Abstract
Information sampling can reduce uncertainty in future decisions but is often costly. To maximize reward, people need to balance sampling cost and information gain. Here we aimed to understand how autistic traits influence the optimality of information sampling and to identify the particularly affected cognitive processes. Healthy human adults with different levels of autistic traits performed a probabilistic inference task, where they could sequentially sample information to increase their likelihood of correct inference and may choose to stop at any moment. We manipulated the cost and evidence associated with each sample and compared participants’ performance to strategies that maximize expected gain. We found that participants were overall close to optimal but also showed autistic-trait-related differences. Participants with higher autistic traits had a higher efficiency of winning rewards when the sampling cost was zero but a lower efficiency when the cost was high and the evidence was more ambiguous.
Computational modeling of participants’ sampling choices and decision times revealed a two-stage decision process, with the second stage being an optional second thought. Participants may consider cost in the first stage and evidence in the second stage, or in the reverse order. The probability of choosing stopping at a specific stage increases with increasing cost or increasing evidence. Surprisingly, autistic traits did not influence the decision in either stage. However, participants with higher autistic traits inclined to consider cost first, while those with lower autistic traits considered cost or evidence first in a more balanced way. This would lead to the observed autistic-trait-related advantages or disadvantages in sampling optimality, depending on whether the optimal sampling strategy is determined only by cost or jointly by cost and evidence.
Author Summary Children with autism can spend hours practicing lining up toys or learning all about cars or lighthouses. This kind of behaviors, we think, may reflect suboptimal information sampling strategies, that is, a failure to balance the gain of information with the cost (time, energy, or money) of information sampling. We hypothesized that suboptimal information sampling is a general characteristic of people with autism or high level of autistic traits. In our experiment, we tested how participants may adjust their sampling strategies with the change of sampling cost and information gain in the environment. Though all participants were healthy young adults who had similar IQs, higher autistic traits were associated with higher or lower efficiency of winning rewards under different conditions. Counterintuitively, participants with different levels of autistic traits did not differ in the general tendency of oversampling or undersampling, or in the decision they would reach when a specific set of sampling cost or information gain was considered. Instead, participants with higher autistic traits consistently considered sampling cost first and only weighed information gain during a second thought, while those with lower autistic traits had more diverse sampling strategies that consequently better balanced sampling cost and information gain.