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Figure 3. Visuomotor feedback
intensities as a function of (A)
Hand velocity and (B) cursor
velocity at the time of

perturbation for all experimental

conditions. Error bars represent

1 SEM, and the arrowheads

represent the order of the

perturbation locations. (C), (D)
Regression slopes of feedback

intensities for each condition as a

function of hand and cursor

velocities respectively. Error bars

represent 95% confidence

intervals of the slopes. The

slopes for the two

matched-cursor conditions were

significantly different (based on

the confidence intervals) than for

the baseline condition.

information in regulating the feedback responses. For each condition we measured the visuomotor91

feedback intensities (mean corrective force applied during 180-230 ms time window after a visual92

perturbation) at five different locations in the movement (Figure 2A). Overall our paradigm allowed93

us to modulate the times-to-target across conditions, as well as separate proprioceptive (hand)94

and visual (cursor) kinematics to examine their individual contribution to visuomotor feedback95

responses.96

Different movement conditions exhibited differences in visuomotor feedback intensities (Figure97

2 and Figure supplement 1). Two-way repeated-measures ANOVA (both frequentist and Bayesian;98

Materials and Methods) showed significant main effects for both condition (F4,36 = 10.807, p < 0.001,99

and BF10 = 9.136 × 1012), and perturbation location (F4,36 = 33.928, p < 0.001, and BF10 = 6.870 × 109).100

Post-hoc analysis on movement conditions revealed significant differences between baseline (grey101

line) and matched-cursor late-peak hand velocity condition (blue line; t9 = 4.262, pbonf < 0.001102

and BF10 = 247.868), and between baseline and matched-cursor early-peak hand velocity condition103

(green line; t9 = −8.287, pbonf < 0.001 and BF10 = 1.425×108). However, no significant differences were104

found between the baseline and the two matched hand velocity conditions (t9 = 1.342, pbonf = 1.0105

and BF10 = 0.357 for early-peak cursor velocity, yellow; t9 = 0.025, pbonf = 1.0 and BF10 = 0.154 for106

late-peak cursor velocity, purple). Our results show that different kinematics of the hand movement107

have a significant effect on visuomotor feedback response regulation, but that different kinematics108

of the cursor movement do not.109

One possible explanation for differences between the two matched-cursor conditions (blue and110

green in Figure 2C and Figure supplement 1) and the baseline condition (grey) might arise from a111

different mapping between cursor and hand velocities (Figure 1A) that had to be learned. Alter-112

natively, the incongruency between the vision and proprioception might be another explanation.113

However, the two matched-hand conditions (yellow and purple) had the identical mappings (and114

incongruencies) as the two matched-cursor conditions (blue and green respectively) and yet no115

differences were found in these conditions. Instead, the only conditions in which differences in116

the feedback gains were found, were conditions in which the timing of the peak hand velocity was117

shifted.118

In order to test whether a simple relationship between movement kinematics and visuomotor119
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Figure 4. (A) Mean hand movement trajectories for matched-cursor late-peak (left), matched-cursor early-peak
(middle) and baseline (right) conditions recorded in our participants, with perturbation onset at five locations

(colour light to dark: 4.2 cm (16.7%), 8.3 cm (33.3%), 12.5 cm (50%), 16.7 cm (66.7%) and 20.8 cm (83.4%) from

the start position; dashed lines). Corrections to rightward perturbations were flipped and combined with

leftward corrections. (B) Distance increase for each perturbation location recorded in our participants.
Perturbation locations closest to the target required the largest increases in movement distance. Error bars

represent 1SEM.

Figure 5. (A) Movement durations in maintained perturbation trials recorded by our participants in late-peak,
early-peak and baseline conditions. Separate bars within the same colour block represent different

perturbation onset locations (left to right: 4.2 cm, 8.3 cm, 12.5 cm, 16.7 cm and 20.8 cm from the start position).

Error bars represent 1SEM while the horizontal dashed lines represent movement durations in the same

movement condition for non-perturbed movements. (B) Full bars represent times-to-target in maintained
perturbation trials in our participants for late-peak, early-peak and baseline conditions. White bars represent

the time-to-target for a respective non-perturbed movement, at the time when the perturbation would have

happened. The coloured part of the bars shows the extension in times-to-target due to the perturbation in a

non-constrained movement. Each of the five bars represents a different perturbation onset location, as in (A).
Error bars represent 1SEM.
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Figure 6. Comparison of feedback intensities between the two OFC models and experimental data. (A) Simulated velocity profiles, and (B)
Simulated feedback intensity profiles of baseline (black), early-peak (green) and late-peak (blue) velocity condition simulations for the classical

OFC model. Velocity profiles were obtained by constraining the velocity peak location and magnitude and optimising for movement duration and

activation cost function. Simulated feedback intensity profiles were obtained by applying virtual target jumps perpendicular to the movement

direction during these movements and calculating the force exerted by the controller in the direction of the target jumps. (C) Simulated feedback
intensities obtained via the time-to-target OFC model. Pre-perturbation movements were simulated as if no perturbation would occur, in order to

keep the controller naive to an upcoming perturbation. At the perturbation onset the remaining movement duration is adjusted to match the

mean time-to-target for a similar perturbation onset in human participants (Figure 5B). The velocity profiles for the time-to-target model match

the velocity profiles of the classical model, shown in (A). (D) Visuomotor feedback intensities recorded in human participants.

feedback intensities exists, we mapped visuomotor feedback intensity magnitudes as a linear120

function of the hand velocity and the cursor velocity. For each experimental condition, we find a121

different regression slope between the velocity and the feedback intensities regardless of whether122

this is the cursor or the hand velocity (Figure 3AB). Consistent with our previous results, this123

difference in slopes is significant for conditions where the hand, but not cursor, movement was124

different (Figure 3CD). Although feedback intensities increase with increasing velocity in both cursor125

and hand coordinates, no one coordinate modality could predict the changes in the feedback126

intensity.127

To successfully complete each trial, participants were required to reach the target. However,128

the distance to reach the target is affected by the perturbation onset – later perturbation locations129

lead to larger correction angles (Figure 4A) and thus longer movement distances (Figure 4B). This130

effect is clearly seen where the extension of movement distance is enhanced for the perturbations131

closest to the target, with movement distance extended by almost half a centimetre compared to132

less than one millimetre for the closest perturbations. Any extension of the movement distance133

requires an appropriate increase in movement duration. Consequently, participants extended134

their movement time, with longest durations for perturbations close to the target (Figure 5A). This135

increase in movement duration increases the time-to-target for these late perturbations (Figure 5B),136

and now allows sufficient time for the controller to issue any corrective commands.137

Finite horizon optimal feedback control138

As optimal control has been suggested to predict the temporal evolution of feedback intensities139

(Dimitriou et al. (2013); Liu and Todorov (2007)), we built two finite-horizon optimal feedback control140

(OFC) models: the classical model (Liu and Todorov (2007)), and a time-to-target model. For the141

classical model we implemented an OFC (Todorov (2005)) to simulate movements with different142

velocity profiles, similar to the experiments performed by our participants. We extended this143

classical model to the time-to-target model, by increasing the movement duration after each144

perturbation onset according to experimental results (Figure 5). For both models we only simulated145

different hand kinematics for computational ease and as our participants showed little effect of146

cursor kinematics on their feedback intensities.147

For both models we controlled the activation cost R to simulate three conditions in which148

the location of the peak velocity was shifted to match the experimental hand kinematics (Figure149

6A). Specifically, we solved for the activation cost R and movement duration N by optimising the150

log-likelihood of our model’s peak velocity location and magnitude using Bayesian Adaptive Direct151
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Figure 7. OFC simulations of (A) velocity profiles and (B) simulated feedback intensity profiles for different
desired peak velocities (in order from light to dark line colours: 40 cm/s, 50 cm/s, 60 cm/s, 70 cm/s, 80 cm/s). (C)
Simulated feedback intensities of (B) re-mapped as a function of time-to-target at the time of target
perturbation. (D) Simulated feedback intensities vs time-to-target for the three kinematic conditions over the
five peak velocities simulated by OFC (coloured dots). Solid lines represent the tuning curves (Equation 7) fit to

the data. Both the tuning curves and the simulated feedback intensity profiles are similar across a variety of

different kinematics when expressed as a function of time-to-target.

Search (BADS, Acerbi and Ma (2017)). The optimised movement durations (mean ± SEM) were N152

= 930 ± 0 ms for the baseline condition, N = 1050 ± 10 ms for the late-peak condition and N =153

1130 ± 20 ms for the early-peak condition (10 optimisation runs per condition). In comparison,154

experimental movement durations were N = 932 ± 30 ms for the baseline condition, N = 1048 ± 47155

ms for the late-peak condition and 1201 ± 59 ms for the early-peak condition, matching well with156

the OFC predictions. Overall this shows that specific constraints on the magnitude and location of157

peak velocity that we imposed on our participants resulted in a modulation of reaching times that158

matched OFC predictions under the same constraints.159

For the classical model we estimated simulated feedback intensities by shifting the movement160

target at each timepoint in the movement and measuring the mean magnitude of the simulated161

force response over a 130-180 ms time window in the direction of this shift. The simulated feedback162

intensity profiles follow the same general shape as in human participants – intensity increases163

from the beginning of the movement and then falls off at the end (Figure 6B). However, the overall164

profile of these simulated feedback intensities is very different for each of the kinematic conditions.165

For the early-peak velocity condition, the simulated feedback intensity peaks towards the end of166

the movement (green line), whereas for the late-peak velocity condition the simulated feedback167

intensity profile peaks early in the movement (blue line). These simulated feedback intensities do168

not appropriately capture the modulation of visuomotor feedback intensities in our experimental169

results. Specifically they predict a temporal shift in the peak intensity that is not present in our170

participants data, and predict similar peak levels of feedback intensities across all three conditions.171

While the simulated feedback intensities are qualitatively similar to the experimental results within172

each condition, overall this model cannot appropriately capture the modulation of visuomotor173

feedback responses across the conditions.174

For the time-to-target OFC model, we extended the classical model to account for the different175

movement durations for each perturbation location (and movement condition) that is seen in the176

experimental results. After a perturbation, the remaining time-to-target was adjusted to match the177

experimentally recorded times-to-target for this specific movement, while before the perturbation178
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Figure 8. Comparisons between hit and stop instructions. (A) Velocity profiles for the stop, hit and fast-hit
conditions. (B) Simulated feedback intensity profiles as a function of hand position. (C) Simulated feedback
intensities of (B) re-mapped as a function of time-to-target at the time of target perturbation.

both the classical model and the time-to-target model were identical. After adjusting for the179

individual durations of each perturbation condition we are now able to qualitatively replicate the180

general regulation of feedback intensity profiles for different kinematics using OFC (Figure 6C). In181

the late-velocity peak condition we predict a general increase in the feedback responses throughout182

the movement compared to the baseline condition, whereas in the early velocity peak condition we183

predict a general decrease in these feedback responses compared to the baseline condition. Thus184

we show that within the OFC the time-to-target is critical for the regulation of feedback responses,185

and when we take this into account we are able to replicate the feedback intensity modulation of186

our participants.187

While in our experiment, wemanipulated the time-to-target through skewing the velocity profiles,188

time-to-target is naturally modified through changing the peak velocity. Therefore, we can further189

analyse the effect of the time-to-target by calculating the feedback intensities for movements190

with different peak velocities (Figure 7A). The simulated feedback intensities vary widely across191

peak velocities, with a shift of peak feedback intensities towards the earlier locations for faster192

movements (Figure 7B). However, when these distinct simulated feedback intensity profiles are193

re-mapped as a function of time-to-target, the simulated feedback intensities follow a consistent,194

albeit non-monotonic, relationship (Figure 7C). This relationship is also consistent over a range of195

peak velocities across all three kinematic conditions and is well described by a combination of a196

square-hyperbolic and logistic function (Figure 7D). The squared-hyperbolic arises from the physics197

of the system: the lateral force necessary to bring a point mass to a target is proportional to 1∕t2198

(Materials and Methods, Equation 9). The logistic function simply provides a good fit to the data.199

Overall our models show that the feedback intensity profiles under OFC are independent of the200

peak velocity or movement duration. Instead, our simulations suggest that time-to-target is a key201

variable in regulating visuomotor feedback responses.202

It has been shown that the optimal controller gains (Liu and Todorov (2007)), as well as the203

visuomotor feedback intensities (de Brouwer et al. (2017); Knill et al. (2011)) are influenced by task204

definition (e.g. instruction to hit the target or stop at the target). Here we simulated the hit, fast205

hit and stop instructions for our classical model in order to test how it influenced the relation206

between simulated feedback intensity and time-to-target. Our previous simulations represent the207

stop instruction. We modified the !v and !f to simulate the baseline equivalent of hit and fast208

hit instructions. Specifically, we set !v,ℎit = !v∕4 = 0.05, !f,ℎit = !f∕4 = 0.005 for hit instruction,209

and !v,fastℎit = !v∕10 = 0.02, !f,fastℎit = !f∕10 = 0.002 for fast hit instruction. As changing the210

terminal costs also results in a change in peak velocity, we further reduced the desired movement211

times to N = 800 ms for the hit instruction and N = 750 ms for fast hit instruction, such that212

all three peak velocities match (Figure 8A). According to our simulations, such modification of213

task demands produced different simulated feedback intensity profiles (Figure 8B). However, the214

intensity relationship with time-to-target maintained the same structural profile independent of215

the task demand (Figure 8C). Specifically, both the squared-hyperbolic and logistic segments of the216
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Figure 9. Receding horizon and infinite horizon model simulations. (A) Simulated velocity profiles of receding horizon (dashed) and infinite
horizon (dot-dashed) models. Both models naturally produce positively skewed velocity profiles, more closely resembling early-peak velocity,

rather than the baseline condition. (B) Mean experimental movement durations (bar chart) compared to the receding and infinite horizon model
predictions. Both models accurately simulate the variations in the reach durations with perturbation location. (C) Baseline and (D) Early-peak
velocity condition simulations for receding horizon, infinite horizon and time-to-target (dot-solid lines) models, compared to the experimental

data. Only the time-to-target model predicts different visuomotor feedback response intensities for different perturbation onset locations, while

receding and infinite horizon models predict constant intensities. Note that models were not fit to match the intensities, only to qualitatively

demonstrate the behaviour.

control are still present, although we observe the shift in the temporal location of the crossover217

point. While each task requires a different pattern of feedback gains (and will therefore produce218

different responses), variations of the kinematic requirements within a task do not change these219

gains and therefore do not require recalculation.220

Receding horizon and infinite horizon control221

A limitation of the finite-horizon implementation used in classical and time-to-target models is that222

the variable movement duration (Figure 5) is the model input rather than output. Therefore, in223

addition to finite-horizon models we also modelled our task in receding and infinite horizon for a224

single movement condition. Specifically, for the infinite horizon model both state-dependent and225

regulator costs were kept constant throughout the simulated movement. For the receding horizon226

model the regulator cost was kept constant, while the state-dependent cost was zero for all but last227

“foreseeable” state. Such models were expected to simulate the baseline experimental condition,228

however the resultant velocity profile better resembled the early-peak condition (Figure 9A). As a229

result, we compared these simulations with both baseline and early-peak velocity condition data230

and with the time-to-target model simulations (Figure 9B-D).231

Both receding horizon and infinite horizon LQG models were able to successfully capture the232

non-linear change in trial durations for different perturbation onsets (Figure 9B) matching the233

experimental results. In addition, these models also predicted variable times-to-target for the five234

perturbation onset locations: (700 ms, 660 ms, 620 ms, 600 ms, 580 ms) for the infinite horizon235

and (690 ms, 640 ms, 610 ms, 610 ms, 600 ms) for the receding horizon. However, neither model236

showed variation of the simulated feedback intensities for different perturbation onset locations237

(Figure 9CD) – a result that was present in the experimental data and captured by our time-to-target238

model. Instead both models predicted constant feedback intensities for all perturbations locations.239

Therefore neither the receding nor the infinite horizon models are able to explain our experimental240

results. While both of the approaches can accurately capture the variability in movement duration,241

only the time-to-target model well describes the behavioural variation in visuomotor feedback242

responses.243

Validation of the time-to-target model244

Overall our simulations suggest that independent of movement kinematics — different temporal245

position, velocity, and acceleration profiles — the visuomotor feedback intensities follow the same246

profile with respect to the time-to-target. We further verified how our time-to-target prediction247
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Figure 10. Validation of the time-to-target model. (A) Experimental visuomotor feedback intensities for all five
experimental conditions (scatter plot) overlaid with the OFC model for the baseline condition, as a function of

time-to-target. Error bars represent 1SEM (B) Experimental data of the visuomotor feedback intensities ofDimitriou et al. (2013), mapped against the time-to-target. Black and orange traces represent mean participant
data for 17.5 cm and 25 cm movement conditions respectively. (C) A scatter plot of individual subjects’ data
from (B). Different colours represent different perturbation onset distances as in Dimitriou et al. (2013).

matches our actual experimental results by plotting participants’ visuomotor feedback intensities248

against the average time-to-target for the respective perturbation locations and movement condi-249

tions (Figure 10A). While we did not specifically fit our time-to-target model to our experimental data,250

we still see the qualitative similarities between the two. Specifically, the intensities monotonically251

increase with decreasing time-to-target until the peak (following the squared-hyperbolic function)252

and then reduce (the logistic function range).253

Finally, we also compared the prediction of the time-to-target model to independent results254

from an external data set (Dimitriou et al. (2013)). In the article the authors could not rigorously255

encapsulate both conditions within a simple relationship to movement distance, movement fraction256

or movement velocity. We plotted visuomotor feedback intensities against time-to-target for257

two experimental conditions: goal directed reach of 17.5 cm and of 25 cm (Figure 10BC). Two258

observations can be made from these results. First, the time-to-target model prediction and259

the experimental data follow the same qualitative features, independent of the target distance260

(experimental condition). Second, the feedback intensities for both conditions are well explained261

by a single relationship with time-to-target. All together, both our data and Dimitriou et al. (2013)262

data strongly support our time-to-target model.263

Discussion264

Here we examined how movement kinematics regulate visuomotor feedback responses. Partic-265

ipants extended their movement duration after perturbations to successfully reach the target.266

In addition, visuomotor feedback responses were modulated when the hand followed different267

kinematics, but not when the cursor followed different kinematics. In order to better understand268

this modulation we built four normative models using OFC: a classical finite-horizon OFC (Liu and269

Todorov (2007)), a finite-horizon time-to-target adjusted OFC, a receding-horizon OFC (Guigon et al.270

(2019)) and an infinite-horizon OFC (Qian et al. (2013)). While the classical, receding and infinite271

horizon models failed to predict the experimental visuomotor feedback response intensities, the272

time-to-target model qualitatively replicated the visuomotor feedback intensity profile of our par-273

ticipants. Overall, optimal feedback control models suggested that feedback intensities for each274

perturbation location depended on the time-to-target rather than distance or velocity. Moreover,275

this explains why any mismatch between visual and haptic kinematics had no effect on the feedback276

intensities, as these manipulations did not affect the time-to-target. Simulated feedback intensities277

under all movements followed the same profile with respect to time-to-target, suggesting a critical278

role in the regulation of visuomotor feedback responses.279

Experimentally, our participants exhibited a temporal evolution of visuomotor feedback in-280

tensities for each condition, confirming the findings of Dimitriou et al. (2013). In addition, we281
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also showed the regulation of visuomotor feedback responses across conditions, allowing us to282

investigate the underlying mechanism of this temporal evolution. Specifically, our experimental283

results demonstrated strong regulation of visuomotor feedback intensity profiles with different284

hand kinematics, but not with different cursor kinematics (Figure 2C). Compared to the baseline285

condition, in the matched-cursor early-peak velocity condition participants produced longer times-286

to-target at each perturbation location (Figure 5B), resulting in weaker feedback responses based287

on the relationship between time-to-target and visuomotor feedback intensities (Figure 10A). The288

opposite is true for the matched-cursor late-peak velocity condition. As the two matched-hand289

conditions produced similar times-to-target as the baseline due to similar hand kinematics, we290

did not observe a different regulation in feedback responses. Therefore, the condition-dependent291

visuomotor feedback response modulation exhibited by our participants meshes nicely with a292

control policy whereby the time-to-target regulates the feedback responses.293

It has long been suggested that we select movements that minimize the noise or endpoint294

variability (Harris and Wolpert (1998)). Within the framework of optimal control, this idea has been295

expanded to the corrective movements – that is, optimality in reaching movements is achieved296

in part by minimizing the noise during any corrective response (Todorov and Jordan (2002)). As297

motor noise scales proportionally to muscle activation (Jones et al. (2002); Hamilton et al. (2004)),298

one way of minimising such noise is reducing the peak levels of muscle activation during the299

correction. Mathematically, the optimal solution to correct any perturbation approximates a300

constant activation, resulting in a constant force for the whole duration between perturbation301

onset and target interception. Such a solution assumes that the brain is capable of estimating302

the remaining duration of the movement (Benguigui et al. (2003);McIntyre et al. (2001); Zago et al.303

(2004)) and that the force follows the squared-hyperbolic relationship to this duration (Equation.304

9). The parallel can be drawn here between our results and the results of Oostwoud Wijdenes305

et al. (2011), where the authors showed a similar temporal evolution of peak acceleration against306

the time-to-target in a single forward velocity condition. Our results further show that time-to-307

target strongly modulates visuomotor feedback responses across a range of different kinematics,308

consistent with the idea that human participants aim to behave optimally. More specifically, we309

suggest that, among different optimality variables, the temporal evolution of visuomotor feedback310

response intensities serves to reduce effects of system noise.311

Finite-horizon OFC predicts a time beyond which feedback responses are suppressed. Beyond312

this critical time, a logistic function well describes the relation between time-to-target and feedback313

responses, with response intensities reducing as the time-to-target decreases. The controller gains314

at this stage are the most sensitive to acceleration, suggesting a more “behavioural” outcome315

– the controller is trying to stop, rather than correct errors. The neural recordings in rhesus316

macaque monkeys’ supplementary motor area and M1 (Russo et al. (2019)) show that SMA can317

signal movement termination as far as 500 ms before the end of the movement. This further318

suggests that there may be multiple stages within a movement, where our control system might319

“care” more about error correction in one or movement termination in another. On the other hand,320

the suppression of responses close to the target leads to undershooting the target. Our participants,321

however, had to bring the cursor to the target in order to advance to the next trial. As a result, they322

extended the movement durations post-perturbation to return to the squared-hyperbolic range323

of control. The control performance of such behaviour is well accounted for by our time-to-target324

model. Moreover, our time-to-target model also well explained the modulation of visuomotor325

feedback intensities from an external data set (Dimitriou et al. (2013)). However, an important326

distinction from our study is that in Dimitriou et al. (2013) the suppression of feedback responses327

towards the end of movements would not interfere with reaching the target as perturbation trials328

were always in a mechanical channel so that no corrections were required. As a result, the times-to-329

target were shorter and the data clearly exhibits both logistic and squared-hyperbolic segments of330

the control.331

A limitation of our time-to-target model is that it takes time-to-target as an input in order to332
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generate feedback intensity predictions, rather than obtain the time-to-target as a model output.333

As a result, our time-to-target model does not describe exactly how the change in movement geom-334

etry after the perturbation influences this time-to-target, which in turn regulates the visuomotor335

feedback responses. On the other hand, both receding and infinite horizon models did predict the336

movement duration change after perturbations very well, but could not at all describe the changes337

in visuomotor response intensity. However, utility of movement has recently been used within338

optimal control to characterise reaching movements (Rigoux and Guigon (2012); Shadmehr et al.339

(2016)) in which optimal movement time falls out automatically from a trade-off between reward340

and effort. With respect to our models, this adds additional complexities to capturing the different341

movement conditions. Future approaches could attempt to model these results within the utility of342

movement framework.343

In addition, our time-to-target model does not directly show the causality of the time-to-target344

as a control variable for the visuomotor feedback intensities. Particularly, the time-to-target345

relation to feedback intensity could be a by-product of a more sophisticated control scheme.346

Additional arguments for the time-to-target control scheme could be two-fold. First, there is347

evidence that humans are well capable of estimating the time-to-target of a moving stimulus, even348

if it is accelerating (Benguigui et al. (2003);McIntyre et al. (2001); Zago et al. (2004)), indicating that349

time-to-target is at least an available input for such a controller. Second, while we have tested350

finite-horizon OFC and two other (receding and infinite horizon) OFCs, only the finite horizon351

controllers had any effect on the variation of simulated feedback intensities. Importantly, neither352

the receding nor infinite horizon models use time-to-target as an input to the controller. We posit353

that this time-to-target control input is the one key difference between the finite and non-finite354

models and is therefore the simplest explanation for our results.355

Rapid feedback responses scale with the temporal urgency to correct for mechanical pertur-356

bations (Crevecoeur et al. (2013)). Here we have shown that visuomotor feedback responses also357

follow a similar regulation, suggesting that these two systems share the same underlying control358

policy. Our work further extends this finding of Crevecoeur by not just showing that temporal359

urgency affects feedback responses, but explaining the manner in which these responses are360

regulated with respect to urgency. That is, here we have shown that for visual perturbations361

the feedback intensities scale with a squared-hyperbolic of the time-to-target, which is a direct362

measure of urgency. Moreover, the feedback intensities were rapidly adjusted due to the change in363

urgency as the task changed. Specifically, when the cursor jumps close to the target, the expected364

time-to-target is prolonged, and therefore the optimal visuomotor feedback response needs to365

be adjusted appropriately to this increase in time. Our results show that participants produce a366

visuomotor response consistent with the actual, post-perturbation, time-to-target, as opposed to367

the expected time-to-target prior to the perturbation. Therefore, our results not only suggest that368

similar computations might occur for both stretch and visuomotor feedback response regulation,369

but also that this regulation originates from task-related optimal feedback control.370

Our work has shown that simulated feedback intensities from OFC exhibit the same underlying371

pattern as a function of time-to-target over a wide range of movement kinematics, matching372

well the feedback intensities of our human participants (Figure 6). As expected, changes in the373

task goals (e.g. hit versus stop) changed the relation between feedback responses and time-to-374

target. However, the qualitative features – the squared-hyperbolic and logistic function – remained375

consistent across these tasks. These results suggest that, for a specific task and known dynamics,376

we do not need to recalculate the feedback gains prior to each movement, but instead can access377

the appropriate pattern as a function of the estimated time-to-target in each movement. Therefore378

gain computation in reaching movements may not be a computationally expensive process, but379

instead could be part of an evolutionary control strategy that allows for rapid estimation of the380

appropriate feedback gains. Moreover, the fact that both stretch reflex and visuomotor feedback381

systems exhibit similar control policies despite different sensory inputs, perhaps only sharing382

the final output pathway, suggests that this simple feedback pathway may be an evolutionary383
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old system. Indeed, several studies have suggested that visuomotor feedback is controlled via384

a pathway through the colliculus (Reynolds and Day (2012); Gu et al. (2018); Corneil et al. (2004)).385

Such a system would then only need to be adapted as the dynamics or overall task goals change,386

allowing for fine tuning of the feedback gains according to changes in the environment (Franklin387

et al. (2017)).388

Our results have shown the connection between the visuomotor feedback response regulation389

and the time left to complete the movement. Specifically, in our human participants we recorded390

the increase in the time-to-target after the perturbation onset, which consequently increased the391

movement durations (Figure 5). This increase was also longer for later perturbations, consistent392

with previous studies (Liu and Todorov (2007)). According to our normative time-to-target OFC393

model, the time-to-target alone is enough to successfully regulate visuomotor feedback responses394

as observed in humans. This result was independent of the kinematics of the movement or the395

onset times of the perturbations. This suggests that there is no recalculation of a control scheme396

for the rest of the movement after the perturbation, but rather a shift to a different state within397

the same control scheme. Such findings are consistent with the idea that visuomotor feedback398

gains are pre-computed before the movement, allowing for faster than voluntary reaction times399

(Franklin (2016)). Moreover, through our results, we gain a deeper insight into how optimal feedback400

control governs these feedback gains – through a straightforward relationship to the estimated401

time-to-target, based on physics.402

Materials and Methods403

Participants404

Eleven right-handed (Oldfield (1971)) human participants (5 females; 27.3 ± 4.5 years of age) with405

no known neurological diseases took part in the experiment. All participants provided written406

informed consent before participating. All participants except one were naïve to the purpose of407

the study. Each participant took part in five separate experimental sessions, each of which took408

approximately 3 hours. One participant was removed from analysis as their kinematic profiles409

under the five experimental sessions overlapped. The study was approved by the Ethics Committee410

of the Medical Faculty of the Technical University of Munich.411

Experimental setup412

Participants performed forward reaching movements to a target while grasping the handle of a413

robotic manipulandum with their right hand. Participants were seated in an adjustable chair and414

restrained using a four-point harness. The right arm of participants was supported on an air sled415

while grasping the handle of a planar robotic interface (vBOT, Howard et al. (2009)). A six-axis force416

transducer (ATI Nano 25; ATI Industrial Automation) measured the end-point forces applied by the417

participant on the handle. Position and force data were sampled at 1kHz. Visual feedback was418

provided in the plane of the hand via a computer monitor and a mirror system, such that this419

system prevented direct visual feedback of the hand and arm. The exact onset time of any visual420

stimulus presented to the participant was determined from the graphics card refresh signal.421

Participants initiated each trial by moving the cursor (yellow circle of 1.0 cm diameter) into the422

start position (grey circle of 1.6 cm diameter) located approximately 25 cm in front of the participant,423

centred with their body. This start position turned from grey to white once the cursor was within424

the start position. Once the hand was within the start position for a random delay drawn from425

a truncated exponential distribution (1.0-2.0 s, mean 1.43 s), a go cue (short beep) was provided426

signalling participants to initiate a straight reaching movement to the target (red circle of 1.2 cm427

diameter, located 25.0 cm directly in front of the start position). If participants failed to initiate the428

movement within 1000 ms the trial was aborted and restarted. Once the cursor was within 0.6429

cm of the centre of the target, participants were notified by the target changing colour to white.430

The movement was considered complete when the participants maintained the cursor within this431
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0.6 cm region for 600 ms. If participants did not complete the movement within 4 seconds from432

first arriving at the start position (e.g. by undershooting or overshooting the target), the movement433

timed-out and had to be repeated. After each trial, the participant’s hand was passively returned by434

the robot to the start position while visual feedback regarding the success of the previous trial was435

provided (Figure 11). Movements were self-paced, and short breaks were enforced after every 100436

trials.437

Experimental paradigm438

Participants performed the experiment under five different conditions, each performed in a sepa-439

rate session. In the baseline condition the cursor matched the forward movement of the hand, with440

a peak velocity in the middle of the movement. In the other four conditions, the cursor location441

was scaled relative to the hand location in the forward direction, such that the cursor and the hand442

location matched only at the start and end of the movements (Figure 1). In two of the conditions443

(matched-hand velocity), the hand velocity matched the baseline condition throughout the move-444

ment (with the peak in the middle of the movement) but the cursor velocity peaked either earlier445

(33% of movement distance) or later (66% of movement distance). In the other two conditions446

(matched-cursor velocity), the cursor velocity was matched to the baseline condition throughout447

the movement (with the peak in the middle of the movement) but the hand velocity peaked either448

earlier (33% of movement distance) or later (66% of movement distance). The difference between449

the cursor velocity and the hand velocity was produced through a linear scaling of the cursor450

velocity as a function of the forward position (Figure 1A). Specifically, for the two conditions where451

the position of the peak cursor velocity is earlier than the position of the peak hand velocity (Figure452

1 top), this scaling was implemented as:453

vc
vℎ

= −0.012d + 1.6, (1)

where vc and vℎ are cursor and hand velocities respectively, and d is the distance along the454

movement direction in %. The cursor velocity was therefore manipulated by a linear scaling function455

such that its velocity is 160% of the hand velocity at the beginning of the movement, linearly456

decreasing to 40% at the target location (Figure 1 top). For the two conditions where the position of457

the peak cursor velocity is later than the position of the peak hand velocity (Figure 1 bottom), this458

scaling was implemented as:459

vc
vℎ

= 0.012d + 0.4 (2)

such that the velocity gain function linearly increased from 40% hand velocity at the start of the460

movement to 160% at the end of the movement (Figure 1, bottom). Desired velocity profiles of both461

the hand and the cursor are shown in Figure 1B for each condition.462

Feedback regarding movement kinematics463

In all conditions, one of the velocity modalities (cursor or hand) was required to be similar to the464

baseline velocity profile. Feedback was always provided about this specific velocity modality. Ideal465

trials were defined as trials in which this peak velocity was between 42 cm/s and 58 cm/s with the466

peak location between 45% and 55% of the movement distance with no target overshoot. After467

each trial, visual feedback about the peak velocity and the location at which this peak occurred was468

provided to the participants graphically (Fig 11). The peak velocity was indicated on the right hand469

side of the screen with the length of a bar and the velocity target. This bar changed colour from red470

to green if the velocity was within the ideal range. The location of the peak velocity was indicated as471

a horizontal line between home and target positions at the exact location it was achieved, along472

with the ideal range. This line was green when the location of the peak velocity was within the473

ideal range, and red otherwise. Overshooting the target was defined as the position of the cursor474

exceeding the centre of the target in the y-coordinate by more than 0.9 cm. If participants reached475
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Figure 11. Examples of feedback presented to the participants. Feedback regarding the peak velocity and the
timing of the peak velocity was provided after each trial. Large grey blocks indicate the velocity peak location

target, while the bar chart at the top-right corner indicates peak y-velocity magnitude. Feedback was provided

on the modality (cursor or hand) that matched the baseline. Left: velocity peak location is within the target, but

the movement was too fast (unsuccessful trial); middle: velocity peak location is too early, but the movement

speed is within the target (unsuccessful trial); right: successful trial.

the target while overshooting during the movement, a message indicating the overshot was shown,476

no points were scored and an error tone was played in order to discourage further overshots.477

Probe trials478

During each session, probe trials were used to measure the visuomotor feedback intensity – the479

average strength of corrective motor response to a change in the visual feedback of hand position.480

To elicit these feedback responses (further visuomotor feedback responses), visual perturbations481

were initiated laterally (±2.0 cm) at five different hand distances (4.2, 8.3, 12.5, 16.7, and 20.8 cm)482

from the start (Figure 2A). In addition a zero amplitude perturbation (cursor matched to the lateral483

position of the hand) was included, resulting in eleven different probe trials. On these trials the484

visual perturbations lasted 250 ms, after which the cursor was returned to the lateral location of the485

hand. The lateral hand position was constrained in a simulated mechanical channel throughout the486

movement, thereby requiring no correction to reach the target. The simulated mechanical channel487

was implemented with a stiffness of 4000 N/m and damping of 2 Ns/m acting perpendicularly to the488

line connecting the start position and the target (Scheidt et al. (2000);Milner and Franklin (2005)),489

allowing measurement of any lateral forces in response to a visual perturbation.490

In previous experiments, feedback response intensity gradually decreased during the course of491

the experiment (Franklin and Wolpert (2008); Franklin et al. (2012)). However, it has been shown492

that including perturbation trials where the perturbations were maintained until the end of the493

movement, and where participants had to actively correct for the perturbation to reach the target,494

prevents this decrease in the feedback intensity (Franklin et al. (2016)). Therefore half of the trials495

contained the same range of perturbations as the probe trials but where these perturbations were496

maintained throughout the rest of the trial and participants had to correct for this perturbation.497

These maintained perturbations have now been used in several studies Franklin et al. (2016, 2017);498

de Brouwer et al. (2017).499

Session design500

Prior to each session, participants performed 100 to 300 training trials in order to learn the specific501

velocity profiles of the reaching movements. All training trials contained no visual perturbations502

and were performed in the null force field. The training trials were stopped early once participants503

achieved an accuracy of 75% over the last 20 trials, and were not used for the analysis.504

Each session consisted of 40 blocks, where each block consisted of 22 trials performed in505

a randomized order. Eleven of these 22 trials were probe trials (5 perturbation locations × 2506

perturbation directions + zero perturbation condition) performed in the mechanical channel. The507

other eleven trials consisted of the same perturbations but maintained throughout the trial and508
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performed in the null field. Therefore in each of the five sessions participants performed a total 880509

trials (440 probe trials). The order of the five different conditions (sessions) was pseudo-randomized510

and counterbalanced across participants.511

Data analysis512

Data was analyzed in MATLAB R2017b and JASP 0.8.2. Force and kinematic time series were low-pass513

filtered with a tenth-order zero-phase-lag Butterworth filter (40 Hz cutoff). The cursor velocity was514

calculated by multiplying the hand velocity by the appropriate scaling function. The visuomotor515

feedback response was measured for each perturbation location as the difference between the516

force responses to the leftward and rightward perturbations within a block. To measure the517

visuomotor feedback response intensity (mean force, produced as a response to a fixed-size visual518

perturbation) this response was averaged over a time window of 180-230ms, a commonly used time519

interval for the involuntary visuomotor feedback response (Franklin and Wolpert (2008); Dimitriou520

et al. (2013); Franklin et al. (2012, 2016)). In order to compare any differences across the conditions521

a two-way repeated-measures ANOVA was performed with main effects of condition (5 levels)522

and perturbation location (5 levels). As a secondary method to frequentist analysis we also used523

the Bayesian factor analysis (Adrian E. Raftery and Robert E. Kass (1995)) to verify our statistical524

results. Bayesian factor analysis is a method that in addition to the conventional hypothesis testing525

(evaluating evidence in favour of the alternative hypothesis) allows us to evaluate evidence in favour526

of the null hypothesis, therefore distinguishing between the rejection of the alternative hypothesis527

and not enough evidence to accept the alternative hypothesis.528

Although we used the time window of 180-230 ms to estimate visuomotor feedback intensity,529

we also verified whether the onset of the visuomotor feedback response in our data is consistent530

with previously reported values. To estimate this onset time, we first estimated individual onset531

times for each participant at each perturbation location and movement condition. To do so, we532

used the Receiver Operator Characteristic (ROC) to estimate where the force reaction to leftwards533

cursor perturbations deviated from the reaction to rightwards cursor perturbations (Pruszynski534

et al. (2008)). For each type of trials we built the ROC curve for the two signals at 1 ms intervals,535

starting from 50 ms before the perturbation, and calculated the area under this curve (aROC)536

for each of these points until the aROC exceeded 0.75 for ten consecutive milliseconds. In order537

to find where the force traces start deviating from each other we then fit a function of the form538

max(0.5, k × (t − �) to the aROC curve. The time point where the linear component of this function539

first overtakes the constant component was taken as the threshold value. Overall, the mean onset540

times across all conditions and perturbation locations were 138±7ms (mean + SD), with onset times541

consistent among movement conditions (F4,36 = 1.410, p = 0.25, and BF10 = 0.105), perturbation542

locations (F4,36 = 1.582, p = 0.20, BF10 = 0.252), and their interactions (F16,144 = 1.350, p = 0.176, and543

BF10 = 0.005)544

Modelling545

Optimal feedback control546

In addition to our linear models we implemented two different Optimal Feedback Control (OFC)547

models: the classical model (Liu and Todorov (2007)) and the time-to-target model. In both models548

we modelled the hand as a point mass of m = 1.1 kg and the intrinsic muscle damping as a viscosity549

b = 7 Ns/m. This point mass was controlled in a horizontal plane by two orthogonal force actuators550

to simulate muscles. These actuators were controlled by the control signal ut via a first order551

low-pass filter with a time constant � = 0.05 s. The state-space representation of the dynamic552

system used to simulate the reaching movements can be expressed as553

xt+1 = Axt + B(I + C)ut + �t, (3)

where A is a state transition matrix, B is a control matrix, and C is a 2×2matrix whose each element554

is a zero-mean normal distribution representing control-dependent noise. Variables xt and ut are555
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state and control at time t respectively. State xt exists in the Cartesian plane and consists of position556

p (2 dimensions), velocity v (2), force f (2) and target position p∗ (2). The presence of these four557

states within the state vector means that the information about all of these states is eventually558

used for the control. For our simulation purposes we treat the control-independent noise �t as zero.559

The state of the plant is not directly observable, but has to be estimated from noisy sensory560

information. We model the observer as561

yt = Hxt +Dt, (4)

whereH = diag[1, 1, 1, 1, 1, 1, 0, 0] is the observation matrix, andDt is a diagonal matrix of zero-mean562

normal distributions representing state-independent observation noise. Therefore, our observer563

can infer the state information of position, velocity and applied force of the plant, consistent with564

human participants.565

The simulated movements were guided by the LQG controller with a state-dependent cost Q, an566

activation cost R, a reaching time N, and a time step t = 0.01 s. However, due to the presence of the567

control-dependent noise, the estimation and control processes are not anymore separable as in568

the classic LQG theory. In order to obtain optimal control and Kalman gain matrices we utilised the569

algorithm proposed by Todorov and Li (2005) where control and Kalman gain matrices are iteratively570

updated until convergence.571

For both the classical and time-to-target models we simulated three different movement kine-572

matics representing three different conditions in our experiment – the baseline and the two573

matched-cursor conditions. The state-dependent cost Q was identical for all three kinematics:574

Q(t) =

⎧

⎪

⎨

⎪

⎩

0, for t ≠ N

(!p(p(t) − p∗(t)))2 + !v||v(t)||2 + !f ||f (t)||2, for t = N
(5)

where !p = [0.5, 1], !v = 0.02, and !f = 2. The activation cost R(t) = 0.00001 was constant throughout575

themovement for the baseline condition, but wasmodulated for the twomatched-cursor conditions576

by multiplying it elementwise by a scaling function:577

R′(t) =
exp(p t+q

r
)

mean(R′)
, (6)

where p, q and r are constants.578

Thus, each movement condition only differed from the other two by the profile of this activation579

cost R, but not by its magnitude. These modified activation costs shift the timing of the peak velocity580

towards either the beginning or the end of the movement by penalising higher activations at either581

the end or beginning of the movements respectively. The mean activation cost is kept constant582

across the conditions resulting in each condition being equally “effortful”. All other simulation583

parameters were kept constant across the three conditions.584

Although LQG is a fixed time horizon problem, we did not pre-define the movement duration585

N. Instead, we obtained the N, and constants p, q and r using Bayesian Adaptive Direct Search586

(BADS, Acerbi and Ma (2017)) to maximise the log-likelihood of the desired peak velocity location587

and magnitude. We did not fit any other parameters beyond this point. Rather, we analysed our588

models’ qualitative behaviour compared to human participant data.589

The classical and the time-to-target models only differed in the way the perturbations were590

handled. For the classical model, we simulated perturbation trials at every time step tp by shifting591

the target x-coordinate by 2 cm at the time tp + 120 ms. This 120 ms delay was used in order to592

mimic the visuomotor delay in human participants, and was taken from Liu and Todorov (2007). We593

then averaged the force response of the controller over the time window [tp + 130, tp + 180] as an594

estimate of the simulated feedback responses, equivalent of visuomotor feedback responses in our595

participants. This means that our simulated feedback responses arise due to separate contributions596
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from the controller position, velocity and acceleration gains. For perturbations occurring at times597

where the movement is over before the end of this time window, the intensity of this simulated598

feedback response is set to zero.599

For the time-to-target model we introduced an extension in the time-to-target after the onset of600

any perturbation similar to that observed in our participants. Simulated feedback intensities were601

modelled at five locations, matching the perturbation locations in our experiment to obtain the602

appropriate increase in time-to-target after each perturbation. In order to simulate the response603

to perturbations we first extracted the perturbation onset times from movement kinematics by604

performing an unperturbed movement and recording the timepoint tp at which this movement605

passed the perturbation onset location. We then simulated the post-perturbation portion of the606

movement as a new LQG movement with an initial state matching the state at tp + 120ms of the607

unperturbed movement, and movement duration matching the time-to-target recorded in our608

participants for the particular perturbation. Together this keeps our simulated reaches “naive"609

to the perturbation prior to its onset and allows the time-to-target of the simulated reaches to610

match the respective time-to-target of our human participants. Finally, we calculated the simulated611

feedback intensities as described previously, using a time window [10 ms, 60 ms] of the post-612

perturbation movement. As in the previous simulations, these simulated feedback responses arise613

due to separate contributions from the controller position, velocity and acceleration gains.614

Time-to-target tuning function615

In order to understand the mechanisms that might underlie the consistent relationship between616

the simulated feedback intensities and the time-to-target, we fit a mathematical expression to617

the simulated feedback intensities. We modelled the relationship as the minimum of a squared-618

hyperbolic function and a logistic function:619

G(t) = min

(

�
(

t − t1
)2
; �
1 + exp

(

− t−t0
�

)

)

(7)

and used BADS to fit this function to our time-to-target–simulated feedback intensity data (Fig. 7C)620

by optimising the log-likelihood of this fit.621

While the logistic function was chosen simply as it provided a good fit to the data, the squared-622

hyperbolic arises from the physics of the system. Specifically, from the kinematic equations of623

motion for a point mass (m) travelling a distance (d) under the influence of force F , the distance can624

be expressed as:625

d = F t2

2m
+ v0t, (8)

where v0 = 0 is the lateral velocity at the start of perturbation correction. Rearranging gives:626

F = 2md
t2

∝ 1
t2
. (9)

Hence the lateral force necessary to bring a point mass to the target is proportional to 1∕t2.627

Receding horizon OFC628

In addition to our finite horizon control we also implemented a receding horizon controller (Guigon629

et al. (2019)). Irrespectively of the current state of the movement Xt, the receding horizon controller630

is defined to aim to arrive at the target at time t + Tℎ. In essence, such controller is therefore not631

different from the finite horizon controller in its implementation for a single state of the movement.632

We implemented the receding horizon controller by iterating a finite horizon controller described633

previously, but with the Tℎ = 500ms, and Q and R costs scaled from the finite horizon model to fit634

the movement duration. For each iteration we recorded the next movement state (10 ms away635

from the initial state), and used that as the initial state for the next iteration. This process was636
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repeated until the cursor was within the distance of 0.4 cm from the target position, and remained637

there without overshooting for 600 ms.638

Simulating differently skewed velocity profiles within the framework of receding-horizon control639

is non-trivial. As a result, we chose to only model one, the baseline, experimental condition, where640

the activation cost R is constant within the movement. Therefore we chose the costs641

Q(t) =

⎧

⎪

⎨

⎪

⎩

0, for t ≠ Tℎ
!p(p(t) − p∗(t))2 + !v||v(t)||2 + !f ||f (t)||2, for t = Tℎ

(10)

where !p = [5, 5], !v = 0.05, and !f = 5. and the activation cost R = 0.000003. The values were642

selected so that the movement durations, produced by the receding-horizon model would match643

the experimental durations for the baseline condition (Figure 5A). However, the resultant velocity644

profiles of this model more closely resembled those of the early-peak velocity condition, than those645

of the baseline. To account for any effects of the velocity profile we also fit the costs so the model646

prediction of movement durations matched the durations of the early-peak velocity condition.647

For this simulation we selected !p = [0.7, 0.7], !v = 0.007, and !f = 0.7, while the activation cost648

remained unchanged.649

In this model we introduced the simulated perturbation by shifting the target position by 2 cm650

at 120 ms after the y-coordinate of the movement passed the perturbation onset location. We only651

simulated the perturbations matching our experimental conditions–lateral 2 cm cursor jumps, with652

the onset at five evenly distributed forward distances. We calculated simulated feedback intensities653

the same way as for the classical and time-to-target models.654

Infinite horizon OFC655

We implemented the infinite horizon OFC to control our simulated hand based on the previous656

work of Qian et al. (2013). Specifically, we calculated the control gain matrix L, and Kalman gain657

matrix K to control the same system as in the previous models. We chose the state-dependent658

costs !p = [1, 1], !v = 0.02, and !f = 0 for the baseline condition simulation, and !p = [0.35, 0.35],659

!v = 0.007, and !f = 0 for the early-peak condition simulation. For both conditions the activation660

cost R=0.002 was kept the same. The protocol of simulating the mean trajectories, feedback661

responses and their intensities was otherwise identical to the receding horizon simulations.662
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