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Abstract.  

Genes with similar roles in the cell are known to cluster on chromosomes, thus benefiting from 

coordinated regulation. This allows gene function to be inferred by transferring annotations from 

genomic neighbors, following the guilt-by-association principle. We performed a systematic search for 

co-occurrence of >1000 gene functions in genomic neighborhoods across 1669 prokaryotic, 49 fungal 

and 80 metazoan genomes, revealing prevalent patterns that cannot be explained by clustering of 

functionally similar genes. It is a very common occurrence that pairs of dissimilar gene functions – 

corresponding to semantically distant Gene Ontology terms – are significantly co-located on 

chromosomes. These neighborhood associations are often as conserved across genomes as the 

known associations between similar functions, suggesting selective benefits from clustering of certain 

diverse functions, which may conceivably play complementary roles in the cell. We propose a simple 

encoding of chromosomal gene order, the neighborhood function profiles (NFP), which draws on 

diverse gene clustering patterns to predict gene function and phenotype. NFPs yield a 26-46% increase 

in predictive power over state-of-the-art approaches that propagate function across neighborhoods, 

thus providing hundreds of novel, high-confidence gene function inferences per genome. Furthermore, 

we demonstrate that the effect of structural variation on gene function distribution across chromosomes 

may be used to predict phenotype of individuals from their genome sequence. 

 

Introduction. 

 

The role of many genes remains unknown. Even in well-investigated model organisms, a quarter or 

more of the genes have poorly characterized function. With the advance of genome sequencing 

techniques, the vast amounts of accumulated data provide an opportunity to infer gene function using 

computational methods. While such methods occur in many varieties, one widespread approach is to 

examine the gene neighborhoods that occur across genomes. Then, following the principle of guilt-by-

association, a function of a gene is inferred by transferring it from its neighbors in the genome1,2. Gene 

neighborhoods that are conserved across multiple genomes provide additional confidence in each 

inference, often yielding highly accurate predictive modes of gene function3,4,5,6,7. One important 

biological mechanism that underlies similarity of gene function in neighboring genes is that they are 

often regulated by common factors and therefore co-expressed (reviewed in8,9). The prime example is 

the prokaryotic operon, where a single mRNA harboring multiple protein-coding regions is transcribed 

from a promoter, ensuring that expression of such functionally related proteins is coordinated. However, 

this concept extends more broadly -- neighboring genes that are not part of the same operon are also 

often co-regulated and share function. Moreover, in eukaryotic organisms, which generally lack 
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operons, gene regulation is organized regionally and this pattern can be conserved across evolutionary 

time10,11,12,13,14 Consistently, gene function is non-randomly distributed also across eukaryotic 

chromosomes15,16, even though the neighborhood signal is overall more subtle than in prokaryotes, 

important exceptions notwithstanding (reviewed in17). 

 

The current computational methods that use conserved gene neighborhoods to predict gene function 

rely on the principle that similar functions cluster together on the chromosomes. While there is 

abundant evidence that this is the case, we were motivated by known individual examples of clustering 

of genes with apparently unrelated functions. For instance, a certain metabolic gene (FAD synthase) 

was reported to hitchhike with clusters of protein translation-related genes, and certain RNA 

modification/degradation genes were found to hitchhike with signal transduction genes18,19. We asked if 

these examples represent a broader trend that could be tapped into to improve methodologies that 

predict gene/protein function and phenotypes from genomic sequence in an automated manner. In 

other words, we searched for pairs of gene functions that are highly dissimilar, according to the 

structure of the Gene Ontology, yet that systematically cluster in genomic neighborhoods. If found, such 

clustering patterns would be predictive of gene function in a manner which is not accessible to previous 

automated approaches, which propagate a particular gene function across genomic neighborhoods. 

Furthermore if this type of clustering of diverse functions were widespread i.e. if it affected many genes, 

it would provide a basis for a broadly useful, general methodology to infer gene function that relaxes the 

requirement for homogeneity of function across neighborhoods.  

 

Here, we examined the functional composition of genomic neighborhoods across 1669 prokaryotic, 49 

fungal and 80 metazoan genomes (for more details see Supplementary material 1, section S1), finding 

that indeed it is a very common occurrence that certain pairs of unrelated functions cluster together. 

Almost all gene functions are significantly enriched in the genomic neighborhood of one or more 

semantically distant gene functions. Using this signal to infer function from neighbors results in 3.5-fold 

increase in predictive power (estimated by the information accretion criterion) over a naïve guilt-by-

association approach, and an 1.4-fold increase over a state-of-the-art network approach. In addition to 

predicting gene function, accounting for the complementarity patterns in genomic neighborhoods 

enhances the ability to predict phenotype from structural variation in genomic sequences of individuals. 

Our work highlights a widespread pattern in how gene function is organized across chromosomal 

domains. This has implications for understanding genome evolution and brings immediate practical 

benefits for methods to predict gene function and phenotype. 

 

Results. 

 

It is known that functionally related genes reside in the same genomic neighborhood more often than 

expected at chance 3,4,5,6,7,15,16,17. We employed a simple framework to systematically quantify the extent 

of such co-occurrence in neighborhoods across many genomes, separately for individual gene 

functions. In brief, we used COG (clusters of orthologous groups) and NOG (non-supervised 

orthologous groups) gene families, to each of which we assigned a set of gene functions, herein 

represented by Gene Ontology (GO) terms. Of note, here we refer to ‘function’ in a general sense, 

encompassing all three sub-ontologies of the GO: biological process (BP), molecular function (MF) and 

cellular component (CC). These assignment of function to gene families were based on the known 
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functions of the constituent genes of each COG/NOG (henceforth jointly referred to as COG) 

(Methods). The mapping of COG gene families to GO terms allowed us to determine whether a certain 

GO term x is enriched in the genomic neighborhood of any gene assigned to this same function x, 

normalized to the prevalence of x outside such neighborhoods, examined across 1669 prokaryotic 

genomes. This yields an odds ratio (ORx), which describes the effect size of the enrichment of each 

function GO x in its own neighborhood of size k. Given that operons tend to be short20, we present the 

data for prokaryotes with k=2 (we also provide systematic analyses covering larger neighborhood sizes 

in Supplementary document 1, Figure S27, relevant in the light of work suggesting that bacterial 

functional neighborhoods may extend up to 20kb21,22). The neighborhood is defined here as two genes 

to each side of a central gene, corresponding to a total size of five genes -- one central and four 

flanking (irrespective of orientation).  We were able to examine a total of 1048 GO terms that occured in 

at least 5 COG gene families. Out of these GO terms, 81.5% had neighborhoods significantly enriched 

in that same GO term (ORx>1 at FDR<20%; Z-test for significance of log odds ratio; Methods) and in 

78.8% was the enrichment significant and also higher than twofold (ORx ≥ 2). In the usually larger 

eukaryotic genomes, we considered neighborhoods of k=5 genes to each side of a central gene, and 

examined the 2617 GO terms (fungi) and 2336 terms (metazoa) that occurred in at least 3 gene 

families (for more detailed analyses of different neighbourhood size see Supplementary document 1, 

Figure S27).  Across eukaryotes, 35.1% of the analyzed GO terms are significantly enriched in their 

own neighborhoods across 49 fungal genomes, and 99.1% of GO terms across 80 metazoan genomes. 

17.7% of functions are significant and at least two-fold enriched in their own neighbourhood in Fungi, 

and this is the case for 99.1% of the gene functions in Metazoa. These enrichments and significance 

calls are upheld by comparing them to enrichments computed on randomized data (see Methods and 

Supplementary material 1, Table S3). The above data are consistent with the known clustering of 

genes with similar functions across genomes23,15,24 and demonstrate that our approach can be used to 

detect function enrichment in genomic neighborhoods.  

 

Next, we applied the same method to exhaustively test for enrichment of pairs of diverse GO functions 

in genomic neighborhoods. In particular, we measured the enrichment (as odds ratio, ORxy) of the 

genes annotated with a GO term y that are close to genes with GO term x, again in a neighborhood of 

k=2 genes to each side thereof. Indeed we found that 2.9x105 of 1.1x106 total examined pairs of GO 

terms in prokaryotes are significantly enriched (FDR<20%, Z-test on log OR), which makes all of the 

tested GO terms significantly enriched in the neighborhood of at least one non-self GO term (again, the 

significance calls are largely supported in a randomization test, see Methods and Supplementary 

material 1, Table S3). Mirroring the trend in prokaryotes, 1.0x106 out of total 6.8x106 considered 

function pairs are significantly enriched in fungi and similarly, in metazoa, 1.6x106 out of 5.4x106 pairs 

of gene functions are significant.  
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Figure 1. Systematic enrichment of diverse gene functions is widespread in genomic neighborhoods. (a) Distribution of 

neighborhood enrichment scores (log odds ratio, OR) for all pairs of GO functions on original and randomized genomes of 

prokaryotes, fungi and metazoa.  See also Supplementary 1, Figures S8, S11, S12 and Supplementary 1, Table S3. Pairs with 

OR = 0 are not shown on graphs (see Methods; these pairs result in artifactually high or low log OR values after continuity 

correction).  (b) Number of GO terms that are semantically distant, but significantly enriched in genomic neighborhoods 

(FDR≤10%) of each GO term, summarized in histograms for prokaryotes, fungi and metazoa. GO term pairs with Resnik 

similarity<1 (for prokaryotes) and RS<2 (for eukaryotes) from the ‘biological process’ GO sub-ontology are tallied in the figure. 

 

 

By design, in the GO there are many terms which describe very similar concepts and it is conceivable 

that a gene family might be assigned to either a GO term x or a very similar GO term y due to noise in 

the annotation process. This has the potential to inflate the number of non-self GO terms we observe 

mutually enriched in neighborhoods. We have therefore filtered out related GO term pairs by using 

measure of semantic similarity (Resnik similarity, RS, see Methods), which is defined using the 
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structure of the Gene Ontology graph. Of note, because semantic similarity is only defined within each 

GO sub-ontology but not across sub-ontologies, we present data for the ‘biological process’ GO terms. 

By conservatively requiring RS<1 (prokaryotes), we effectively restrict to GO term pairs in the different 

branches of the ‘biological process’ GO graph, removing 60% of the pairs in our prokaryotic data 

(details in Methods). Even in this remaining set there exist 0.5x105 out of 1.8x105 significantly enriched 

pairs of semantically distant functions. Moreover, in prokaryotes 100% of the BP GO terms are 

significantly enriched (at FDR=10%) in the neighborhood of at least one other semantically distant BP 

GO term (Figure 1). For eukaryotes we required RS<2 (see Methods for justification), removing 87% 

and 79% of all GO term pairs in the BP sub-ontology in Fungi and Metazoa, respectively. Still, 0.3x106 

out of 1.8x106 distant BP GO term pairs in Fungi are significantly enriched in genomic neighborhoods, 

and 0.4x106 out of 1.3x106 in Metazoa. These high proportions mean that almost all gene functions are 

significantly enriched in the neighborhood of at least one other semantically distant gene function 

(96.4% in Fungi, 100% Metazoa), when considering BP GO terms. 

 

The effect sizes of such enrichments may be substantial: 98.8%, 94% and 100% of the GO terms have 

a significant enrichment in the neighborhood that is also at least two-fold in magnitude with at least one 

other semantically distant GO term in prokaryotic, fungal and metazoan data, respectively. These 

statistics were also supported by comparing against a baseline distribution obtained by randomizing 

gene coordinates (Supplementary material 1, Table S3). GO term enrichments in neighborhoods of four 

example gene functions are shown in Figure 2, illustrating how there exist pairs of dissimilar functions 

that have neighborhood enrichments comparable to or higher than the enrichment of a gene function in 

its own neighborhood (histograms including statistical significance calls are shown in Supplementary 1, 

Figure S7).  

 

 

 
Figure 2. Semantically distant GO terms can be as strongly enriched in gene neighborhoods as the semantically 

close GO terms. For four example GO terms of the ‘Biological process’ ontology, histograms show numbers of GO terms at a 

certain log odds ratio (log OR) of the enrichment in gene neighborhood (for prokaryotic genomes). The GO terms in 

neighborhoods of a central GO function are broken down into three groups: the “CLPar” group (the central function itself + all 
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its parent functions in the GO graph), “CLMed” group (functions with Resnik semantic similarity > 2 with the central function) 

and “Dist” group (Resnik≤2 with the central function). Instances of GO terms in the dissimilar “Dist” group and in the non-self 

“CLMed” group can be observed that have enrichments as high or higher as the self-enrichments (the “CLPar” functions). 

 

 

For instance, there is a global trend in gene neighborhood organization where the GO term 

“carbohydrate metabolism” is 2.12-fold enriched in the neighborhood of the semantically unrelated GO 

term “carbohydrate transport” (of note, the magnitude of this enrichment is similar to that of 

“carbohydrate metabolism” in its own neighborhood – 2.53-fold). This co-occurrence is reminiscent of 

the textbook example of the lac operon in Escherichia coli, where the lacY gene encodes lactose 

permease, which shuttles lactose into the cell, while the neighboring lacZ gene encodes the enzyme β-

galactosidase, which breaks down lactose into monosaccharides. Our analysis suggests that the 

proximity of genes encoding carbohydrate transporters and carbohydrate metabolizing enzymes is a 

systematic trend. This can provide supporting evidence for inferring the presence of putative 

transporters next to known metabolic enzymes, and also vice versa.  

 

Some other examples include significant enrichment of both “DNA topological change” (ORxy=1.42) and 

also of “nucleoside bisphosphate biosynthesis” (ORxy=1.41) in the neighborhood of gene families 

annotated with ‘‘response to DNA damage stimulus”, which suggests coordinated regulation between 

DNA repair-related activities. Furthermore, “lipid biosynthesis” genes are often in the neighborhood of 

“localization within membrane” genes (2.43) and “carbohydrate biosynthesis” is in the neighborhood of 

“cell envelope organization” (2.10). These associations suggest coordinated activation of processes 

that generate building blocks of cellular structures, and subsequent processes that incorporate the 

building blocks into these structures. We list these and other examples of enriched GO term pairs for 

prokaryotic neighborhoods in Table 1, while the exhaustive list is in Supplementary Table S5.  

 

While all GO term pairs listed above either have low semantic similarity or are from different GO sub-

ontologies, it is possible that GO terms which are distant in the GO graph may overlap in the set of 

genes assigned to them24. This has the potential to inflate the observed enrichments, which might be 

due to the same genes artifactually creating two apparently distinct functional neighborhoods. However 

after quantifying the overlap of genes assigned to the pairs of GO terms using Jaccard index, we find 

this not to be a common issue (Table 1; Supplementary Material 5). Furthermore, a randomization of 

gene positions within each genome supports that the observed enrichment of extreme OR values 

between distinct GO terms is nonrandom. Importantly, this holds true to a similar extent for the 

semantically very close GO term pairs and the semantically distant pairs (panels ‘CLPar’ and ‘Dist’ in 

Figure S8). Overall, our data suggests that clustering of semantically distant gene functions is very 

common in genomic neighborhoods, occurring to a similar extent as the well-known clustering of similar 

gene functions in genomes. 

 

 
Table 1. Examples of dissimilar gene function pairs enriched in genomic neighborhoods. Data shown for “biological 

process” GO graph of the prokaryotic genomes. GOx-GOx denotes enrichment of a GO term s in its own neighborhood, while 

GOx-GOy denotes enrichment of the other GO term y in the neighborhood of GO term x. Enrichments are given as log odds 

ratio (log OR) +/- corresponding 95% confidence interval and the p-value for the association (by Z-test on log OR, one-tailed). 

“Resnik” denotes Resnik semantic similarity; this is an unbounded score where any value <2 corresponds to very distant terms 

that reside in separate branches of the GO graph (meaning the closest common ancestor has information content <2). “J” is 
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the Jaccard index that quantifies co-occurrence of gene functions in COG gene families from our prokaryotic data set, and can 

vary from 0 to 1. 

 

GOx Description log OR GOx-

GOx 

GOy description log  

OR GOx-GOy 

p Resnik J 

GO:0005975 carbohydrate 

metabolic 

process 

2.53 ∓ 0.01 GO:0008643 carbohydrate 

transport 

2.12 ∓ 0.02 0.0 0.0 0.0 

GO:0006260 DNA 

replication 

2.99 ∓ 0.02 GO0032506 cytokinetic 

process 

1.41 ∓ 0.06 0.0 0.787 0.0 

GO:0006974 cellular 

response to 

DNA damage 

stimulus 

2.39 ∓ 0.02 GO:0006265 DNA topological 

change 

1.42 ∓ 0.06  0.0 0.787 0.0 

GO:0006974 cellular 

response to 

DNA damage 

stimulus 

2.39 ∓ 0.02 GO:0033866 nucleoside 

bisphosphate 

biosynthetic 

process 

1.41 ∓ 0.05 0.0 0.787 0.0 

GO:0016051 carbohydrate 

biosynthetic 

process 

4.16∓ 0.02 GO:0043163 cell envelope 

organization 

2.1 ∓ 0.07 0.0 0.0 0.0 

GO:0006457  protein folding 5.41 ∓ 0.02 GO:0016226 iron-sulfur 

cluster 

assembly 

1.91 ∓ 0.08 0.0 0.521 0.0 

GO:0046700 heterocycle 

catabolic 

process 

1.15 ∓ 0.01 GO:0051180 vitamin 

transport 

1.65 ∓ 0.08 0.0 0.01 0.01 

GO:0006310  DNA 

recombination 

3.09 ∓ 0.02 GO:0006952 defense 

response 

1.02 ∓ 0.13 0.0 0.0 0.0 

GO:0046903 Secretion 6.56 ∓ 0.03 GO:0006935 chemotaxis 3.6 ∓ 0.05 0.0 0.0 0.0 

GO:0008610  lipid 

biosynthetic 

process 

3.21 ∓ 0.02 GO:0051668 localization 

within 

membrane 

2.43 ∓ 0.05 0.0 0.0 0.0 

GO:0006865 amino acid 

transport 

2.32 ∓ 0.04 

 

GO:0009310 amine catabolic 

process 

2.17∓0.13 0.0 0.0 0.0 

GO:0006508  proteolysis 1.80 ∓ 0.02 GO:0019682 glyceraldehyde-

3-phosphate 

metabolic 

process 

1.48∓0.05 0.0 0.95 0.0 
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A general method to infer gene function based on neighborhood patterns. Having demonstrated 

that genomic neighborhoods are significantly enriched in certain combinations of diverse gene 

functions, we asked if such neighborhood patterns can be used to derive a general method that 

predicts gene function. To evaluate this, we compared two established methods that propagate a gene 

function to neighboring genes, with a novel classifier that can draw on neighborhood co-occurrence of 

diverse gene functions to predict GO terms for COG gene families. The first method is a simple k-

nearest neighbors (kNN) classifier that transfers known functions to a COG gene family from the k 

neighboring gene families with smallest average logarithmized distances across many genomes 

(Methods). The second classifier can transfer gene functions to neighbors additionally via indirect links: 

a gene network is constructed from neighborhoods and the gene function assignments diffuse across 

the links (using the GeneMania method25, here referred to as the Gaussian Field Label Propagation 

(GFP) classifier). In addition to these known approaches, the third, novel classifier can draw on both the 

enrichment of similar functions in neighborhoods and additionally the enrichment of semantically distant 

gene functions. For example, this method should be able to infer that a gene family deals with 

“carbohydrate metabolism” based on its neighbors being annotated with “carbohydrate metabolism” 

and additionally based on its neighbors dealing with “carbohydrate transport”, a semantically distant 

function in the Gene Ontology graph. To this end, we employed a Random Forest classifier on a data 

set constructed such that examples are COG gene families, features are the normalized counts of 

every GO term in the neighborhood of that COG (across all genomes), and the target variable is the set 

of known GO term labels of the COG gene family; see Methods for a more formal definition. In other 

words, from such a representation, the function of a gene can in principle be inferred from the presence 

of any function -- or a combination thereof -- in the genomic neighborhood of the gene, as long as such 

a pattern occurs commonly enough to be recognized by the algorithm. We named this approach the 

“neighborhood function profile” (NFP) classifier. 

 

We first evaluated the accuracy of all methods in a cross-validation test (using the out-of-bag error 

statistic provided by Random Forest; see Methods) using the 3475 prokaryotic COG gene families and 

1048 corresponding GO terms, 15741 fungal COGs and 2617 corresponding GO terms, and 9185 

metazoan COGs and 2336 corresponding GO terms. The average area under precision-recall curves 

(AUPRC) for GO terms in the prokaryotic dataset is 0.153 for the 10-NN classifier and, expectedly, a 

much improved 0.199 score for the network-based (GFP) classifier. Both methods operate by 

transferring an annotation across gene neighborhoods, while the latter also has the ability of using 

indirect links to improve accuracy. However the NFP-based classifier which can draw on diverse 

neighborhood patterns substantially improves this with a 0.266 average area under P-R curves in 

prokaryotes, a 34% increase (p < 10-10 for the increase over the next best method, one-tailed Wilcoxon 

test on AUPRC scores across GO categories; distributions of scores in Figure 3, see also 

Supplementary 1, Figures S16, S17 and S18). Similarly so, in the two groups of eukaryotic organisms, 

the AUPRC scores of the novel NFP method were significantly improved: for Fungi, the 0.0460 (for the 

10-NN) increased to 0.0545 (for the NFP; p < 10-15 for the increase, Wilcoxon test) and for Metazoa, the 

increase is 0.0228 (for 10-NN) to 0.0267 (for NFP, p < 10-15 for the increase; Figure 3). The network 

diffusion approach applied to gene neighborhood data in eukaryotes did not on average bring benefits 

over the simpler 10-NN (Supplementary 1, Figures S19–S24), therefore the latter is used as a baseline.  
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Figure 3. The gene function profile of genomic neighborhoods provides a more accurate method to infer gene 

function. The distribution of area under the precision-recall curve (AUPRC) scores, measured in cross-validation, across all 

examined gene functions in prokaryotes (top), fungi (middle) and metazoa (bottom). The methods compared are the nearest 

neighbor (NN) classifiers (1-NN, 3-NN, 10-NN), a network-based approach (Gaussian Field Label Propagation, GFP) and 

finally the novel Neighbourhood Function Profile (NFP) method. See Supplementary 1, Figures S17, S20 and S23 for the area 

under ROC curve (AUC) scores. P-values are from a one-tailed Wilcoxon signed-rank test. 

 

 

Predictive power of the Neighborhood Function Profile (NFP) classifier.  A more accurate 

classifier would be expected to provide a higher number of predictions at a certain confidence 

threshold. We quantified this increase provided by the predictive models based on NFP. In particular, 

we tallied the number of predictions (COG-GO term associations) made at a precision threshold of 50% 

(equivalent to 50% FDR) and additionally at a more stringent 80% (20% FDR) for the three classifiers; 

Table 2. This reveals remarkable, several-fold increases in the amount of predictions afforded by the 

NFP in prokaryotes, fungi and metazoa, when considering the more general gene functions 

(information content (IC) between 2 and 4). In the highly specific gene functions (IC>4), there is a 

substantial increase in new annotations provided by NFP for prokaryotes and fungi. In metazoa 

however, the gain afforded by NFP in the IC>4 group of functions is more modest. We further examined 

the diversity of predictions: in particular, we asked if the new predictions afforded by NFP are largely 
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added to the gene families that were already assigned predictions by the known methods, or they 

instead afford coverage of new gene families. Our data suggested that the latter is the case 

(Supplementary 1, Tables S5, S6 and S7), because the number of COG gene families receiving at least 

one prediction increases in NFP compared to the baseline classifiers. 

 
Table 2. Number of predictions (associations between a gene function and a COG gene family) obtained using different gene 

function prediction methods based on neighborhoods. 10-NN, ten nearest neighbors; GFP, Gaussian Field Label Propagation 

(network-based approach); NFP, neighborhood function profile. IC, information content of GO term, where lower IC signifies 

more general functions. Bold numbers show the best method for a given combination of dataset,  stringency and set of 

functions. The exhaustive list of annotations obtained by the NFP can be seen in Supplementary material 2 and novel 

predictions in Supplementary material 3. 

Dataset Method Number of predictions 

(functions of any IC)  

Number of predictions of 

general functions with 

2<IC≤4  

Number of predictions of 

specific functions with 

IC>4 

 

 

 

 

 Precision 

0.5 

Precision 

0.8 

Precision 

0.5 

Precision 

0.8 

Precision 

0.5 

Precision 

0.8 

 

 

Prokaryotes 

10-NN 31,759 4,828 3,642 1,093 5,664 1,942 

GFP 61,418 15,094 11,740 3,089 13,194 4,763 

NFP 88,579 25,635 26,448 7,247 16,804 6,228 

 

 

Fungi 

10-NN 65,370 448 17 0 1,284 448 

GFP 140,255 20,020 3 2 0 0 

NFP 178,687 20,204 3,592 355 7,668 1,579 

 

 

Metazoa 

10-NN 66,403 327 912 74 936 253 

GFP 89,992 464 2,552 11 390 94 

NFP 102,631 3,057 9,546 769 988 217 

 

 

Our gene neighborhood classifiers, as implemented, provide function predictions at the level of COG 

gene families (exhaustive list given in Supplementary material 2 and 3.). We also provide data showing 

how this reflects in the number of genes receiving predictions in certain model organisms 

(Supplementary 1, Tables S7 and S8). For instance, in Escherichia coli, at precision 0.5, the number of 

novel predictions (gene-function pairs) is 7572 for the network approach, and increases to 10559 

provided by the novel NFP classifier; similarly so in the pathogen Staphylococcus aureus, increasing 

from 4314 to 5386 by use of NFP; all counts given for gene functions with IC>4. Eukaryotes, consistent 

with more modest AUPRC scores (see above), provide overall fewer predictions but increases by NFP 

are still quite evident. The number of novel annotations at Pr=0.5 substantially increased from 89 (10-

NN) to 552 (NFP) for Saccharomyces cerevisiae and 87 to 282 for Schizosaccharomyces pombe, in the 

fungal predictor (Supplementary 1, Table S8). For metazoans, the increases were striking for the more 
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general gene functions with IC 2-4, with more than twofold higher number of predictions afforded by 

NFP at precision=0.5 for mouse, human or Drosophila melanogaster, compared to the next best 

method based on propagating functions across the neighborhoods. The NFP gains were more modest 

for highly specific gene functions with IC>4 in Metazoa (Supplementary 1, Table S8). One possible 

explanation was the lower coverage with known functions (average 18 GO terms per gene in Metazoa 

versus 26 in Fungi in the databases we used; see Methods). This might prevent NFP from discovering 

complex association patterns between gene functions in neighborhoods, while the simpler kNN 

classifier is less affected.  

 

Table 3. Amount of predicted information on gene function, measured using the ‘information accretion’ methodology and 

expressed as bits per gene. 10-NN, ten nearest neighbors; GFP, Gaussian Field Label Propagation (network-based 

approach); NFP, neighborhood function profile. 

 

Dataset Stringency 
(Precision 

score 
threshold) 

Method Known 
annotations 
(bits/gene) 

Recovered 
known 

annotations 
(bits/gene) 

Newly 
predicted 

annotations 
(bits/gene) 

 
 
 
Prokaryotes 

 
0.5 

10-NN  
 

23.19 

4.31 2.69 

GFP 7.71 6.89 

NFP 10.22 9.44 

 
0.8 

10-NN 1.16 0.15 

GFP 3.09 0.77 

NFP 4.78 1.14 

 
 
 

Fungi 

 
0.5 

10-NN  
 

27.91 

1.08 0.7 

GFP 1.96 1.37 

NFP 2.59 2 

 
0.8 

10-NN 0.01 0.001 

GFP 0.39 0.087 

NFP 0.45 0.093 

 
 
 

Metazoa 

 
0.5 

10-NN  
 

19.05 

1.01 0.7 

GFP 1.34 0.99 

NFP 1.56 1.25 

 
0.8 

10-NN 0.01 0.002 

GFP 0.03 0.003 

NFP 0.08 0.014 

 

 

We examined another measure of the utility of the predictive models, based on the information 

accretion (IA) criterion26. In brief, IA weighs the predictions such as to give higher scores to higher 

information content (rarer) GO terms; see Methods. By this method, in prokaryotes kNN predicts 2.69 

bits/gene novel information, the GFP network approach 6.89 bits/gene, while the NFP increases this to 

9.44 bits/gene; all given at precision=0.5 (bits/gene at precision 0.5 and 0.8 thresholds are in Table 3, 

for visualization of proportions see Supplementary 1, Figures S30 and S31). Therefore, we suggest that 

NFP brings a 37% increase in coverage with predicted gene functions over a state-of-the-art genomic 

neighborhood method. This result is mirrored in two groups of eukaryotes we tested: in fungi, the 

increase was 0.70 (kNN), 1.37 (network) and 2.00 (NFP) bits/gene, while in Metazoa it was 0.70 (kNN), 

0.99 (network) increasing to 1.25 bits/gene in the NFP method (Table 3, Supplementary 1, Figures S32, 

S33, S34 and S35).  In other words, in eukaryotes, the new NFP method increases the predictive 

power by 46% (Fungi) and 26% (Metazoa) over a state-of-the art network approach for propagating 

gene function across neighborhoods. 
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NFP accuracy is due to semantically distant functions. The above data indicate that a classifier 

based on the NFP -- an exhaustive description of the composition of gene functions in a genomic 

neighborhood -- provides high accuracy and yields many additional function predictions. Next, we 

performed tests to ascertain if this increase in accuracy of the NFP is indeed specifically due to the 

semantically distant GO terms enriched in gene neighborhoods. To this end, we examined 11 example 

gene functions, which were shown to have other semantically dissimilar functions enriched in their 

neighborhoods (by our ORxy measure, see above). As expected, the NFP classifier strongly 

outperforms the baseline kNN and the GFP classifiers for these functions (Supplementary 1, Figure 

S28). Then, we created partial NFPs, which contained only the semantically distant functions, 

compared to the function being predicted (“Dist”, having RS < 2), contrasting this to the partial NFP 

which contains only the function being predicted itself and its ancestors that are semantically close 

(“CLPar”, parents in the GO graph having 𝑅𝑆 ≥ 4 plus the GO function itself). Random Forest 

classifiers were trained on the partial NFPs and cross-validation accuracy compared (Figure 4). For 9 

out of 11 functions, a higher accuracy was obtained from neighborhood features describing 

semantically distant functions (“Dist/Par”, mean AUPRC = 0.047 across gene functions) than from 

features describing of the target function and its close parents (“CLPar”, mean AUPRC = 0.035), which 

is an implementation of the guilt-by-association principle using the same classifier and the same data 

representation; for 8 out of 11 the increase was significant at p<0.0002; Wilcoxon one-sided paired test. 

For all 11 functions, using the full set of neighborhood features (including the close, intermediate-

distance, and distant functions), significantly outperforms the default model using only close features, 

suggesting a benefit to predictive accuracy also from including the intermediate-distance functions. This 

analysis demonstrates that even when using the same statistical methodology (Random Forest) and 

same type of data representation (NFP), the presence of semantically distant functions in genomic 

neighborhoods is often highly predictive of a gene having a certain function.  For more details on the 

experimental setup see Supplementary document 1 (methodology section).  
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Figure 4. Semantically distant functions in gene neighborhoods are important for accurate inference of gene function. 

Bars show accuracy (as AUPRC score, measured in crossvalidation) for predicting the eleven representative gene functions, 

using various types of neighborhood function profiles (NFP) that are listed in the legend. The “Full profile” are the full NFP of 

the ‘biological process’ GO graph, while the “CL/CLPar”, “Med/Par” and “Dist/Par” represent the partial NFP consisting only of 

close, medium-distance and distant functions, respectively (the “/Par” denotes that parent GO terms of the target functions 

were removed). The “CLPar” partial profiles contain only the selected function and its semantically close parents, meaning that 

“CLPar” is an implementation of the standard approaches that transfer similar functions across neighborhoods. In many cases, 

the close (but non-self), medium-distance and distant functions are more predictive than CLPar, and the complete profile 

(BPP) is most predictive. Serving as a control, the removal of the significantly enriched functions (labeled as “/Enr” in the 

legend) from the partial NFP strongly reduces accuracy, either for the close functions (CL), the medium-distance (Med) or the 

distant functions (Dist). Bars are average AUPRC scores of 200 runs of cross-validation of the Random Forest classifier, 

whereas error bars show standard deviation across the 200 runs. 

 

 

Generalizing this principle, we further included GO terms from all three sub-ontologies (Biological 

Process [BP], Molecular Function [MF] and Cellular Component [CC]) into global functional profiles of 

gene neighborhoods, which therefore includes a variety of semantically unrelated GO terms. While 

testing this, we took provisions to exclude the pairs of GO terms across different ontologies that are 

commonly mapped to same genes, using a very stringent threshold of Jaccard similarity <0.1. Including 

all sub-ontologies further helped improve accuracy of predicting GO terms (for details see 

Supplementary Document 1, Section S2.10 and Supplementary 1, Figure S38). Even thus, we found 

that the average AUPRC score increased from 0.296 to 0.298 for BP (when including non-overlapping 

MF and CC terms that occur in neighborhoods), 0.191 to 0.213 for MF (when including BP and CC) and 

0.400 to 0.461 for CC (including BP and MF). This further supporting the general notion that a variety of 

unrelated gene functions tend to be organized into common genomic neighborhoods. 

 

Validation on external datasets.  Our gene neighborhood-based NFP predictive models used cross-

validation to obtain overall estimates of accuracy, and additionally to estimate the FDRs for thousands 

of individual predictions made in bacteria and eukaryotes (Supplementary material 2 and 3). To further 

support these estimates, we analyzed an external dataset of gene functions derived from the Critical 

Assessment of Function Prediction (CAFA 2) challenge data27 (https://biofunctionprediction.org/cafa/) 

(Supplementary 1, Section S2.9). Indeed, also on the external validation set, the NFP approach 

(average AUPRC: 0.207) again outperforms the 10-NN method (AUPRC: 0.130); the difference is 

significant at p<2.2x10-16 by Wilcoxon test, one-tailed). The average AUPRC of 0.207 on the external 

validation set is broadly consistent with the average AUPRC of 0.266 on crossvalidation. The AUPRC 

scores for the individual GO categories were significantly correlated between crossvalidation and the 

external set (Supplementary 1, Figure S36). 

 

External validation of eukaryotic predictive models is consistent with the above. The accuracy on 

external data is higher for NFP (average AUPRC: 0.065 in Fungi, 0.025 in Metazoa), compared to the 

(next best) 10-NN approach (average AUPRC: 0.055 in Fungi, 0.0195 in Metazoa); the differences are 

significant at p<5.3x10-16 in Fungi and Metazoa. These scores for the NFP predictions on the external 

set are largely similar to those originally obtained in crossvalidation for the two groups (external 0.065 

and 0.025 for Fungi and Metazoa, versus crossvalidation 0.0545 and 0.0267 respectively; 

Supplementary 1, Figure S37). 
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In summary, external validation confirmed that NFP outperforms previous approaches that propagate 

gene functions across neighborhoods, and additionally lent credibility to the original cross-validation 

estimates of accuracy. The set of predictions we supply as Supplementary material 2 and 3 may be 

used to prioritize further validation work. The FDR score provided for each individual prediction allows 

the users to make informed decisions on choosing the predictions to validate in further experiments.  

 

Gene neighborhood composition predicts phenotype of individuals. Predicting phenotype from 

the genome sequence of an individual is a central goal in modern genetics. While single-nucleotide 

variants and indels are commonly considered in such analyses 28,29, structural variants also have 

considerable potential to affect gene regulation and may therefore bear on the phenotype. Encouraged 

by the high accuracy of the NFP classifiers in predicting gene function based on neighborhood 

composition, we therefore asked if a related method could be used to infer phenotype from gene order 

observed in genomes of individuals in a population. We focused on prokaryotes, for two reasons. First, 

the NFP classifiers were more accurate for prokaryotes, which is likely at least in part due to a much 

larger set of genomes currently available. Second, structural variants are known to be abundant 

between microbial strains and affect the major part of the genome therein. Moreover, our recent work 

has shown that across prokaryotic species, many phenotypes are strongly associated with certain gene 

neighborhoods30. This motivated us to examine to what extent this holds true also for individuals 

(strains) of one species and to what extent are the associations with neighborhoods predictive. We 

have therefore examined a previous data set of 696 naturally-occurring E. coli strains that have been 

systematically tested for 151 phenotypes (Methods), such as ability to metabolize certain substrates or 

resistance to a variety of toxins and antibiotics29. In the original work, occurrence of deleterious 

variants, such as nonsense variants or frameshifting indels in certain genes was associated with 

specific phenotypic outcomes.  

Here, as a baseline we use conditional scores (CS) supplied in Galardini et al., which are based on an 

estimate of gene disruption in a particular strain combined with the phenotypes that are known to result 

from loss-of-function mutations for each gene29. Upon computing the AUC and AUPRC predictive 

performance measures for each phenotypic trait (here encoded as a binary outcome; see Methods) 

based on the CS, we obtained the median AUC of 0.672 (0.591 - 0.736; Q1-Q3) across the 151 

phenotypes (Figure 5a).  

Next, we created a NFP dataset from this genomic data, where examples are E. coli strains, while 

features are frequency counts of each GO term in the neighbourhood of each COG. A principal 

components (PC) analysis was applied to reduce this data set to 228 PCs that provide a compact 

representation of the functional composition of gene neighborhoods across many gene families and 

which were used to train a Random Forest classifier. This yielded NFP models with broadly improved 

predictive accuracy, resulting in out-of-bag AUC scores of 0.7150 (0.4800 - 0.8145; median, Q1-Q3) 

across the phenotypes. In specific, 42 out of 151 phenotypes had a significant increase in accuracy 

(FDR=20%, DeLong test) over the baseline classifier that draws on deleterious point mutations / indels. 

In contrast, only 9 of 151 phenotypes had reduced accuracy in the NFP. Overall this suggests that 

composition of gene neighborhoods is substantially associated with phenotype. 

The baseline classifier consults deleterious mutations but not structural variants (which manifest in 

changed gene neighborhoods). Furthermore, it is expected that, broadly, the effects of the point 

mutations/indels on the one hand and the structural variants on the other hand will often be qualitatively 
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different -- the former commonly abolish or modify protein function, while the latter commonly affect 

gene regulation. We therefore hypothesized that the two types of variants need to be considered jointly 

to predict phenotype of individuals more accurately. This was tested by constructing an ensemble 

classifier (see Supplementary Document 1, Section S2.11, and Supplementary 1, Figures S41 and S42 

for details) that results in further significant increases (AUC 0.761; Q1-Q3: 0.673 - 0.848) over the 

baseline and also over the NFP classifier (𝑝𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒=1.7 ⋅ 10−15, 𝑝𝑁𝐹𝑃  = 1.6 ⋅ 10−9 , one-sided Wilcoxon 

signed-rank test). There was a significant increase in accuracy (FDR<20%, DeLong test) over the 

baseline model that draws only on deleterious gene variants, when predicting 62 out of 151 

phenotypes, while only 10 phenotypes showed a significant decrease in accuracy over the baseline, 

signalling an increase in predictive ability for many different phenotypes.  

We highlight some examples. The phenotype “Trimethoprim.A22”, which describes growth inhibition by 

a combination of two antibiotics, can be predicted by the baseline method (drawing on deleterious 

mutations) such that, at a precision=0.5, only 6% of the strains exhibiting the growth phenotype are 

able to be recovered by the model (recall=0.06; estimates from precision-recall curves in 

crossvalidation; Figure 5b). In contrast, the ensemble method which combines the mutations and the 

structural variants, can recover 28% of the strains exhibiting the growth phenotype (recall=0.28), which 

is a four-fold increase. Furthermore, the phenotype “Doxycycline.Pyocyanin” which describes sensitivity 

to a combined treatment by an antibiotic and a reactive oxygen species-generating toxin, does not yield 

any predictions (recall=0) at a precision threshold of 50% when drawing on mutations only, but 

recovers 27% of the strains known to exhibit growth phenotypes (Figure 5b) when considering also the 

gene neighborhoods encoded via their function profile. This data for other phenotypes is listed in 

Supplementary Material 4. This demonstrates that structural variation in the genome of individuals can 

be used to predict many phenotypes by drawing on the NFP representation of gene ordering along the 

chromosomes. 
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Figure 5. Predicting phenotypes of individuals from the effects of structural variants on the composition of gene 

neighborhoods. (a) Accuracy of predictive models’ AUC scores (top) and AUPRC scores (bottom) across 151 Escherichia 

coli phenotypes, estimated in crossvalidation. The baseline classifier predicts phenotype from the scores based on gene 

disruption by small variants. The PCA-NFP classifier predicts from neighborhood function profiles, which are a representation 

of structural variants in the genomes. The Ensemble classifier is a combination of both sources of data (see Methods).  (b) 

The cross-validation receiver operating characteristic (ROC) curve achieved by a baseline method based on small genetic 

variants (green) and the ensemble method (blue) that also includes structural variants, shown for two example phenotypes. 

Additional examples are in Supplementary 1, Figure S43. 

 

 

Discussion. 

 

Our work characterizes the distribution of gene function across genomic neighborhoods in hundreds of 

genomes. Expectedly, we detected the well-known phenomenon where genes with similar function 

cluster together in eukaryotic and prokaryotic genomes. However, the same analysis revealed that 

another type of genomic pattern is very common -- the clustering of certain pairs of gene functions that 

appear unrelated, measured either by their proximity in the Gene Ontology graph (via the Resnik 

similarity) or the overlap in genes assigned to the functions (via the Jaccard coefficient). The 

prevalence of such clustering is very high: while 92.6% of all examined gene functions in prokaryotes 

are significantly enriched in their own neighborhood or in the neighborhood of a related function, 100% 

of all functions are so in a neighborhood of at least one unrelated function (at a stringent threshold of 

FDR=1%; see Methods for definitions). Similarly so, also in the eukaryotic groups we have examined, a 

higher number of gene functions have an unrelated function significantly enriched in their neighborhood 

than have a related function enriched (Methods for details). In other words, while neighborhood 

organization following the similarity principle is certainly prevalent in genome neighborhoods, other 

patterns appear similarly or more widespread – they are the rule rather than the exception. Given that 

the effect sizes of these between-function neighborhood enrichments often approaches the within-

function enrichment, it is conceivable that this widespread pattern is too a result of selective forces 

shaping genome organization, although the underlying evolutionary mechanisms remain to be 

elucidated. Irrespective of the mechanism that created it, this pattern is sufficiently strong that it can 

yield accurate predictive models to infer gene function and also the phenotype of individuals.  

 

If indeed the clustering between unrelated gene functions brings a selective benefit to the organism, 

one possible interpretation is that the clustered pairs of functions play complementary roles in the 

physiology of the organism. This raises a concern that such a pair of complementary functions, whose 

genes are commonly inter-linked by functional associations (here, inferred from neighborhoods), might 

be instead better merged into a single large functional group, which would better reflect biological 

reality. In other words, are these complementary function pairs seen by evolution simply as a single 

function? An argument against this is that such pairs of gene functions are not commonly annotated to 

the same gene families (low Jaccard index of example GO terms in Table 1; exhaustive list in 

Supplementary material 5), even if they do commonly occur in the neighborhood of each other. More 

generally, all significantly enriched pairs of GO terms tend to overall have very low overlap, with 92% of 

these pairs having Jaccard index <0.1 in genes assigned to them (Supplementary 1, Figure S15). 

 

Turning to the example of the E. coli lac operon and the corresponding functions “carbohydrate 

transport” and “carbohydrate metabolism”: it is evident that these molecular functions must be distinct 
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due to a different molecular basis for transmembrane transport and for enzymatic cleavage. It is also 

clear from genomic data that the functions are distinct because they occur independently i.e. they do 

not co-occur in the same gene families (0 co-occurrences out of 3475 examined prokaryotic COGs; 

2.63 co-occurrences of the two functions expected at random, given 199/3475 COGs annotated with 

“carbohydrate transport” and 46/3475 annotated with “carbohydrate metabolism”). Given the knowledge 

of the lac operon, it is plausible that many other similar neighborhoods exist that incorporate both 

transport and metabolism of compounds, reaping benefit from coregulated expression of such 

complementary gene functions. The NFP approach for predicting gene function and phenotype is able 

to leverage such systematic co-occurrences, and propagate such dissimilar but co-occurring gene 

functions across neighborhoods in a rigorous manner. 

 

Such pairs of putatively complementary gene functions might be thought of as child functions of a 

single hypothetical parent function, which currently does not exist in the Gene Ontology graph -- if it did, 

then the semantic similarity statistic would mark this pair of functions as closely related. This suggests a 

possible manner of enhancing of the GO graph based on this data, which would involve creating 

additional parent nodes that bridge the semantically distant, but biologically related GO terms. Of note, 

there were previous suggestions to derive alternate GO graphs by drawing on co-occurrence of 

function annotations in the same genes24, which is distinct from what we report here. The 

complementary functions we propose do not co-occur in the same genes, but are instead associated 

with each other (in the current analysis, via conserved gene neighborhoods, but it is conceivable that 

functional interactions inferred from other large-scale data might yield similar results). Past work31 has 

proposed that some GO terms may be considered ‘classes’, whose member genes are densely 

interconnected by functional associations inferred from large-scale data, and other GO terms are 

‘categories’, whose members are not linked by functional associations, and which therefore represent 

artificial concepts. Here, we see widespread evidence for a third type of pattern in the GO graph of 

gene functions, wherein pairs of distant GO terms are linked by prevalent functional associations 

bridging the two GO terms. This suggests that such pairs (and possibly larger groups) of GO terms that 

are significantly interlinked provide a biologically meaningful manner for organizing the catalogue of 

gene function, with practical implications for automated inference of gene function or phenotype from  

genomic data. 

  

 

Methods. 

 

Methodology overview. In this work, we assess a novel gene neighbourhood representation, called 

“Neighbourhood functional profile” (NFP), for gene function prediction in 1669 prokaryotic organisms, 

49 fungal and 80 metazoan organisms. To predict gene functions, we used Clusters of Orthologous 

Groups32 (COGs and NOGs) gene families, derived from Eggnog database33 (version 4.0 for 

prokaryotic and 5.1 for eukaryotic organisms), henceforth collectively referred to as COGs. We have 

assigned functions from Gene Ontology34 to gene families (COGs) as those occurring in at least 50% 

genes assigned to a given COG. The resulting datasets contain: a) 3475 COGs (entities) and 1048 GO 

functions (targets) obtained from the prokaryotic genomes, b) 15969 COGs and 2617 GO functions 

obtained from the fungal genomes, c) 9187 COGs and 2336 GO functions obtained from the metazoan 

genomes.  
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Methodology description. For a given set of genes G and a set of COGs 𝛺, we define a mapping  

𝛾: 𝑮 → 𝑷(𝜴) which assigns each gene to one or more corresponding COGs. Similarly, for a set of gene 

functions 𝛴, mapping 𝛿: 𝛺 → 𝑃(𝛴) mapps OGs to a corresponding set of gene functions contained 

within GO ontology.   

 

For a given set of organisms 𝛩, a set of genes G, a selected gene 𝑔𝑖 ∈  𝛩𝑙 a number of neighboring 

positions from either side of the gene  k ∈  ℵ, a set of COGs 𝛺 and a set of GO functions 𝛴, a functional 

gene neighbourhood of 𝑔𝑖   in the organism 𝛩𝑙  is defined as a count of all GO functions occurring in 

COGs or NOGs assigned to genes in its k-neighbourhood. Formally:  𝑁𝑏ℎ(𝑔𝑖 , 𝛩𝑙 , 𝑔𝑜𝑘) =

∑𝑘
𝑠=1 (1𝑔𝑜𝑘

( ∪𝑜𝑔∈𝛾(𝑔(𝑖+𝑠) 𝑚𝑜𝑑 𝑛) 𝛿(𝑜𝑔 )))  + (1𝑔𝑜𝑘
(  ∪𝑜𝑔∈𝛾(𝑔(𝑖−𝑠) 𝑚𝑜𝑑 𝑛) 𝛿(𝑜𝑔 ))) ), for prokaryotic 

organisms and 𝑁𝑏ℎ(𝑔𝑖, 𝛩𝑙 , 𝑔𝑜𝑘) = ∑𝑘
𝑠=1 (1𝑔𝑜𝑘

( ∪𝑜𝑔∈𝛾(𝑔(𝑖+𝑠))  𝛿(𝑜𝑔 )))  +

(1𝑔𝑜𝑘
( ∪𝑜𝑔∈𝛾(𝑔(𝑖−𝑠))  𝛿(𝑜𝑔 ))) ), for eukaryotic organisms  where 𝑔𝑠 are genes contained in a k-

neighbourhood of gene 𝑔𝑖 and 𝑛 denotes the total size of a genome. Thus, the result of gene 

neighbourhood computation for all go functions is a tuple of size |𝛴|containing corresponding 

occurrence frequencies of all GO functions in the k-neighbourhood of 𝑔𝑖. In our data analyses, we use 

COGs as entities, thus each COG is associated with a vector containing |𝛴| elements, corresponding to 

occurrence of GO functions in its k-neighbourhood, derived from neighbourhoods of corresponding 

genes. The neighbourhood frequencies computed for a gene 𝑔𝑖are added to the frequency vector of all 

OGs such that 𝑜𝑔𝑠 ∈ 𝛾(𝑔𝑖). Thus, 𝑁𝑏ℎ𝑂(𝑜𝑔𝑖, 𝛩𝑙 , 𝑔𝑜𝑘)  =  ∑{𝑔𝑘∈𝛩𝑙 | 𝑜𝑔𝑖∈ 𝛾(𝑔𝑘)} 𝑁𝑏ℎ(𝑔𝑘 , 𝛩𝑙 , 𝑔𝑜𝑘) and the 

final features are computed as 𝑁𝑏ℎ𝐷(𝑜𝑔𝑖, 𝛩 , 𝑔𝑜𝑘)  =  ∑𝛩𝑙∈𝛩 𝑁𝑏ℎ𝑂(𝑜𝑔𝑖, 𝛩𝑙 , 𝑔𝑜𝑘)/|𝛩𝑔𝑜𝑘|. 𝛩𝑔𝑜𝑘 

denotes a set of all organisms containing at least one COG with function 𝑔𝑜𝑘. Note that genes that are 

not assigned to any COG do not add to function frequency count in the neighbourhoods. 

 

We trained a Random Forest of Predictive Clustering Trees35 model on this features to predict gene 

functions.  Performance of this methodology is compared to the biological (1-NN) and Gaussian Field 

Label Propagation model36, trained on the average of logarithmic distances of pairs of COGs in different 

organisms. For a pair of genes 𝑔𝑖 =  (𝑐𝑥𝑖
, 𝑐𝑦𝑖

) and 𝑔𝑗 =  (𝑐𝑥𝑗
, 𝑐𝑦𝑗

), where 𝑐𝑥𝑖
, 𝑐𝑦𝑖  

, 𝑐𝑥𝑗
, 𝑐𝑦𝑗

are coordinates 

of corresponding genes in a genome. The logarithmic distance of two genes contained in a prokaryotic 

organism is computed as: 𝑑(𝑔𝑖,𝑔𝑗) = 𝑙𝑜𝑔2(𝑚𝑖𝑛(|𝑐𝑥𝑖−𝑐𝑦𝑗
|, |𝑐𝑦𝑖

− 𝑛 − 𝑐𝑥𝑗
|)  +  휀), if 𝑐𝑥𝑖

> 𝑐𝑦𝑗
 

𝑑(𝑔𝑖,𝑔𝑗) = 𝑙𝑜𝑔2(𝑚𝑖𝑛(|𝑐𝑥𝑗−𝑐𝑦𝑖
|, |𝑐𝑦𝑗

− 𝑛 − 𝑐𝑥𝑖
|)  +  휀), if 𝑐𝑥𝑗

> 𝑐𝑦𝑖
 

If two genes are overlapping, we define their distance to equal small constant 휀. In our work, we use 

휀 =  10−10. Distances in eukaryotic organisms are computed as:  

𝑑(𝑔𝑖,𝑔𝑗) = 𝑙𝑜𝑔2(|𝑐𝑥𝑖−𝑐𝑦𝑗
|  +  휀), if 𝑐𝑥𝑖

> 𝑐𝑦𝑗
 

𝑑(𝑔𝑖,𝑔𝑗) = 𝑙𝑜𝑔2(|𝑐𝑥𝑗−𝑐𝑦𝑖
|  +  휀), if 𝑐𝑥𝑗

> 𝑐𝑦𝑖
 

The average logarithm distance of pair of OGs is computed as: 𝑑(𝑜𝑔𝑖, 𝑜𝑔𝑗 , 𝛩 )  =

∑𝛩𝑗∈𝛩 (∑(𝑔𝑘,𝑔𝑙)∈𝛩𝑗| 𝑜𝑔𝑖∈𝛾(𝑔𝑘),𝑜𝑔𝑗∈𝛾(𝑔𝑙) 𝑑(𝑔𝑖 , 𝑔𝑗))/(|{(𝑔𝑘 , 𝑔𝑙) ∈ 𝛩𝑗| 𝑜𝑔𝑖 ∈ 𝛾(𝑔𝑘), 𝑜𝑔𝑗 ∈ 𝛾(𝑔𝑙)}|)  

An overview of the approach is provided in Figure 7. 
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Figure 7. Overview of the neighborhood function profiles methodology. Location-based approaches are trained on 

pairwise COG/NOG distances of corresponding genes contained within genome of different prokaryotic and eukaryotic 

organisms (as demonstrated in a). The obtained distances are used to create a similarity table to train the k-NN model and the 

association network to train the Gaussian Field Label Propagation approach. Functional neighbourhoods (b) are used to 

create a normalized frequency matrix which is used to train the Random Forest of Predictive Clustering trees model. “COG” in 

the Figure is used to denote both COG and NOG. Target Hi denotes the sub hierarchy of GO ontology associated with COGi 

(sub hierarchy contains information about the GO functions assigned to some COG and parent-child relations between these 

GO functions).  

 

 

Method evaluation and relevance. All methods are evaluated in cross-validation setting (k-NN and GFP 

using leave-one-out cross-validation and NFP using out-of-bag estimates using a forest of 600 trees). 

Out-of-bag estimate is used in NFP since it significantly reduces validation time of a random forest 

model and provides comparable estimate of error to cross-validation. 

 

Since assessing the importance of enriched functions in genomic neighborhoods for gene function 

prediction was a central goal of our work, we evaluated our approach (that utilizes this information) by 

comparing it with other state-of-the-art approaches that use information about gene proximity, but lack 

the information about the enriched semantically distant functions. Increasing predictive performance of 

genomic neighborhood-based methods may significantly advance our knowledge about the many 

genes of unknown function, particularly since these methodologies can be easily incorporated into an 

ensemble model with other genomic predictors, which -- due to complementarity of predictions of 

different models -- yields superior performance37. 
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Association testing of GO functions in neighborhoods. To measure the strength of association between 

different pairs of GO functions from our data, we first computed the contingency tables that contain the 

following components: a) COG contains GOx and Neighborhood contains GOy, b) COG contains GOx 

and Neighbourhood does not contain GOy, c) COG does not contain GOx and Neighbourhood contains 

GOy, d) COG does not contain GOx and Neighbourhood does not contain GOy. 

 

From these tables, we compute the Odds ratio OR = 
𝑎/𝑐

𝑏/𝑑
 and ultimately the Log Odds ratio 𝑙𝑜𝑔2(𝑂𝑅). In 

addition to computing ORs and log odds ratios and testing its statistical significance using the Fisher 

exact test (for ORs) and  z-test for𝑙𝑜𝑔2(𝑂𝑅) > 0. We also provide empirical evidence of strength of 

association by computing the number (percentage) of significantly enriched pairs of functions computed 

on the original dataset with higher or at least two-times higher (2x or more) 𝑙𝑜𝑔2(𝑂𝑅) than the 

corresponding pair computed on the randomized dataset (gene locations are permuted in the genome).  

 

For a GO term with frequency p(GO), the information content (IC) of a GO is defined as −𝑙𝑜𝑔2(𝑝(𝐺𝑂)). 

The Resnik Similarity (RS) of a pair of GO terms 𝐺𝑂𝑥 , 𝐺𝑂𝑦is defined as 𝑅𝑆(𝐺𝑂𝑥 , 𝐺𝑂𝑦)  =  𝐼𝐶(𝑐𝑜𝑚𝐴𝑛𝑐), 

where comAnc denotes the most informative common ancestor (the one with largest IC). We use RS<2 

as a criteria for selecting pairs of distant GO functions for which we compute enrichments in Eukaryotic 

organisms, the reason for this choice is that GO frequencies on eukaryotic organisms are empirically 

computed from the data, thus upper level (children of the root) of GO ontology have Information 

Content higher than 1. 

 

Association testing of GO functions in neighborhoods. In the Discussion section of this text, for some 

function 𝐺𝑂𝑥we say that 𝐺𝑂𝑦 is a “related function” if: RS(𝐺𝑂𝑥 , 𝐺𝑂𝑦)≥6 for 𝐺𝑂𝑥 , 𝐺𝑂𝑦 contained in the 

same namespace of the GO ontology, or if J(𝐺𝑂𝑥 , 𝐺𝑂𝑦)≥0.6 for 𝐺𝑂𝑥 , 𝐺𝑂𝑦not contained in the same 

namespace of GO. We observe 6615 related pairs of functions with FDR<1% in prokaryotic dataset. 

For some function 𝐺𝑂𝑥, we say that 𝐺𝑂𝑦 is  “unrelated function” if RS(𝐺𝑂𝑥 , 𝐺𝑂𝑦)<1, for 𝐺𝑂𝑥, 𝐺𝑂𝑦 

contained in the same namespace of the GO  ontology, or if J(𝐺𝑂𝑥 , 𝐺𝑂𝑦)<0.05 for 𝐺𝑂𝑥 , 𝐺𝑂𝑦not 

contained in the same namespace of GO. We observe  204202 such pairs with FDR<1% in prokaryotic 

dataset. These statistics are (47.5% - 8853 pairs , 97% - 878850) for Fungi and (99.9% - 36122 pairs, 

100% - 1256151) for Metazoa. 

 

The 11 gene functions analyzed individually in the manuscript are all taken from the same namespace 

of GO ontology, to prevent considering potentially synonymous functions from different namespaces as 

semantically distant.  

 

For a given mapping 휁: 𝛴 → 𝑃( 𝛺), that maps a GO function to a set of COGs which contain this 

function, we use 𝐽(𝐺𝑂𝑥, 𝐺𝑂𝑦)  =  
|𝜁(𝐺𝑂𝑥) ∩ 𝜁(𝐺𝑂𝑦)|

|𝜁(𝐺𝑂𝑥 ∪ 𝐺𝑂𝑦)|
 to measure the level of circularity of pairs of functions 

(especially these from different namespaces of GO ontology). 

 

The information accretion  of a function 𝐺𝑂𝑥  is computed as 𝑖𝑎(𝐺𝑂𝑥)  =  −𝑙𝑜𝑔2(𝑃(𝐺𝑂𝑥|𝑃𝑎𝑟(𝐺𝑂𝑥))), 

where Par denotes a set of parent nodes of 𝐺𝑂𝑥. This implies that if some model predicts GO function 
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that does not have high probability of occurrence, given the parent nodes,  it gets significantly larger 

accretion score.  

 

The average number of annotations per annotated gene. To assess the potential reason for a 

difference in predictive power of all models between Fungi and Metazoa dataset, we computed the 

average number of annotations per annotated gene. This information is important since it has direct 

impact on the stability and the amount of information contained in gene functional neighbourhoods.   

 

Dataset for predicting phenotypes. The NFP dataset used to predict phenotypes in different strains of 

E. coli was constructed so that E. coli strains form examples (entities), whereas features are 

COG/NOG-GO function pairs (frequency of occurrence of each GO in the neighbourhood of each 

COG/NOG contained in each E. coli strain). Thus, the whole table depicted in Figure 7 is contained in 

each row of our NFP dataset for phenotype prediction. This features (sparse in nature) were used to 

create 228 principal components using PCA algorithm.  

 

Target variables in analyses of phenotypes. The Phenotypic dataset contains 151 target variables 

(phenotypes) that denote if a defect has been detected (value 1) after application of specific 

combination of drugs or not (value 0).  
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