frequency power. 350 

Therefore, stimulus-induced activity in low frequencies changed linearly with auditory 351 

cortical desynchronization but remained unaltered under changing levels of pupil-352 

linked arousal (ZWald = 2.6, P = .009). Notably, post-stimulus oscillatory power in the 353 

alpha band increased linearly with pupil linked arousal (β = .033, SE = .01, P < .005; Fig. 354 

4 supplement 2 & Table S6) but not with auditory cortical desynchronization (β = -.008, 355 

SE = .009, P = .5). Oscillatory power in the beta band was neither substantially linked to 356 

pre-stimulus auditory cortical desynchronization nor pupil-linked arousal (all P > .2, see 357 

supplementary Table S7). 358 

Third, we detected linearly increasing post-stimulus gamma power, 359 

representing early auditory evoked activity, with rising pre-stimulus entropy (40–70 360 

Hz, 0–400 ms; β = .04, SE = .01, P < .001, Fig. 4c, f). Conversely, post-stimulus gamma 361 

power showed a tendency to decrease with growing pre-stimulus pupil size that did 362 

not reach statistical significance (β = -.016, SE = .01, P = .1; Table S8). Auditory evoked 363 

gamma power hence was inversely influenced by two different measures of brain 364 

state: while it increased with local cortical desynchronization, it decreased with 365 

growing arousal (ZWald = 3.6, P = .0003). Notably, neither local desynchronization nor 366 

pupil size had any effect on the tone-evoked activity when expressed as event-related 367 

potentials (see Fig. 4 supplement 1). 368 

Overall, single-trial auditory sensory evoked activity was differentially 369 

influenced by desynchronization and arousal. While only higher local 370 

desynchronization was associated with increased phase-locked responses, only 371 

arousal was positively linked to stimulus-induced activity. In addition, with local 372 

desynchronization showing a positive and arousal a negative link to stimulus-evoked 373 

gamma power, both measures exert opposite influences on the early processing of 374 

auditory information.  375 
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376 
Figure 4. Influence of pre-stimulus entropy and pupil size on tone-related 377 

activity. (a) Grand average ITC (0–40 Hz) across time for low states (left), high states 378 
(middle) and the difference of both (right). Entropy states shown in the upper, pupil 379 
states in the lower panel. Dashed black lines indicate tone onset, white rectangles the 380 

post-stimulus window of interest. (b) As in (a) but for low-frequency power (0–40 Hz, 381 

baselined the average of the whole trial). (c) As in (b) but for gamma power (40–70 Hz). 382 

(d) Mean centred single subject (dots) and grand average ITC (black lines), residualized 383 
for baseline entropy and pupil size, in the post-stimulus time-window (0–.4 s, 1–8 Hz) 384 
for five bins of increasing pre-stimulus entropy (left) and pupil size (residualized for 385 
entropy baseline and pre-stimulus entropy, middle). Grey line represents average fit, 386 
red colours increasing entropy, blue colours increasing pupil size. Effects of entropy 387 

and pupil size are contrasted in the right panel. (e) As in (d) but for post-stimulus low-388 

frequency power (0–.4 s, 1–8 Hz). (f) As in (e) but for post-stimulus gamma power (0–.4 389 
s, 40–70 Hz). Again, all binning for illustrational purposes only. ***P < .0001, **P<.001, 390 
* P<.05 391 

The following figure supplements are available for figure 4: 392 

Figure 4 supplement 1. Grand average ERPs for increasing pre-stimulus entropy and 393 
pupil size. 394 

Figure 4 supplement 2. Tone-related activity in the alpha and beta band as a function 395 
of pre-stimulus EEG entropy and pupil size. 396 

Figure 4 supplement 3. Supplementary Table S5 corresponding to panel b and e. 397 

Figure 4 supplement 4. Supplementary Table S8 corresponding to panel c and f. 398 

Figure 4 supplement 5. Supplementary Table S9 corresponding to panel a and d. 399 
  400 
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Local desynchronization and arousal differently impact perceptual performance  401 

To examine the impact of desynchronization and arousal on perceptual performance, 402 

we modelled binary response behaviour (“high” vs. “low”) as a function of stimulus 403 

pitch, pre-stimulus local desynchronization, and arousal using generalized linear 404 

mixed-effects models (see Statistical analyses for details). In brief, this statistical 405 

approach describes binary choice behaviour across the set of used tones and thus also 406 

yields a psychometric function, but the generalized linear framework allows us to 407 

include the neural predictors of interest. Two parameters of the resulting functions 408 

were of interest to the current study: (1) the threshold of the psychometric function 409 

represents the response criterion; (2) the slope of the psychometric function expresses 410 

perceptual sensitivity. Additionally, we tested the influence of local desynchronization 411 

and arousal on response speed (i.e., the inverse of response time, in s–1). Note that 412 

models always included linear as well as quadratic terms in order to test the shape of 413 

the investigated brain-behaviour relationships. 414 

 Participants were least biased and answered fastest at intermediate levels of 415 

pre-stimulus desynchronization: pre-stimulus entropy displayed a negative quadratic 416 

relationship with response criterion (log odds (log OR) = -.06, SE = .02, P = .02; Fig. 5a, 417 

Table S10) and response speed (β = -.012, SE = .004, P = .002; Fig.5c, Table S11). A 418 

reduced model that allowed the inclusion of single-subject effects as random slopes 419 

revealed that this negative quadratic effect of entropy on response criterion was 420 

observable in all participants (see Fig. 5a). Average predicted response times were 421 

lowest following intermediate pre-stimulus entropy (.716 s) compared to low (.762 s) 422 

and high (.786 s) entropy. States of intermediate neural desynchronization hence led 423 

to a reduction in response time of 50–60 ms compared to high and low 424 

desynchronization states. 425 

Conversely, participants proved most sensitive at intermediate levels of arousal: 426 

pupil size exhibited negative linear as well as quadratic relations with sensitivity (linear: 427 

log OR = -.232, SE = .068, P = .001; quadratic: log OR = -.153, SE = -.035, P < .001; Table 428 

S10) but not with response speed (β = -.004, SE = .003, P = .1; Fig. 5d, Table S11). As 429 

above, a model including random slopes resulted in negative effects for the vast 430 

majority of participants (see Fig. 5b). Highest sensitivity hence coincided with 431 

intermediate arousal and decreased with growing arousal levels. 432 

Like pre-stimulus entropy, pupil size did covary with response criterion. 433 

However, the relationship was linearly decreasing (high arousal coincided with a 434 

decreased criterion; log OR = -.115, SE = .028, P < .001; Fig 5c, Table S10) and lacked the 435 

marked quadratic relationship observed for pre-stimulus entropy (cf. Fig. 5a). The 436 

increase in bias with arousal was clearly driven by states of particularly high arousal.  437 

In analogy with the approach outlined above for brain–brain models, we 438 

computed Wald statistics to assess the distinctness of different quadratic model terms. 439 

While response criterion was predicted by EEG entropy following an inverted U shape 440 

but not by pupil size (ZWald = –2.9, P = .004), response speed was predominantly 441 

influenced by pre-stimulus entropy (ZWald = –1.94, P = .05). Conversely, pupil size 442 

predicted sensitivity better than EEG entropy (ZWald = 1.6, P = .1) although this 443 

comparison did not yield a statistically significant result. Of note, modelling decisions 444 

based on stimulus difficulty alone explained 56.4 % of variance (conditional R2) while a 445 
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model that additionally contained pre-stimulus EEG entropy and pupil size as 446 

predictors explained 63.2 % of variance in behaviour.    447 

 448 

Figure 5. Effects of pre-stimulus entropy and pre-stimulus pupil size on 449 

perceptual performance. (a) Fixed effects results: probability of judging one tone as 450 
“high” as a function of pitch difference from the median (normalized), resulting in 451 
grand average psychometric functions for five bins of increasing entropy (red colours) 452 
including point estimates ± 1 SEM. Dashed grey lines indicate bias-free response 453 
criterion. Insets show 1–criterion (upper) and sensitivity estimates (lower) ± 2 SEMs. 454 
Bottom left panel shows single subject log odds (log OR) for the quadratic relationship 455 
of pre-stimulus entropy and response criterion (± 95 % CI), bottom right panel single 456 
subject log ORs for the quadratic relationship of pre-stimulus entropy and sensitivity. 457 

Participants sorted for log OR, red line marks fixed effect estimate. (b) As in (a) but for 458 

five bins of increasing pre-stimulus pupil size. (c) Single subject (dots) and average 459 
response speed (black lines) as a function of increasing pre-stimulus entropy (five bins). 460 

(d) As in (c) but as a function of pre-stimulus pupil size. Again, all binning for illustration 461 
only. * P < .005 462 

The following figure supplements are available for figure 5: 463 

Figure 5 supplement 1. Overview of fixed and random effects. 464 

Figure 5 supplement 2. Single participant psychometric functions. 465 

Figure 5 supplement 3. Supplemental Table S10 corresponding to panel a and b. 466 

Figure 5 supplement 4. Supplemental Table S11 corresponding to panel c and d. 467 
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Control analyses 468 

Pre-stimulus oscillatory power in auditory cortex does not predict behavioural outcome in 469 

the auditory discrimination task. 470 

The substantial negative correlation of desynchronization states quantified by entropy 471 

on the one hand and low-frequency oscillatory power on the other (see Fig. 3; Marguet 472 

& Harris, 2011; Waschke et al., 2017) prompted us to repeat the modelling of perceptual 473 

performance with pre-stimulus power instead of entropy as a predictor. If entropy only 474 

represents the inverse of oscillatory power, effects should remain comparable but 475 

change their sign. Oscillatory power however was not significantly linked to behaviour 476 

(all P > .15) and including power as an additional predictor in the model of performance 477 

outlined above did not explain additional variance (model comparison; Bayes factor 478 

BFEntropy–Power = 98). Thus, local cortical desynchronization but not oscillatory power was 479 

linked to perceptual performance. 480 

 481 

Visuo-occipital entropy does not predict behavioural outcome in the auditory 482 

discrimination task. 483 

To test the cortico-spatial specificity of the outlined desynchronization states to the 484 

auditory domain, we repeated all analyses of stimulus-evoked activity and behaviour 485 

based on entropy as calculated from visuo-occipital channels.  Specifically, we replaced 486 

auditory entropy with visual entropy before re-running all relevant models (see 487 

Methods for details). 488 

Unsurprisingly, as these spatial filter weights yield imperfect renderings of 489 

local cortical activity, we observed a sizable correlation between this visuo-occipital 490 

entropy signal and the auditory entropy signal central to our analyses (β = .40, SE = 491 

.009, P < .001). However, since visual and auditory entropy were also sufficiently 492 

distinct (shared variance only R2 = 15 %), more detailed analysed on their specific 493 

effects were warranted.  494 

We first regressed this visuo-occipital entropy signal on pupil size and 495 

observed a weak negative relationship (β = -.02, SE = .009, P = .03). Relationships of 496 

pre-stimulus entropy over visual cortex with stimulus-evoked auditory activity 497 

generally displayed the same direction as for auditory cortex entropy (see Fig. 6a for 498 

summary). Adding to the domain specificity of our main findings, however, visual 499 

cortex entropy was a markedly weaker predictor of single-trial phase coherence 500 

(model comparison to a model with auditory entropy; Bayes factor BFAuditory–Visual = 501 

1416), low-frequency power (BFAuditory–Visual = 1977), and gamma power (BFAuditory–Visual = 502 

39 see Fig. 6). Furthermore, visual cortex entropy did not exhibit any relationship with 503 

response criterion (log OR = .009, SE = .02, P = .66; Table S12). Visual cortex entropy also 504 

had no effect on response speed (β = -.002, SE = .003, P = .50). Accordingly, auditory 505 

cortex entropy explained the response speed data better (BFAuditory–Visual = 10.8). 506 

The influence of pre-stimulus desynchronization on stimulus processing and 507 

behaviour thus proves to be local in nature, and most selective to desynchronization 508 

in sensory regions that are involved in the current task.  509 
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Discussion  510 

This study tested the influence of local cortical desynchronization and pupil-linked 511 

arousal on sensory processing and perceptual performance. We recorded EEG and 512 

pupillometry, while stimuli of a demanding auditory discrimination task were 513 

selectively presented during states of high or low desynchronization in auditory cortex. 514 

Desynchronization in auditory cortex and pupil-linked arousal differentially affected 515 

ongoing EEG activity and had distinct effects on stimulus-related responses. 516 

Furthermore, at the level of single trials, we found unbiased performance and highest 517 

response speed to coincide with intermediate levels of pre-stimulus 518 

desynchronization and highest sensitivity following intermediate levels of arousal. 519 

Tracking of auditory cortical desynchronization in real-time 520 

As revealed by the average spatial filter and source projection (Fig. 2), the signal central 521 

to the present analyses mainly originated from auditory cortical areas. The state-522 

detection algorithm we employed was based on entropy of the spatially filtered EEG 523 

signal and performed the desired state-dependent presentation with sufficient 524 

precision in time (Fig. 2b). Of note, the distribution used to classify desynchronization 525 

states in real-time was updated constantly, which ensured two central prerequisites: 526 

First, slow drifts in desynchronization over time were prevented from biasing the state 527 

classification. Second, we were able to sample, throughout the experiment, the whole 528 

desynchronization state space within each participant (Jazayeri and Afraz, 2017). In 529 

contrast to an algorithm that sets the criterion for state classification only once per 530 

participant and leaves it unchanged thereafter (“open-loop”), the current approach 531 

can be referred to as a closed-loop. Technical advances have promoted the use of such 532 

closed-loop paradigms to various areas of neuroscientific research, where the main 533 

application lies in neurofeedback. Neurofeedback tries to modify behaviour by 534 

providing participants with sensory information that is directly proportional to their 535 

current brain state (Sitaram et al., 2016; Faller et al., 2019). Just recently, a number of 536 

methodically sophisticated studies have used the power of this approach to relate 537 

fluctuations in working memory (Ezzyat et al., 2018) or decision making (Peixoto et al., 538 

2019) to brain activity in real-time. 539 

 540 

Local cortical desynchronization and arousal differentially shape states of ongoing EEG 541 

activity 542 

While there was a pronounced difference in EEG entropy between states of high and 543 

low desynchronization, illustrating the power of the used real-time algorithm, no such 544 

difference was found for the time-course of pupil size (Fig. 2). Although pupil size and 545 

EEG entropy were positively correlated as has been reported before (Reimer et al., 546 

2014), a major part of the variance in EEG entropy was not accounted for by pupil size. 547 

We take this as a first piece of evidence that two distinct mechanisms are involved in 548 

the generation of perceptually relevant brain states.  549 

 The dissociation of both processes is further corroborated by the difference in 550 

their respective autocorrelations. Auditory cortical desynchronization displayed a 551 

narrower autocorrelation function than pupil size (Fig. 2b), suggesting two different 552 

time scales of operation. Such a finding aligns with a recent study that suggests at least 553 

two different time scales that together shape neural activity (Okun et al., 2019). On the 554 

one hand, fast fluctuations have been suggested to depict synaptic activity and 555 
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potentially trace back to thalamo- or cortico-cortical interactions (Haider and 556 

McCormick, 2009; Harris and Thiele, 2011). On the other hand, slow fluctuations 557 

potentially depict the influence of arousal or neuromodulatory activity in general 558 

(Okun et al., 2019). While states of local desynchronization likely operate on short time 559 

scales in the range of several hundred milliseconds, pupil-linked arousal states rather 560 

stretch across several seconds. 561 

 Furthermore, changing degrees of desynchronization and arousal manifested 562 

in diverse ways in the ongoing EEG: On the one hand, desynchronization in the pre-563 

stimulus time window was negatively related to concurrently measured oscillatory 564 

power over a wide range of frequencies (Fig. 3). The strong negative relationship with 565 

low-frequency power replicates previous findings and is tightly linked to the concept 566 

of entropy (Waschke et al., 2017). On the other hand, pupil-linked arousal in the same 567 

time window was negatively linked to low-frequency power, an association frequently 568 

observed in invasive recordings of non-human animals (McGinley et al., 2015b; Vinck 569 

et al., 2015). Additionally, arousal was positively related to oscillatory power in the beta 570 

band but not in the gamma band. This link of arousal and beta power in EEG differs 571 

from reports of a positive relationship between gamma power of local field potentials 572 

(LFP) and pupil size (Vinck et al., 2015). Of note, Vinck and colleagues (2015) correlated 573 

pupil diameter and LFP gamma power over time within an event-locked time period. 574 

In contrast, we related the average pupil diameter in a pre-stimulus time window to 575 

spontaneous EEG gamma power across trials. Upon further experimentation, differing 576 

methods thus pose the most parsimonious reason for this seeming disparity. 577 

Taken together, the distinct relationships that desynchronization and arousal 578 

entertain with key, frequency-domain metrics of instantaneous EEG activity emphasize 579 

their independence. We take this as additional evidence for two distinct mechanisms 580 

of origin. 581 

 582 

Neurophysiological and neuromodulatory processes of desynchronization and arousal 583 

How plausible is this idea of at least two, at least partially segregate drivers of 584 

perceptually relevant brain state? LC–NE activity has been proposed to reflect changes 585 

in arousal captured by variations in pupil size (Aston-Jones and Cohen, 2005). Although 586 

fluctuations in pupil size have recently been linked to activity in the superior colliculus 587 

(Wang et al., 2012) or the ventral tegmental area (de Gee et al., 2017) and also carry 588 

information about cholinergic activity (Reimer et al., 2016), converging evidence 589 

suggests a tight connection to LC–NE activity (Aston-Jones and Cohen, 2005; Joshi et 590 

al., 2016; Reimer et al., 2016; de Gee et al., 2017). At the same time, in addition to 591 

adrenergic and cholinergic projections from brain-stem nuclei, glutamatergic cortico-592 

cortical and thalamo-cortical feedback connections have been proposed as a source of 593 

varying states of desynchronization (Harris and Thiele, 2011). The widespread NE 594 

projections from LC (Aston-Jones and Cohen, 2005) are a likely cause for the 595 

demonstrable effects of NE-linked arousal on sensory encoding in both the auditory 596 

(McGinley et al., 2015a) as well as visual domain (Vinck et al., 2015). This rationale would 597 

thus predict that arousal states should not differ substantially between different 598 

sensory cortical regions.  599 

 However, modulatory effects of arousal have been found to depend on the 600 

experimental context as well as on the sensory modality (Pakan et al., 2016; Shimaoka 601 
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et al., 2018). The weak correlation of desynchronization and arousal might thus trace 602 

back to our focus on auditory cortical areas. An imperfect direct arousal–603 

desynchronization link in the present data becomes more plausible if we take into 604 

account the important distinction between global and local brain states: While the 605 

overall level of arousal should have widespread but modality- and context-specific 606 

impact on sensory processing and behaviour (Aston-Jones and Cohen, 2005; McGinley 607 

et al., 2015b), the desynchronization of local sensory neural populations could be 608 

largely unrelated to, and take place on top of, those global changes (Beaman et al., 609 

2017). 610 

Such rather local and modality-specific changes in desynchronization have 611 

been assumed to arise from both thalamo- and cortico-cortical feedback connections 612 

that represent the allocation of selective attention (Harris and Thiele, 2011; Zagha et 613 

al., 2013; Zagha and McCormick, 2014). More precisely, glutamatergic projections 614 

between thalamus, prefrontal, and sensory cortical areas might shape the local net 615 

degree of inhibition in populations of sensory neurons via AMPA and NMDA receptors 616 

and hence influence time-varying local desynchronization. In fact, contingent on the 617 

specific task structure, selective attention increases desynchronization in neurons with 618 

stimulus-related receptive fields but also across a broader range of task-relevant 619 

neurons (Cohen and Maunsell, 2009, 2011). In keeping with this, desynchronization 620 

over auditory but not visual cortical areas predicted sensory processing and 621 

performance (Fig. 6). A next step would thus be to combine the present setup for 622 

desynchronization–dependent stimulation with manipulations of selective attention. 623 

Additionally, future studies might combine single-cell and macroscopic recordings of 624 

brain activity with either the monitoring of neurotransmitter release or targeted 625 

pharmacological interventions. In the present design we were unable to directly test 626 

an involvement of specific neuromodulators in variations of E/I balance and the 627 

generation of desynchronization states. Noradrenergic and cholinergic 628 

neuromodulation however, have been suggested as a candidate mechanism 629 

underlying such dynamics (Froemke, 2015).  630 

All things considered, the involvement of two partially related mechanisms in 631 

the concomitant generation of desynchronization and arousal states appears likely. On 632 

the one hand, desynchronization states presumably are shaped by feedback 633 

connections that could result from fluctuations in selective attention (Harris and Thiele, 634 

2011). On the other hand, pupil-linked arousal states at least partially hinge on varying 635 

levels of LC–NE activity (Joshi et al., 2016; Reimer et al., 2016) which are propagated via 636 

vast projections towards most regions of cortex and which might be related to overall 637 

changes in the availability of cognitive resources. 638 

If local cortical desynchronization and arousal indeed originate from two 639 

distinct processes that both entail functional and behavioural relevance, they should 640 

not only have differential effects on the processing of sensory information but also on 641 

perceptual performance — which is what we observed here, as discussed next. 642 

 643 

Sensory processing is distinctly affected by desynchronization and arousal states 644 

Desynchronized cortical states have previously been associated in the rodent with 645 

enhanced encoding of auditory stimuli (Marguet and Harris, 2011), more reliable 646 

neural responses (Pachitariu et al., 2015), and improved perceptual performance 647 
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(Beaman et al., 2017). Instead, when optogenetically inducing synchronization, 648 

perception is impaired (Nandy et al., 2019). Conversely, arousal been linked to 649 

increased sensory processing of visual stimuli in mice (Neske and McCormick, 2018) 650 

and humans (Gelbard-Sagiv et al., 2018). However, perceptual performance was found 651 

to be highest at either intermediate (McGinley et al., 2015a; Neske and McCormick, 652 

2018) or maximum arousal levels (Gelbard-Sagiv et al., 2018). 653 

In the current study, desynchronization and arousal had clearly dissociable 654 

effects on sensory processing and behaviour at the single-trial level. First, phase-locked 655 

responses were strongest following intermediate levels of pre-stimulus 656 

desynchronization (Fig. 4). Strikingly, this relationships of desynchronization and 657 

sensory processing was mimicked by perceptual performance: Intermediate 658 

desynchronization led to optimal response criterion and response speed, hence 659 

yielding minimally biased and fastest performance (Fig. 5). Similarly, sensory-evoked 660 

gamma power increased with pre-stimulus auditory cortical desynchronization and 661 

showed a trend to saturate at intermediate levels. Second, pre-stimulus levels of pupil-662 

linked arousal did only substantially affect sensory-evoked activity in the alpha band 663 

but not in low frequencies and were linked to perceptual sensitivity. 664 

Of note, the described tri-fold association of desynchronization, stimulus-665 

evoked activity, and response criterion is generally in accordance with a number of 666 

recent studies researching the influence of pre-stimulus oscillatory power on 667 

perceptual decisions. Generally, pre-stimulus power in the EEG has been found to bias 668 

choice behaviour (Kayser et al., 2016). More specifically, however, alpha power (8–12 669 

Hz) prior to stimulus onset has been tightly linked to changes in response criterion and 670 

confidence (Iemi et al., 2017; Samaha et al., 2017; Wöstmann et al., 2018). Pre-stimulus 671 

alpha power is hypothesized to represent changes in baseline excitability, linking it to 672 

response criterion following an inverted u-shaped relationship (Rajagovindan and 673 

Ding, 2011; Kloosterman et al., 2019). These previous findings and the here reported 674 

connection of desynchronization and response criterion might at least partially trace 675 

back to the same underlying mechanism: that is, task- and attention-specific input to 676 

sensory cortical regions via efferent projections leading to a change in net inhibition. 677 

However, only EEG entropy but not oscillatory power was linked to perceptual 678 

performance. One reason behind this pattern of results potentially lies in the different 679 

contributions both measures receive from time-domain EEG recordings. While alpha 680 

power is commonly approximated using a Fourier transform that quantifies the energy 681 

of periodic signal fluctuations, EEG entropy receives contributions from periodic as 682 

well as aperiodic signal parts. Thus, EEG entropy potentially poses a more sensitive 683 

proxy of underlying neural processes than oscillatory power and explains more 684 

behavioural variance. Additionally, the task employed in the present study asked 685 

participants to integrate sensory evidence presented on a given trial into a reference 686 

frame of several tones. This approach differs from commonly used paradigms in the 687 

context of pre-stimulus alpha power which typically present stimuli close to the 688 

perceptual threshold in simple detection paradigms (e.g., Iemi et al., 2017). This 689 

difference in experimental tasks could further explain the irrelevance of oscillatory 690 

power to behaviour in the present dataset. 691 

Furthermore, although both our present measures of brain state, EEG entropy 692 

and pupil size, were positively associated with stimulus-related EEG activity, they 693 

affected phase-locked and non-phase-locked brain responses as well as behaviour in 694 
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distinct ways (see Fig. 6a). Be reminded, however, that all effects on behaviour and 695 

stimulus-related activity were not obtainable when replacing auditory entropy with 696 

measures of auditory oscillatory power or with visuo–occipital entropy instead, which 697 

underlines their specificity. 698 

Effectively, desynchronization and arousal might interact separately with the 699 

two, long-debated building blocks of sensory evoked responses: phase resetting of 700 

low-frequency oscillations and additive low-frequency activity (Shah et al., 2004; 701 

Sauseng et al., 2007). The positive link between phase-locked responses and 702 

desynchronization replicates previous findings from our group (Waschke et al., 2017) 703 

and, combined with the observation of maximum phase coherence following 704 

intermediate desynchronization, indicates enhanced early processing of auditory 705 

information. Tones presented into states of intermediate desynchronization thus led 706 

to a stronger phase-reset. 707 

 708 

Auditory cortical desynchronization and pupil-linked arousal differentially impact 709 

performance 710 

Importantly, the dissociation in neural sensory processing parallels a dissociation in 711 

behaviour. First, and analogous to the precision of sensory encoding which was 712 

highest at intermediate desynchronization levels, responses were least biased 713 

following intermediate desynchronization states. This striking parallel in neural and 714 

behavioural results cautiously suggests a change in the precision of representations 715 

that depends on the current desynchronization state. Second, the impact of arousal on 716 

post-stimulus alpha power and perceptual sensitivity, in the light of earlier 717 

interpretations (Voigt et al., 2018) proposes a similar mechanism: in addition to a 718 

clearer early representation of sensory information, intermediate arousal might 719 

optimize the integration of such a representation into an existing reference frame. This 720 

integration likely involves cortico-cortical feedback connections (Tallon-Baudry and 721 

Bertrand, 1999) and is essential to allow sensitive perceptual decisions. A different 722 

experimental design that allows the direct investigation of the proposed mechanisms 723 

represents a crucial next step to understanding the specific functioning of perceptually 724 

relevant brain states on the level on sensory neurons. 725 

However, the relationship of arousal and perceptual performance takes a 726 

different shape than the respective link to sensory evoked activity might have 727 

suggested. While arousal covaried monotonically with post-stimulus activity in the 728 

alpha band (and in a statistically non-significant way also in low frequencies, 1–8 Hz), 729 

sensitivity was highest at intermediate levels of arousal, testimony to the classic 730 

Yerkes–Dodson law. A possible concern might be that we did not sample the state 731 

space of pupil-linked arousal in its entirety and hence ended up with a distribution that 732 

only captures the lower half of an underlying inverted u (Faller et al., 2019), resulting 733 

in a positive linear relationship between pupil-linked arousal and post-stimulus low-734 

frequency power. The effect of arousal on sensitivity however did follow an inverted u-735 

shape, suggesting that we indeed sampled a whole range of arousal states. 736 

Additionally, a number of previous observations do in fact match this seeming 737 

disarray of stimulus-related activity (increasing monotonically with arousal) and ideal 738 

performance (depending quadratically on arousal). First, relatively highest levels of 739 

responsiveness in auditory cortical neurons overall can entail the loss of response 740 
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specificity crucial for precise encoding and perception (Otazu et al., 2009). Second, and 741 

in line with this rationale, over-amplified responses to auditory stimuli have been 742 

linked to age-related decreases of cortical inhibition (Herrmann et al., 2018a). States of 743 

high arousal could thus in principle lead to a similar process of over-amplification and 744 

hence prove detrimental to sensory encoding and perception. Third, a recent 745 

experiment researching the impact of arousal on visual processing in mice yielded a 746 

highly similar pattern of results (Neske and McCormick, 2018). Neske & McCormick 747 

(2018) highlight the role of noradrenergic projections which might transmit task-748 

related activity most efficiently at intermediate arousal levels (Aston-Jones and Cohen, 749 

2005). 750 

 751 

 752 

Figure 6. Distinct effects of local desynchronization (i.e., auditory entropy) and 753 

global arousal (i.e., pupil size) (a) Effect sizes (fixed effects, with 95-% confidence 754 
intervals) for the quadratic relationships of criterion and sensitivity with pupil size 755 
(blue), auditory cortex entropy (red) and visual cortex entropy (pale pink). Similarly for 756 
the quadratic relationship of pupil size, auditory cortex entropy, and visual cortex 757 

entropy with ITC and linear relationships with stimulus-related gamma power. (b) 758 
Illustrating the quadratic influence of entropy on response criterion (left panel) and 759 
pupil size on sensitivity (right panel) by means of an optimal psychometric function 760 
(red vs. blue) and non-optimal ones (grey). 761 

The following figure supplements are available for figure 6: 762 

Figure 6 supplement 1. Comparison of results from different brain–behaviour 763 
models. 764 

  765 
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Two interrelated systems of local and global brain state jointly shape perception  766 

We here have presented evidence for a joint role of local cortical desynchronization 767 

and arousal in the formation of brain states optimal for perceptual performance. The 768 

data are commensurate with a model where, on the one hand, arousal shapes global 769 

brain states via afferent noradrenergic projections and predominantly influences 770 

sensitivity. Conversely, we see local cortical desynchronization in task-related sensory 771 

areas to generate local states via attention-dependent feedback connections and to 772 

impact response criterion and speed. 773 

To facilitate future research and offer testable hypotheses we intend to leave 774 

the reader with some speculations: How could those two mechanisms find an 775 

implementation in populations of task-involved sensory neurons? It has been 776 

suggested that the shared variability of neuronal populations and its impact on the 777 

responses of single neurons are shaped by an additive and a multiplicative source of 778 

variation in neural gain (Arieli et al., 1996; Schölvinck et al., 2015). Whereas a 779 

multiplicative gain factor would lead to an overall change in tuning width, an additive 780 

factor could create an offset which is believed to differ between neurons (Lin et al., 781 

2015). Instantaneous fluctuations of cortical activity, or local cortical 782 

desynchronization, are believed to have an additive effect on evoked responses (Arieli 783 

et al., 1996). Furthermore, arousal-related LC–NE activity exerts a multiplicative 784 

influence on the tuning of sensory neurons, which has been suggested to entail 785 

relatively sharper tuning curves (Mather et al., 2016). However, recent findings 786 

challenge this view by showing pupil-linked arousal-related broadening of sensory 787 

neural tuning curves (Lin et al., 2019). Additionally, it is unlikely that either additive or 788 

multiplicative factors alone are the sole source of variability in stimulus-related activity 789 

and behaviour (Lin et al., 2015). However, the present data allow the testable 790 

prediction that selective attention and desynchronization primarily exert an additive 791 

influence on neural gain, while LC–NE activity and arousal impact neural gain in a 792 

multiplicative fashion. 793 

In sum, the present data provide evidence that, at the single-trial level in 794 

humans, desynchronization in sensory cortex (expressed as EEG entropy) and pupil-795 

linked arousal differentially impact sensory and perceptual processes, but jointly 796 

optimise sensory processing and performance.  797 

   798 
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Materials and Methods 799 

Participants: 25 participants (19–31 years, mean age 24.6 years, ± 3.5 years SD; 10 male) 800 

with self-reported normal hearing took part in the experiment. We did not perform a 801 

formal power analysis. Importantly, all analyses were based on within-subject effects. 802 

Thus, we aimed for a high number of trials per subject (N > 400) to minimize within-803 

subject measurement uncertainty (Baker et al., 2019). Participants gave written 804 

informed consent and were financially compensated. None of the participants 805 

reported a history of neurological or otological disease. The study was approved by the 806 

local ethics committee of the University of Lübeck and all experimental procedures 807 

were carried out in accordance with the registered protocol. 808 

Stimulus material: Sets of seven pure tones (±3 steps around 1 kHz; step sizes 809 

determined individually, 100 ms duration, 10 ms rise and fall times, sampled at 44.1 810 

kHz) for the main experiment and an additional set of 7 pure tones for the auditory 811 

localizer task were created using custom Matlab® code (R2017a; MathWorks, Inc., 812 

Natick, MA). Initial stimulus frequencies consisted of six steps (±0.27, ±0.2, and ±0.14 813 

semitones) around the median frequency (1 kHz) but were adjusted during an 814 

individual tracking procedure described below. Stimuli were presented via air 815 

conducting in-ear head phones (EARTONE 3A), Psychtoolbox and a low latency audio 816 

card (RME Audio). All stimuli were presented perfectly audible at a comfortable 817 

loudness level approximating 60 dB SPL. 818 

General procedure: Participants were seated in a quiet room in front of a computer 819 

screen. First, they completed an auditory localizer task. Second, participants practiced 820 

the main task where, in every trial, they compared one tone against the set of seven 821 

tones regarding its pitch and difficulty was adjusted to keep performance at 822 

approximately 75 % correct. Finally, participants performed 10 blocks of pitch 823 

discrimination against an implicit standard (the median pitch, 1 kHz) while tone 824 

presentation was triggered by the detection of high or low desynchronization states 825 

as outlined below.  826 

Auditory localizer task: Participants listened to 350 pure tones (6 standards, range, 827 

1000–1025 Hz; one oddball at 1050 Hz) separated by inter-stimulus intervals (ISIs) 828 

between 1 s and 1.4 s (uniformly distributed). Their task was to detect and count high 829 

pitch oddballs (1050 Hz, 50 tones). No overt responses were given during the 830 

uninterrupted presentation of tones. 831 

Main experiment: During each trial, participants were presented with one tone out of 832 

the same set of seven pure tones (range 1000–1025 Hz) and had to decide whether the 833 

presented tone was either high or low in pitch with regard to the whole set of stimuli. 834 

In other words, participants implicitly compared each incoming tone to the median 835 

frequency in the tone set (i.e., 1000 Hz; Johnson, 1949). To hold task difficulty 836 

comparable across individuals, up to four rounds of individual tracking (50 trials each) 837 

were carried out where the width of the pitch distribution was adjusted depending on 838 

performance after each round. Precisely, the width of the pitch distribution was 839 

increased (or decreased) if percentage correct was below 70 % (or above 80 %, 840 

respectively). The set of stimuli used during the last round of the tracking procedure 841 

was also used during the main experiment. 842 

Pitch discrimination task: Participants were asked to indicate after each tone whether it 843 

was high or low in pitch relative to the whole set of stimuli by pressing one of two 844 
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buttons of a response box (The Black Box Toolkit). Button orientation was reversed for 845 

13 out of 25 participants. They were instructed to answer as fast and as accurate as 846 

possible as soon as the tone had vanished and the response screen had appeared. No 847 

feedback was given regarding their performance. A grey fixation cross was presented 848 

in the middle of the screen throughout the whole experiment which flickered for one 849 

second if participants failed to give a response within 2 seconds after stimulus offset. 850 

Participants performed 60 trials per stimulus levels, resulting in 420 trials split up into 851 

10 blocks of 42 trials each. Every block comprised 6 repetitions of each stimulus level 852 

in random order. Note that since the exact time point of stimulus presentation was 853 

determined depending on current brain states as identified by the real-time approach 854 

outlined below, the average tone-to-tone interval varied between individuals (9.14 ± 855 

1.04 s; min = 8.28 s, max = 12.32 s). Visual presentation and recording of responses was 856 

controlled by Psychtoolbox.  857 

 858 

Data recording and streaming: While participants were seated in a dimly lit, sound 859 

attenuated booth, EEG signals were measured with a 64-channel active electrode 860 

system (actichamp, BrainProducts, Germany). Electrodes were arranged according to 861 

the international 10-20 system and impedances were kept below 10 kΩ. Data were 862 

sampled at 1kHz, referenced to electrode TP9 (left mastoid), and recorded using 863 

Labrecorder software, part of the Lab Streaming Layer (LSL; Kothe, 2014), also used to 864 

create a stream of EEG data, accessible in real-time. 865 

Additionally, eye blinks were monitored and pupil size was recorded by tracking 866 

participants’ right eye at 500 Hz (Eyelink 1000, SR Research). Pupil data was recorded 867 

using Eyelink software on a separate machine but at the same time streamed via a 868 

TCP/IP connection to the personal computer that was used for EEG recording, brain-869 

state classification, and stimulus presentation. All recorded data was thus available on 870 

one machine. 871 

Spatial filtering and source localization: To focus on EEG activity from auditory cortices, 872 

a spatial filter was calculated based on the data from the auditory localizer task of each 873 

participant excluding oddball trials. After re-referencing to the average off all channels, 874 

we applied singular value decomposition based on the difference between a signal 875 

covariance matrix (estimated on EEG data from 0–200 ms peristimulus) and a noise 876 

covariance matrix (-200–0 ms peristimulus). This approach resulted in a 64x64 matrix 877 

of eigenvalues and the elements of the first eigenvector were used as filter weights (for 878 

similar approaches see de Cheveigne & Simon, 2008; Herrmann, Maess, & Johnsrude, 879 

2018b). Matrix multiplication of incoming EEG signals with the spatial filter weights 880 

resulted in one virtual EEG channel which largely reflected activity from auditory 881 

cortical regions.  882 

To validate this approach, we source localized the same EEG data that was used 883 

to construct the signal covariance matrix. To this end, lead fields were computed based 884 

on a boundary element method (BEM) template and default electrode locations. 885 

Routines from the fieldtrip toolbox (Oostenveld et al., 2011) and custom code were 886 

used to calculate the sLORETA inverse solution (Pascual-Marqui, 2002) which was 887 

projected on to the pial surface of a standard structural template (MNI). Arbitrary 888 

source strength values were masked at 70 % of the maximum.  889 

 890 
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Entropy calculation: We computed weighted permutation entropy (WPE) of spatially 891 
filtered EEG-signals in a moving window fashion. WPE is an extension to permutation 892 
entropy (PE) which was first developed by Bandt and Pompe (2002) that considers the 893 
amplitude fluctuations of time-series data (Fadlallah et al., 2013) and its calculation is 894 
outlined below. 895 

In short, WPE approximates the complexity or desynchronization of any neural time-896 
series via three steps: First, recorded samples (here: microvolts) are transformed into 897 
symbolic patterns of a predefined length and distance (equation 1). Second, the 898 
probability of occurrence of those patterns within a snippet of data is used to calculate 899 
one entropy value (Bandt and Pompe, 2002). Finally, the amplitude information which 900 
is lost during the mapping into symbolic space is partially reintroduced by weighing 901 
each patterns probability of occurrence by the relative variance of its corresponding 902 
neural data (equations 3 & 4; Fadlallah et al., 2013). 903 

In detail, consider the time-series {𝒙𝒙𝒕𝒕}𝒕𝒕=𝟏𝟏𝑻𝑻  and a representation incorporating its time 904 

delayed sampling 𝑿𝑿𝒋𝒋
𝒎𝒎,𝑻𝑻 = �𝒙𝒙𝒋𝒋,𝒙𝒙𝒋𝒋+𝝉𝝉 , … ,𝒙𝒙𝒋𝒋+(𝒎𝒎−𝟏𝟏)𝝉𝝉� for 𝒋𝒋 = 𝟏𝟏,𝟐𝟐, … ,  𝑻𝑻 − (𝒎𝒎− 𝟏𝟏)𝝉𝝉 905 

where 𝒎𝒎 is the so called “motif length” and 𝝉𝝉 its “time delay factor”. The use of both 906 
results in a subdivision of the time series into 𝑵𝑵 = 𝑻𝑻 − (𝒎𝒎 − 𝟏𝟏)𝝉𝝉 sub-vectors. Each of 907 
those 𝑵𝑵 sub-vectors is mapped into symbolic space by replacing every element, with 908 
its rank in the respective sub-vector. Note that the total number of possible motifs (𝒎𝒎!) 909 
is limited by the motif length 𝒎𝒎. The probability of occurrence for all possible motifs 910 

�𝝅𝝅𝒊𝒊
𝒎𝒎,𝑻𝑻�𝒊𝒊=𝟏𝟏

𝒎𝒎!
 called ð, which additionally is weighted by wj, can be defined as: 911 

 
 𝒑𝒑𝒘𝒘�𝝅𝝅𝒊𝒊

𝒎𝒎,𝝉𝝉� =  
∑ 𝟏𝟏𝒖𝒖:𝒕𝒕𝒕𝒕𝒑𝒑𝒕𝒕(𝒖𝒖)=𝝅𝝅𝒊𝒊�𝑿𝑿𝒋𝒋

𝒎𝒎,𝝉𝝉�.𝒘𝒘𝒋𝒋𝒋𝒋≤𝑵𝑵

∑ 𝟏𝟏𝒖𝒖:𝒕𝒕𝒕𝒕𝒑𝒑𝒕𝒕(𝒖𝒖)=∈ð �𝑿𝑿𝒋𝒋
𝒎𝒎,𝝉𝝉� .𝒘𝒘𝒋𝒋𝒋𝒋≤𝑵𝑵

 

 

(1) 

Note that type represents the mapping into symbolic space. Let us furthermore and for 912 

simplicity express the weighted occurrence probability of motifs as 𝑷𝑷𝒘𝒘  =  𝒑𝒑𝒘𝒘�𝝅𝝅𝒊𝒊
𝒎𝒎,𝝉𝝉�. 913 

The weighting of probabilities with weight 𝒘𝒘𝒋𝒋 is achieved by calculating the variance of 914 

sub-vectors. Therefore we define the arithmetic mean of 𝑿𝑿𝒋𝒋
𝒎𝒎,𝝉𝝉 as:  915 

 
X� 𝒋𝒋
𝒎𝒎,𝝉𝝉 =  

𝟏𝟏
𝒎𝒎

 �(𝒙𝒙𝒋𝒋+(𝒌𝒌+𝟏𝟏)𝝉𝝉)
𝒎𝒎

𝒌𝒌=𝟏𝟏

 

 

(2) 

Each weight value hence is represented by: 916 

 
𝒘𝒘𝒋𝒋 =  

𝟏𝟏
𝒎𝒎
�(𝒙𝒙𝒋𝒋+(𝒌𝒌−𝟏𝟏)𝝉𝝉 − X� 𝒋𝒋

𝒎𝒎,𝝉𝝉)𝟐𝟐
𝒎𝒎

𝒌𝒌=𝟏𝟏

 

 

(3) 

We can finally compute WPE as the Shannon entropy of: 917 

 𝑯𝑯(𝒎𝒎, 𝝉𝝉) = − � 𝑷𝑷𝒘𝒘
𝒊𝒊:𝝅𝝅𝒊𝒊

𝒎𝒎,𝝉𝝉∈ ð

𝐥𝐥𝐥𝐥𝐥𝐥𝑷𝑷𝒘𝒘 

 

(4) 

Since the exact choice of motif length and distance influences the final entropy 918 

estimate we relied on recommendations from modelling work and earlier practice 919 

(Riedl et al., 2013; Waschke et al., 2017) by setting the motif length to 3 and the distance 920 

to 1 (number of samples). To ensure approximation acuity but to retain a high time-921 

resolution, a 200-samples window was moved along the EEG signal in steps of 10 922 

samples, resulting in an entropy sampling rate of 100 Hz. 923 
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Real-time brain-state classification and stimulus triggering: Neural desynchronization in 924 

auditory cortical regions was estimated by buffering the EEG signal into Matlab®, re-925 

referencing to the average of all channels, applying the individual spatial filter and 926 

calculating a time-resolved version of WPE (for details see above).  927 

The resulting entropy time-series was used to generate online a distribution of 928 

entropy values. Importantly, this distribution was updated constantly such that it never 929 

depended on values older than 30 seconds. This way, changes in neural 930 

desynchronization on longer time-scales were excluded and, instead of a strictly 931 

bimodal distribution, the whole desynchronization state space was sampled. 932 

Accordingly, trials with stimuli presented at essentially all levels of absolute 933 

desynchronization were obtained (see Figure 2). Desynchronization states were defined 934 

as a minimum of 10 consecutive entropy samples (100 ms) higher or lower than 90% of 935 

the current distribution. Elsewhere in the paper, we will refer to these as high and low 936 

states, respectively.  937 

Organized activity in the EEG signal such as evoked responses or eye blinks 938 

results in neural synchronization and thus in a drastic reduction in entropy. Although 939 

the contribution of eye blinks to the online-analysed EEG signal was minimized by the 940 

spatial filter approach, we ensured that no periods containing eye blinks distorted the 941 

classification of desynchronization states. To this end, pupil data was read out in real-942 

time and whenever a blink was detected by the eye tracker or pupil size was close to 943 

zero, a “mute” window of 1 second was initiated where incoming EEG data were not 944 

considered further. EEG signals immediately following a blink thus were excluded from 945 

both, entering the desynchronization distribution and from being classified as a high 946 

or low state. 947 

Whenever a high or low state was detected, a new trial started with the 948 

presentation of a pure tone after which the response screen was shown and 949 

participants gave their response. Note that each tone was presented equally often 950 

during high and low states (30 times, yielding 210 trials per state, or 420 trials in total).  951 

Pre-processing of pupil data: First, the inbuilt detection algorithm was used to locate 952 

blinks and saccades before pupil data were aligned with EEG recordings. Second, 953 

signal around blinks was interpolated using a cubic spline before low-pass filtering 954 

below 20 Hz and down-sampling to 50 Hz. Third, data were split up into trials (-2.5–3 955 

seconds peristimulus). Finally, single trial time-courses of pupil size were visually 956 

inspected and noisy trials (1.3% ± 1.6%) were removed. For visualization purposes, 957 

pupil signals were expressed in percentage of the pre-stimulus maximum within a 958 

participant (-.5–0 s peristimulus). Z-scored pupil data was used as a predictor in brain–959 

brain as well as brain–behaviour models. Due to technical difficulties, data from one 960 

subject had to be excluded from further analyses.  961 

EEG offline pre-processing: EEG pre-processing and analyses were carried out using the 962 

Fieldtrip and EEGLAB toolboxes (Delorme and Makeig, 2004; Oostenveld et al., 2011) 963 

as well as custom code in Matlab® 2017a. First, and as a preparation for independent 964 

component analysis (ICA) only, data were re-referenced to the average of all channels, 965 

bandpass filtered between 1 and 100 Hz, subsequently down-sampled to 300 Hz, and 966 

split up into 2 seconds long epochs. Rare events like breaks between experimental 967 

blocks and noisy channels were excluded based on visual inspection. Second, data 968 

were decomposed into independent components using EEGLAB’s runica algorithm.  969 
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Visual inspection of topographies, time-courses, power spectra, and fitted dipoles 970 

(dipfit extension) was used to reject artefactual components representing eye blinks, 971 

lateral eye movements, heart rate, muscle and electrode noise. Third, raw, un-972 

processed data were loaded, previously detected noisy channels were removed and 973 

data were re-referenced to the average of all channels. ICA weights of non-artefactual 974 

components were applied to those data before excluded channels were interpolated. 975 

Finally, ICA-cleaned data were band-pass filtered between .5 and 100 Hz using a zero-976 

phase finite impulse response filter and subsequently epoched between -2.5 and 3 977 

seconds peristimulus. Single trials were visually inspected and rejected in case of 978 

excessive noise. On average 1 channel (±1 channel, M ± SD), 68.9% (± 7%) of all 979 

components, and1.4% (± 1.6%) of all trials were rejected. 980 

EEG time–frequency domain analyses: Single trial complex-valued Fourier 981 

representations of the data were obtained through the convolution of cleaned and 982 

spatially filtered time-courses with frequency adaptive Hann-tapers (4 cycles) with a 983 

time-resolution of 100 Hz. Power from 1 to 40 Hz (in .5 Hz steps) and from 40 to 70 Hz 984 

(14 exponentially increasing steps) was calculated by squaring the modulus of the 985 

Fourier spectrum and was expressed as change in Decibel (dB) relative to average 986 

power in the whole trial (-1 to 1.5 s peristimulus).  987 

 Additionally, we calculated inter-trial phase coherence (ITC; 0 ≤ ITC ≥ 1) and 988 

thus divided Fourier representations by their magnitude and averaged across trials 989 

before computing the magnitude of the average complex value. Importantly, since, 990 

ITC is only defined for a set of multiple trials but not for single trials, we computed the 991 

single-trial measure of jackknife-ITC (jITC; Richter, Thompson, Bosman, & Fries, 2015; 992 

Wöstmann et al., 2018). In short, jITC of one trial is defined as the ITC of all trials but the 993 

one in question. Note that a trial highly phase-coherent with all others will result in a 994 

relatively low value of jITC, reversing the intuitive interpretation of ITC. In the 995 

remainder of this paper, we will thus use the term single-trial phase coherence when 996 

referring to 1–jITC. 997 

Control analyses: To test the topographical specificity of EEG entropy, we averaged the 998 

re-referenced but otherwise raw EEG signal over seven visuo-occipital channels (PO3, 999 

PO4, PO7, PO8, POz, O1, O2). Note that this average of a channel selection (all seven 1000 

visuo-occipital channels receiving equal weight in the average, while other channels 1001 

effectively received weight 0) is conceptually not different from the way the more 1002 

sophisticated, pilot–experiment-based auditory spatial filter was calculated. 1003 

Subsequently, we calculated EEG entropy of this occipital cluster in the exact same way 1004 

outlined above for auditory cortical areas. The resulting entropy signal was used to 1005 

repeat all analyses of stimulus-related activity and behaviour. Precisely, mixed models 1006 

of ITC, stimulus-related power and behaviour were re-run with visuo-cortical entropy. 1007 

The performance of those models was evaluated by comparing them to the models 1008 

based on auditory cortical entropy. 1009 

  1010 
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Statistical analyses  1011 

General approach: Trial-wise brain–behaviour and brain–brain relationships were 1012 

analysed using (generalized) linear mixed-effects models (see below). We used single 1013 

trial estimates of pre- and post-stimulus brain activity as well as binary decisions (“high 1014 

vs. “low”) as dependent variables. Pre-stimulus entropy and pupil size served as 1015 

predictors. To allow for an illustrative presentation of single subject data, dependent 1016 

variables were binned based on predictor variables (see Fig. 3). Note that both EEG 1017 

signals and behaviour were modelled based on single trial measures of entropy and 1018 

pupil size, without dichotomizing them into high and low states. Importantly, a 1019 

contrast between high and low states (for entropy and pupil size) as well as binning 1020 

was used for visualization only (see Figures 3 and 4) and was not part of any statistical 1021 

analyses reported here. However, single subject fits across bins (of varying number; 1022 

varying the number of bins between 3 and 7) qualitatively replicated effects of single-1023 

trial models. 1024 

Brain–behaviour relationships: As the main interest of this study lay in the influence of 1025 

pre-stimulus desynchronization and pupil-linked arousal on perceptual sensitivity and 1026 

response criterion, we combined a generalized linear-mixed-effects model approach 1027 

with psychophysical modelling: single trial responses (high vs. low) of all participants 1028 

were modelled as a logistic regression in R (R Core Team, 2018) using the lme4 package 1029 

(Bates et al., 2015) and a logit link function. The main predictors used in the model were 1030 

(1) the normalized pitch of presented tones (with respect to the median frequency, 7 1031 

levels), (2) pre-stimulus entropy (averaged between -.2 and 0 s peristimulus) and (3) 1032 

pre-stimulus pupil size (averaged between -.5 and 0 s peristimulus). Pre-stimulus 1033 

entropy and pupil size entered the model as both linear and quadratic predictors 1034 

allowing us to test for non-linear relationships. We additionally included baseline 1035 

entropy of each trial (3 seconds pre-stimulus) as a covariate to account for slow 1036 

fluctuations in average entropy across the duration of the experiment. Note that such 1037 

an approach is not only in line with current recommendations in statistical literature 1038 

(Senn, 2006) but also comparable to the common inclusion of polynomials in models 1039 

of functional imaging data (Kay et al., 2008). Additionally, a recent study highlighted 1040 

the superiority of such an approach compared to traditional baseline subtraction in 1041 

the context of EEG data (Alday, 2019). To control for the influence of task duration, trial 1042 

number was added as a regressor of no interest. 1043 

Note that, in the resulting model, a main effect of pitch corresponds to the 1044 

presence of psychometric response behaviour itself (probability of “high” responses 1045 

across pitch levels), a main effect of another predictor (e.g. pupil size) represents a shift 1046 

in response criterion, and an interaction of pitch and another predictor depicts a 1047 

change in the slope of the psychometric function, i.e. a change in sensitivity. Of note, 1048 

we refrain from interpreting the effects of covariates such as trial number or baseline 1049 

entropy, as is good practice. For a similar approach and argument see Alday (2019). 1050 

  Response times were measured relative to the offset of the presented tone 1051 

and analysed irrespective of response outcome (correct vs. incorrect). To eliminate the 1052 

impact of outliers, response times below .2 and above 2 seconds were excluded from 1053 

further analyses (Ratcliff, 1993). Effects of pre-stimulus desynchronization and arousal 1054 

on response speed (the inverse of response time, measured in 1/s) were analysed 1055 

within a linear mixed-effect model framework. Hence, single-trial measures of 1056 

response speed across all participants were considered as the dependent variable. This 1057 
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analysis approach allowed us to control for a number of other variables including trial 1058 

number and task ease by adding them as regressors to the model. 1059 

Brain–brain relationships: To test the relationships between neural desynchronization 1060 

and pupil-linked arousal with ongoing brain activity as well as auditory evoked 1061 

responses we followed an analogous approach. Namely, different linear mixed-effects 1062 

models with pre-stimulus entropy and pupil size as predictors were fitted for (i) pre-1063 

stimulus low (1–8 Hz) and (i) high (40–70 Hz) frequency power as proxies of ongoing 1064 

activity. Similarly, different models were fitted for (i) post-stimulus (0–250 ms) single-1065 

trial phase coherence (1–8 Hz), as well as (ii) low and (iii) high frequency total power as 1066 

measures of auditory evoked activity and stimulus processing (see Fig. 2a). Of note no 1067 

other covariates than baseline entropy used to model brain–behaviour relationships 1068 

were included since none explained any additional variance. 1069 

Model fitting: We employed an iterative model fitting procedure, starting with an 1070 

intercept-only model, to arrive at the best fitting model (Alavash et al., 2018; Tune et 1071 

al., 2018). 1072 

Fixed effects were added to the model one at a time and the change in model 1073 

fit was assessed using maximum likelihood estimation. An analogous procedure was 1074 

adopted for random effects after the best fitting fixed-effect-only model had been 1075 

determined. We re-coded single trial pitch by first subtracting the median pitch and 1076 

subsequently dividing by the new maximum, resulting in –1 and 1 for lowest and 1077 

highest pitch, respectively, and 0 as the midpoint. We z-scored all continuous variables 1078 

within participants. In the case of binary response behaviour we used generalized 1079 

linear mixed-effects models with a logit link function. For all other models we 1080 

employed linear mixed-effects as distributions of dependent variables were not found 1081 

to be significantly different from a normal distribution (all Shapiro–Wilk P values > .1). 1082 

P values for individual model terms were derived using the Wald z-as-t procedure 1083 

(Luke, 2017). 1084 

As measures of effect size we report log odds ratio (log OR) for models of binary 1085 

response behaviour end regression coefficients β for all other models alongside their 1086 

respective standard errors (SE). A log OR of 0 indicates no effect for the regressor under 1087 

consideration. Bayes factors (BF) were calculated for the comparison of two models 1088 

with an equal number of terms that differed only in one predictor.  1089 

To additionally offer an intuitive comparison of predictors’ effects on behavior 1090 

we directly tested some important differences of model estimates using a Wald test. In 1091 

short, the Wald statistic puts the difference between two estimates from the same 1092 

model in relation to the standard error of that difference. The resulting test statistic Z 1093 

(Bolker et al., 2009) can be used to test the null hypothesis of no difference between 1094 

the two estimates in a respective linear model. Z-values above and below ±1.96, 1095 

respectively, were considered statistically significant. 1096 

To evaluate the performance of the real-time desynchronization detection 1097 

algorithm described above, we re-calculated entropy (WPE) in the spatially filtered, un-1098 

cleaned EEG signal to then compute subject-wise averages of entropy time-courses for 1099 

high state and low state trials, respectively. A series of paired t-test was used to 1100 

examine state differences across time. We adjusted p-values to control for the false 1101 

discovery rate (Benjamini and Hochberg, 1995).  1102 

  1103 
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Data availability: EEG data and pupillometry data are publicly available on the Open 1104 

Science Framework https://osf.io/f9kzs/ 1105 

Code availability: Custom computer code to reproduce all essential findings is 1106 

publicly available on OSF https://osf.io/f9kzs/  1107 
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