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Abstract

The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created

a large variety of experimental and computational pipelines for which best practices

have not been established, yet. Here, we use simulations based on five scRNA-seq

library protocols in combination with nine realistic differential expression (DE) setups

to systematically evaluate three mapping, four imputation, seven normalisation and four

differential expression testing approaches resulting in ∼ 3,000 pipelines, allowing us to

also assess interactions among pipeline steps. We find that choices of normalisation and

library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically,

we find that library preparation determines the ability to detect symmetric expression

differences, while normalisation dominates pipeline performance in asymmetric DE-

setups. Finally, we illustrate the importance of informed choices by showing that a

good scRNA-seq pipeline can have the same impact on detecting a biological signal as

quadrupling the sample size.

Introduction 1

Many experimental protocols and computational analysis approaches exist for single 2

cell RNA sequencing (scRNA-seq). Furthermore, scRNA-seq analyses can have different 3

goals including differential expression (DE) analysis, clustering of cells, classification 4

of cells and trajectory reconstruction1. All these goals have the first analysis steps in 5

common in that they require expression counts or normalised counts. Here, we focus 6

on these important first choices made in any scRNA-seq study, using DE-inference as 7

performance read-out. Benchmarking studies exist only separately for each analysis step, 8

which are library preparation protocols2,3, alignment4,5, annotations6, count matrix 9

preprocessing7,8 and normalisation9. However, the impact of the combined choices of 10

the separate analysis steps on overall pipeline performance has not been quantified. In 11

order to achieve a fair and unbiased comparison of computational pipelines, simulations 12
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of realistic data sets are necessary. This is because the ground truth of real data is 13

unknown and alternatives, such as concordance analyses are bound to favour similar and 14

not necessarily better methods. 15

To this end, we integrated popular methods for each analysis step into our simulation 16

framework powsimR10. As the basis for simulations, powsimR uses raw count matrices 17

to describe the mean-variance relationship of gene expression measures. This includes 18

the variance introduced during the experiment itself as well as extra variance due to the 19

first to computational steps of expression quantification. Adding differential expression 20

then provides us with detailed performance measures based on how faithfully DE-genes 21

can be recovered. 22

One main assumption in traditional DE-analysis is that differences in expression are 23

symmetric. This implies that either a small fraction of genes is DE while the expression 24

of the majority of genes remains constant or similar numbers of genes are up- and 25

down-regulated so that the mean total mRNA content does differ between groups11. 26

This assumption is no longer true when diverse cell types are considered. For example, 27

Zeisel et al.12 found up to 60% DE genes and differing amounts of total mRNA levels 28

between cell types. This issue of asymmetry is conceptually one of the characteristics 29

that distinguishes single cell from bulk RNA-seq and has not been addressed so far. 30

Therefore, we simulate varying numbers of DE-genes in conjunction with small to large 31

differences in mRNA content including the entire spectrum of possible DE-settings. 32

Realistic simulations in conjunction with a wide array of scRNA-seq methods, allow 33

us not only to quantify the performance of individual pipeline steps, but also to quantify 34

interdependencies among the steps. Moreover, the relative importance of the various 35

steps to the overall pipeline can be estimated. Hence, our analysis provides sound 36

recommendations regarding the construction of an optimal computational scRNA-seq 37

pipeline for the data at hand. 38

Results 39

The starting point for our comprehensive pipeline comparison is a representative selection 40

of scRNA-seq library preparation protocols (Figure 1A). Here, we included one full- 41

length method (Smart-seq213) and four UMI methods14,15,2,16. The UMI strategies 42

encompass two plate-based (SCRB-seq, CEL-seq2) and the most common non-commercial 43

and commercial droplet-based protocols (Drop-seq, 10X Chromium). CEL-seq2 differs 44

from SCRB-seq in that it relies on linear amplification by in vitro transcription, while 45

SCRB-seq relies on PCR amplification using the same strategy as 10X Chromium (see 46

Ziegenhain et al.17, 2 for a detailed discussion). We then combine the library preparation 47

protocols with three mapping approaches18,19,20 and three annotation schemes21,22,23
48

resulting in 45 distinct raw count matrices (Online Methods). We simulated 27 distinct 49

DE-setups per matrix, each with 20 replicates, resulting in a total of 19,980 simulated 50

data sets (Figure 1B). 51

Genome-mapping quantifies genes with high accuracy 52

We first investigated how expression quantification is affected by different alignment 53

methods using our selection of scRNA-seq experiments. For each of the three following 54

strategies we picked one the most popular methods (Supplementary Figure S2): 1. 55
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Figure 1. Study Overview
A) The data sets yielding raw count matrices. We use scRNA-seq data sets from Ziegenhain
et al.2 and Zheng et al.16 representing 5 popular library preparation protocols. For each data set,
we obtain multiple gene count matrices that result from various combinations of alignment methods
and annotation schemes (see also Supplementary Figure S1 and S2, and Supplementary Table S1 and
S2). B) The simulation setup. Using powsimR Vieth et al.10 distribution estimates from real count
matrices, we simulate the expression of 10,000 genes for two groups with 384 vs 384, 96 vs. 96 and 50
vs. 200 cells, where 5%, 20% or 60% of genes are DE between groups. The magnitude of expression
change for each gene is drawn from a narrow gamma distribution (X ∼ Γ(α = 1, β = 2)) and the
directions can either be symmetric, asymmetric or completely asymmetric. To introduce slight variation
in expression capture, we draw a different size factor for each cell from a narrow normal distribution. C)
The analysis pipeline. The simulated data sets are then analysed using combinations of four count
matrix preprocessing, seven normalisation and four DE approaches. The evaluation of these pipelines
focuses on the outcome of the confusion matrix and its derivatives (TPR, FDR, pAUC, MCC), deviance
in library size estimates (RMSE) and computational run time.
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alignment of reads to the genome using splice-aware alignment (STAR18), 2. alignment to 56

the transcriptome (BWA19) and 3. pseudo-alignment of reads guided by a transcriptome 57

(kallisto24).We then combined these with three annotation schemes including two curated 58

schemes (RefSeq21 and Vega23) and the more inclusive GENCODE22 (Supplementary 59

Table S2). 60

First, we assessed the performance by the number of reads or UMIs that were aligned 61

and assigned to genes (Figure 2A and Supplementary Figure S3). Alignment rates 62

of reads are comparable across all scRNA-seq protocols. Assignment rates on the other 63

hand show some interaction between mapper and protocol. All mappers, aligned and 64

assigned more reads using GENCODE as compared to RefSeq annotation, whereas 65

the pseudo-aligner kallisto profited most from the more comprehensive annotation 66

and here in particular the 3’UMI protocols. Generally, STAR in combination with 67

GENCODE aligned (82-86%) and assigned (37-63%) the most reads, while kallisto 68

assigned consistently the fewest reads (20-40%). BWA assigned an intermediate fraction 69

of reads (22-44%), but - suspiciously - these were distributed across more UMIs. As 70

reads with the same UMI are more likely to originate from the same mRNA molecule 71

and thus the same gene, the average number of genes with which one UMI sequence 72

is associated, can be seen as a measure of false mapping. Indeed, we find that the 73

same UMI is associated with more genes when mapped by BWA than when mapped by 74

STAR (Figure 2B). This indicates a high false mapping rate, that probably inflates the 75

number of genes that are detected by BWA (Figure 2C and Supplementary Figure 76

S4). 77

This said, it remains to be seen what impact the differences in read or UMI counts 78

obtained through the different alignment strategies and annotations have on the power 79

to detect DE-genes. 80

As already indicated from the low fraction of assigned reads, kallisto has the lowest 81

mean expression and the highest gene dropout rates (Figure 2D and Supplementary 82

Figure S7) and, as expected from a high fraction of falsely mapped reads, BWA has 83

the largest variance. To estimate the impact that these statistics have on the power 84

to detect DE-genes, we use the mean-variance relationship to simulate data sets with 85

DE-genes (Figure 2D,E). As previously reported2, UMI protocols have a noticeably 86

higher power than Smart-seq2 (Figure 2F). Moreover for Smart-seq2, we find that 87

kallisto especially with RefSeq annoation performs slightly better than STAR, while for 88

UMI-methods STAR performs better (Figure 2F and Supplementary Figure S9). 89

In summary, using BWA to map to the transcriptome introduces noise, thus consid- 90

erably reducing the power to detect DE-genes as compared to genome alignment using 91

STAR or the pseudo-alignment strategy kallisto, but given the lower mapping rate of 92

kallisto STAR with GENCODE is generally preferable. 93

Many asymmetric expression changes pose a problem without 94

spike-in data. 95

The next step in any RNA-seq analysis is the normalisation of the count matrix. The 96

main idea here is that the resulting size factors correct for differing sequencing depths. 97

In order to improve normalisation, spike-ins as an added standard can help, but are not 98

feasible for all scRNA-seq library preparations. Another avenue to improve normalisation 99

would be to deal with sparsity by imputing missing data prior to normalisation as 100
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Figure 2. Expression Quantification.
A Read alignment and assignment rates per library preparation protocol stratified over aligner and
annotation. The lighter shade represents the percentage of the total reads that could be aligned and
the darker shade the percentage that also was uniquely assigned (see also Supplementary Figure S3).
For comparability, cells were downsampled to 1 million reads/cell, with the exception of 10X Genomics
data that were only sequenced to on average 60,000 reads/cell. Hence, these data are farther from
saturation and have a higher UMI/read ratio. B Number of genes per UMI with >1 reads for BWA
and STAR alignment using the SCRB-seq data set and GENCODE annotation. Colours denote number
bins of UMIs. C Number of genes detected per Library Preparation Protocol stratified over Aligner
and Annotation (i.e. at least 10 % nonzero expression values) (see also Supplementary Figure S4). D
Estimated mean expression, dispersion and gene dropout rates for SCRB-seq and Smart-seq2 data
using STAR, BWA or kallisto alignments with GENCODE annotation (see also Supplementary Figure
S7). E Mean-dispersion fitting line applying a cubic smoothing spline with 95% variability bands for
SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto alignments with GENCODE annotation
(see also Supplementary Figure S8). F The effect of quantification choices on the power (TPR) to detect
differential expression stratified over library preparation and aligner. The expression of 10,000 detected
genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per
protocol. 5% of the simulated genes are differentially expressed following a symmetric narrow gamma
distribution. Unfiltered counts were normalised using scran. Differential expression was tested using
limma-trend (see also Supplementary Figure S9).
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discussed in the next chapter (Figure 1C). To begin with, we compare how much the 101

estimated size factors deviate from the truth. As long as there is only a small proportion 102

of DE-genes or if the differences are symmetric, estimated size factors are not too far 103

from the simulated ones and there are no large differences among methods (Figure 3A 104

and Supplementary Figure S12). However with increasing asymmetry, size factors 105

deviate more and more and the single cell methods scran25 and SCnorm26 perform 106

markedly better than the bulk methods TMM27, MR28 and Positive Counts as well 107

as the single cell method Linnorm29. Census30 is an outlier in that it has a constant 108

deviation of 0.1, which is due to filling in 1 when library sizes could not be calculated. 109

To determine the effect of these deviations on downstream analyses, we evaluated the 110

performance of differential expression inference using different normalisation methods 111

(Figure 3B and Supplementary Figure S15). Firstly, the differences in the TPR 112

across normalisation methods are only minor, only Linnorm performed consistently 113

worse (Supplementary Figure S13). In contrast, the ability to control the FDR 114

heavily depends on the normalisation method (Supplementary Figure S14). For 115

small numbers of DE-genes or symmetrically distributed changes, the FDR is well 116

controlled for all methods except Linnorm. However, with an increasing number and 117

asymmetry of DE-genes, only SCnorm and scran keep FDR control, provided that cells 118

are grouped or clustered prior to normalisation. In our most extreme scenario with 119

60% DE-genes and complete asymmetry, all methods except Census loose FDR control. 120

SCnorm, scran, Positive Counts and MR regain FDR control with spike-ins for 60% 121

completely asymmetric DE-genes (Supplementary Figure S14). Given similar TPR 122

of the methods, this FDR control determines the pAUC (3B,C). 123

Since in real data it is usually unknown what proportion of genes is DE and whether 124

cells contain differing levels of mRNA, we recommend a method that is robust under all 125

tested scenarios. Thus, for most experimental setups scran is a good choice, only for 126

Smart-seq2 data without spike-ins, Census might be a better choice. 127

Imputation has little impact on pipeline performance. 128

If the main reason why normalisation methods perform worse for scRNA-seq than for 129

bulk data is the sparsity of the count matrix, reducing this sparsity by either more 130

stringent filtering or imputation of missing values should remedy the problem31. Here, 131

we test the impact of frequency filtering and three imputation approaches (DrImpute32, 132

scone33, SAVER34) on normalisation performance. Note, that we use the imputation or 133

filtering only to obtain size factor estimates, that are then used together with the raw 134

count matrix for DE-testing. 135

We find that simple frequency filtering has no effect on normalisation results (Figure 136

3D). Performance as measured by pAUC is identical to using raw counts. In contrast, 137

imputation can have an effect on performance and there are large differences among 138

methods. Imputation with DrImpute and scone rarely increased the pAUC and occa- 139

sionally as in the case of SCRB-seq with MR normalisation, the pAUC even decreased 140

by 100% and 76%, respectively due to worse FDR control relative to using raw counts 141

(Supplementary Figure 18). In contrast, these two imputation methods achieved an 142

appreciable increase in pAUC together with scran normalisation, ∼ 28%, 4% and 9% for 143

10X Genomics, SCRB-seq and Smart-seq2 data, respectively. SAVER on the other hand 144

never made things worse, irrespective of data set and normalisation method but was 145

6/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 22, 2019. ; https://doi.org/10.1101/583013doi: bioRxiv preprint 

https://doi.org/10.1101/583013
http://creativecommons.org/licenses/by-nc-nd/4.0/


MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

0.0 0.1
RMSE

Deviance between estimated and 
simulated library size factors (RMSE)

A

●

●

●

●

●

●

●

MR

PosCounts

Census

Linnorm

SCnorm with groups

SCnorm with cluster

scran

0.00 0.25 0.50 0.75 1.00
pAUC

Using spike−ins (pAUC)C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Symmetric Asymmetric Completely 
Asymmetric

5%
 D

E
20%

 D
E

60%
 D

E

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

pAUC

Trade−off between power and false discoveries (pAUC)B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10X − HGMM SCRB−seq Smart−seq2

M
R

scran
scran 

 w
ith cluster

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

none
Filtering

DrImpute
scone

SAVER

none
Filtering

DrImpute
scone

SAVER

none
Filtering

DrImpute
scone

SAVER

pAUC

●Downsampled Original

Performance of normalisation methods using filtered or imputed counts (pAUC)D

Figure 3. Normalisation choices determines DE-analysis performance, not preprocessing
of counts.
The data in panels A-C are based on Smart-seq2 data, all panels are based on two groups of 384
cells, STAR alignment with GENCODE annotation was used for quantification. A The root mean
squared error (RMSE) of estimated library size factors per normalisation method is plotted for 20%
asymmetric DE-genes (see also Supplementary Figure S12). B The discriminatory ability determined
by the partial area under the curve (pAUC) based on DE testing with limma-trend for normalisation
without spike-ins per DE-pattern. The grey ribbon indicates the pAUC given simulated size factors (see
also Supplementary Figure S13-S15). C Using spike-ins for normalisation for 60% completely asymmetric
DE-genes. D Effect of preprocessing the count matrix for 20% asymmetric DE-genes without spike-ins.
Counts were either left asis (’none’), filtered or imputed prior to normalisation. The derived scaling
factors were then used for normalisation and DE testing was performed on raw counts using limma-trend
(see also Supplementary Figure S16-S18). This procedure was applied to the full count matrix (circle)
and to the count matrix downsampled to 10% of its original sequencing depth (triangular). Missing
data points are due to failing imputation runs with the sparser data.
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able to rescue FDR control for MR normalisation of UMI data, even in a completely 146

asymmetric DE-pattern. 147

These observations suggest that data sets with a high gene dropout rate might 148

benefit more from imputation than data sets with a relatively low gene dropout rate 149

(Supplementary Figure S16-18). In order to further investigate the effect of im- 150

putation on sparse data, we downsampled the Smart-seq2 and SCRB-seq data, which 151

were originally based on 1 million reads/cell, to make them more comparable to the 152

10X-HGMM data with on average of 60,000 reads/cell. A radical downsampling to 10% 153

of the original sequencing depth decreases the number of detected genes for SCRB-seq 154

by only 1%, suggesting that the original RNA-seq library was sequenced to saturation. 155

In contrast, the Smart-seq2 data were much less saturated at 1 million reads/cell: Down- 156

sampling reduced the number of detected genes by 34%. However, the relative effect of 157

imputation on performance remains small. This is probably due to the fact that the 158

main effect of downsampling is a reduction in the detected genes, which also cannot be 159

imputed. Thus, if a good normalisation method is used to begin with (e.g. scran with 160

clustering), the improvement by imputation remains relatively small. 161

Good normalisation removes the need for specialised single cell 162

DE-tools. 163

The final step in our pipeline analysis is the detection of DE-genes. Recently, Soneson 164

and Robinson31 benchmarked 36 DE approaches and found that edgeR27, MAST35, 165

limma-trend36 and even the T-Test performed well. Moreover, they found that for 166

edgeR, it is important to incorporate an estimate of the dropout rate per cell. Therefore, 167

we combine edgeR here with zingeR37. 168

Both edgeR-zingeR and limma-trend in combination with a good normalisation reach 169

similar pAUCs as using the simulated size factors (Figure 4). However, in the case of 170

edgeR-zingeR this performance is achieved by a higher TPR paid while loosing FDR 171

control (see Supplementary Figure S20), even in the case of symmetric DE-settings 172

(Supplementary Figure S22-S24). 173

Nevertheless, we find that DE-analysis performance strongly depends on the nor- 174

malisation method and on the library preparation method. In combination with the 175

simulated size factors or scran normalisation, even a T-Test performs well. Conversely, in 176

combination with MR or SCnorm, the T-Test has an increased FDR (Supplementary 177

Figure S20). SCnorms bad performance with a T-Test was surprising given SCnorms 178

good performance with limma-trend (Figure 3B). One explanation could be the rela- 179

tively large deviation of SCnorm derived size factors (Figure 3A and Supplementary 180

Figure S12) which inflate the expression estimates. 181

Furthermore, we find that MAST performs consistently worse than the other DE-tools 182

when applied to UMI-based data, but -except in combination with SCnorm- it is doing 183

fine with Smart-seq2 data. Interestingly, Census normalisation in combination with 184

edgeR-zingeR outperformed limma-trend with Smart-seq2 (Supplementary Figure S25). 185

In concordance with Soneson and Robinson31, we found that limma-trend, a DE-tool 186

developed for bulk RNA-seq data showed the most robust performance. Moreover, 187

library preparation and normalisation appeared to have a stronger effect on pipeline 188

performance than the choice of DE-tool. 189
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Figure 4. Evaluation of DE tools.
The expression of 10,000 genes over 768 cells (384 cells per group) were simulated given the observed
mean-variance relation per protocol. 20% of the simulated genes are differentially expressed following an
asymmetric narrow gamma distribution. Unfiltered counts were normalised using simulated library size
factors or applying normalisation methods. Differential expression was tested using T-Test, limma-trend,
MAST or edgeR-zingeR. The discriminatory ability of DE methods is determined by the partial area
under the curve (pAUC) for the TPR-FDR curve (see also Supplementary Figure S19-S21).
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Normalisation is overall the most influential step. 190

Because we tested a nearly exhaustive number of ∼3,000 possible scRNA-seq pipelines, 191

starting with the choice of library preparation protocol and ending with DE-testing, 192

we can estimate the contribution of each separate step to pipeline performance for our 193

different DE-settings (Figure 1 B). We used a beta regression model to explain the 194

variance in pipeline performance with the choices made at the seven pipeline steps 1) 195

library preparation protocol, 2) spike-in usage, 3) alignment method, 4) annotation 196

scheme, 5) preprocessing of counts, 6) normalisation and 7) DE-tool as explanatory 197

variables. We used the difference in pseudo-R2 between the full model including all 198

seven pipeline steps and leave-one-out reduced models to measure the contribution of 199

each separate step to overall performance. 200

All pipeline choices together (the full model) explain ∼ 50% and ∼ 60% of the 201

variance in performance, for 20% and 60% DE-genes, respectively (Figure 5A). Choices 202

of preprocessing the count matrix contribute very little (∆R2 <= 1%). The same is 203

true for annotation (∆R2 <= 2%) and aligner choices (∆R2 <= 5%). For aligner and 204

annotation, it is important to note that these are upper bounds, because our simulations 205

do not include differences in gene detection rates (Figure 2C). 206

Surprisingly, the choice of DE-tool only matters for symmetric DE-setups (∆R2
DE=0.2 = 207

15%; ∆R2
DE=0.6 = 11%), and the choice of library preparation protocol has an even bigger 208

impact on performance for symmetric DE-setups (∆R2
Symmetric = 17− 29%) and addi- 209

tionally for 5% asymmetric changes (∆R2
5% Asymmetric = 17%). Normalisation choices 210

have overall a large impact in all DE-settings (∆R2 = 12− 38%), where the importance 211

increases with increasing levels of DE-genes and increasing asymmetry. Spike-ins are 212

only necessary if many asymmetric changes are expected and have little or no impact 213

if only 5% of the genes are DE or the changes are symmetric (Figure 5A). Moreover, 214

for completely asymmetric DE-patterns, the regression model did not converge without 215

normalisation and spike-ins, because their absence or presence alone pushed the MCCs 216

to the extremes. 217

For the best performing pipeline SCRB-seq + STAR + GENCODE + SAVER 218

imputation + scran with clustering + limma-trend, using 384 cells per group instead 219

of 96 improves performance only by 6.5-8%. Sample size is more important if a naive 220

pipeline is used. For SCRB-seq + BWA + GENCODE + no count matrix preprocessing 221

+ MR + T-Test the performance gain by increasing sample size is 10-12% and even 222

worse, for many asymmetric DE-genes, lower sample sizes occasionally appear to perform 223

better (Figure 5B and Supplementary Figure S21). Next, we tested our pipeline 224

on publicly available 10X Genomics data set containing the expression profiles of approx. 225

1000 human peripheral mononuclear blood cells (PBMC)16. First, we classified the cells 226

using SingleR38 into the celltypes available in the Blueprint Epigenomics Reference39
227

distinguishing Monocytes, NK-cells, CD8+T-cells, CD4+T-cells and B-cells (Figure 228

5C,D). We applied the previously defined good (STAR + gencode + SAVER imputation 229

+ scran with clustering + limma-trend) and naive (BWA + gencode + no preprocessing 230

+ MR + T-Test) pipeline to identify DE-genes between the cell types. Cross-referencing 231

the identified DE-genes with known differences in marker gene expression39, we find 232

that the good pipeline always identifies a higher fraction of the marker genes as DE 233

than the naive pipeline (Figure 5E). Comparing NK-cells and CD8+ T-cells, the good 234

pipeline identifies 148 known markers as DE, while the naive pipeline finds only 54. The 235
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diminished separation between those two cell-types using the naive pipeline is already 236

visible in the UMAP (Figure 5D). 237

In summary, we identify normalisation and library preparation as the most influential 238

choices and the observation that differences in computational steps alone can significantly 239

lower the required sample size nicely illustrates the importance of bioinformatic choices. 240

Discussion 241

Here we evaluate the performance of complete computational pipelines for the analysis of 242

scRNA-seq data under realistic conditions with large numbers of DE-genes and differences 243

in total mRNA contents between groups (Figure 1). Furthermore, our simulations allow 244

us not only to investigate the influence of choices made at each pipeline step separately, 245

but also to estimate the relative importance and interactions between different steps 246

of an entire scRNA-seq analysis pipeline. We implemented all assessed computational 247

methods and more in powsimR, so that users can easily evaluate pipeline performance 248

given their own data and expected DE-settings. 249

Beginning with the creation of the raw count matrix, we find that transcriptome 250

mapping with BWA19 appears to recover the largest number of genes. However, many 251

of these are probably due to falsely mapped reads, also increase expression variance 252

which ultimately results in a lower sensitivity (Figure 2C-F). In contrast, the pseudo- 253

alignment method kallisto24 appears to assign reads precisely, but looses a lot of reads 254

leading to a lower mean expression. Finally, a genome mapping approach using the 255

splice-aware aligner STAR18 in conjunction with GENCODE annotation recovers the 256

most reads with high accuracy (Figure 5F). 257

Concerning the preprocessing of the count matrix, we found in concordance with 258

Andrews and Hemberg40 that in particular for sparse data such as 10X, SAVER34
259

imputation before normalisation improves performance, while filtering genes has no effect 260

with our data sets and combinations of normalisation and DE-testing methods. 261

The choice that had the largest impact on performance throughout all tested DE- 262

settings is the choice of normalisation method. Only for symmetric changes, the choice 263

of library preparation protocol had a slightly larger impact than normalisation. In 264

line with Evans et al.11, we found that normalisation performance of bulk methods 265

and also some of the single cell methods declined with asymmetry (Figure 3B). In 266

particular, for 60% completely asymmetric DE-genes only Census retained FDR control. 267

Unfortunately, Census is not recommended for the use with UMI-counts. Thus, for 268

UMI-counts and 60% completely asymmetric changes, only the use of spike-ins could 269

restore test performance. In the debate about the usefulness of spike-ins41,17, we land on 270

the pro side: Our simulations clearly show that spike-ins are useful in DE-testing settings 271

with asymmetric changes which is likely to be a common phenomenon in scRNA-seq 272

data. Due to good performance across DE-settings and its speed (Supplementary 273

Figure S22) we would recommend scran with prior clustering as the best choice for 274

normalisation (Figure 5F). 275

The choice in DE-testing method, our final pipeline step had relatively little impact 276

on overall pipeline performance. A good normalisation prior to DE-testing alleviates the 277

need for more complex and thus vulnerable methods, such as for example MASTs hurdle 278

model which implicitly assumes that the CPM values were generated from zero inflated 279

negative binomial count distribution. Indeed, in Vieth et al.10 we showed that also 280
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Figure 5. Evaluation of analysis pipeline.
A, B The expression of 10000 genes over 768 cells were simulated and 5%, 20% or 60% of the genes were
differentially expressed following a symmetric or asymmetric narrow gamma distribution. This simulation
setup was applied to protocols, alignments, annotations, preprocessing of counts, normalisation and
DE tools. For each analysis set, the Matthew Correlation Coefficient was averaged over 20 simulations
and rescaled to [0,1] interval. The MCC was used as a response variable in beta regression models with
log-log link function. A The contribution of each covariate in the full model ( Protocol + Aligner +
Annotation + Preprocessing + Normalisation + DE-Tool). B Performance according to sample size, 1
good and 1 naive pipeline (see also Supplementary Figure S21). C, D, E The expression of ∼ 1000
human PBMcs profiled with 10X Genomics were processed using the good and naive pipeline. Cell
types were identified with SingleR classification using the Blueprint Epigenomics Reference. Cell types
are represented in a UMAP, for good C and naive D pipeline, respectively. True marker genes, i.e.
given by the reference, per pairwise comparison of cell types for the good and naive pipeline are given
in E where genes needed to have a adjusted p-value < 0.1, absolute log2 fold change threshold (> 0.1)
and expressed in at least 10% of the cells to be considered. F Pipeline recommendations for UMI and
Smart-seq2 data.
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scRNA-seq data fit a negative binomial distribution rather well and that the previously 281

reported zero-inflation in scRNA-seq data is mainly due to amplification noise which is 282

removed in UMI-data. Hence, it is not surprising that in concordance with Soneson and 283

Robinson31, we find that relatively straight forward DE-testing methods adapted from 284

bulk RNA-seq perform well with scRNA-seq data. 285

Finally, we want to remark that paying attention to the details in a computational 286

pipeline and in particular to normalisation pays off. The effect of using a good pipeline as 287

compared to a naively compiled one has a similar or even greater effect on the potential 288

to detect a biological signal in scRNA-seq data as an increase in cell numbers from 96 to 289

384 cells per group (Figure 5B). 290

Online Methods 291

Single Cell RNA-seq Data Sets 292

The starting point for our comprehensive pipeline comparison is the scRNA-seq library 293

preparation (Figure 1 A). In our comparison, we included the gene expression profiles of 294

mouse embryonic stem cells (mESC) as published in Ziegenhain et al.2 (Supplementary 295

Figure S1). We selected four data sets for our comparison: Smart-seq213 a well-based 296

full-length scRNA-seq protocol, CEL-seq215 a well-based 3’ UMI-protocol using linear 297

amplification, SCRB-seq a well-based 3’ UMI-protocol with PCR amplification42,2
298

and Drop-seq14 a droplet-based 3’ UMI-protocol. In addition, 92 poly-adenylated 299

synthetic RNA transcripts of known concentration designed by the External RNA 300

Control Consortium (ERCCs)43 were spiked in for all methods except Drop-seq. All raw 301

cDNA sequencing reads were cut to a length of 45 bases and downsampled to one million 302

cDNA reads per cell (Supplementary Table S1 and Supplementary Figure S1). 303

Finally, we added a 10X Chromium data set sequencing mouse NIH3T3 cells16, 304

yielding ∼ 400 good cells with on average ∼ 60,000 reads/cell and another 10X data set 305

analysing ∼ 1,000 human peripheral blood mononuclear cells (PBMCs). 306

These choices of library preparation protocols cover the diversity in current protocols 307

without imposing partiality due to biological differences and technical handling. 308

Gene Expression Quantification 309

For genome mapping and quantification of the UMI-data with a splice-aware aligner, 310

we used the zUMIs44 (v.0.0.3) pipeline with STAR18 (v.2.5.3a) and the mouse genome 311

(Mus musculus.GRm38) together with annotation files (gtf) for GENCODE (vM15), 312

Vega (VEGA68) and RefSeq (Release 85) (Supplementary Table S2). zUMIs is a 313

fast and flexible pipeline for processing scRNA-seq data where cell barcode or UMI reads 314

with low sequence quality reads are filtered out prior to UMI collapsing by sequence 315

identity which yields identical count results as UMI-tools45,44. For Smart-Seq2 we 316

use the same pipeline settings as in zUMIs, simply omitting the UMI collapsing step 317

(Supplementary Table S3). 318

For transcriptome alignment, we downloaded transcriptome fasta files corresponding 319

to the annotations listed above. We used BWA19 (v0.7.12) to align the scRNA-seq reads 320

to these transcriptomes. We only removed reads that aligned equally well to transcripts 321

of different genes as truly multi-mapped. The remaining reads were tallied up per gene. 322
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For UMI data, the reads were collapsed per gene by identity, similar to the strategy 323

recommended in zUMIs. 324

For kallisto24 (v0.43.1), a transcriptome-guided pseudo-alignment method, we followed 325

the recommended quantification procedure to yield abundance estimates per equivalence 326

class. To be comparable with other alignment methods, the counts per equivalence 327

class were collapsed per gene. The counts of equivalence classes representing multiple 328

genes were filtered out. For SCRB-seq, CEL-seq2, Drop-seq and 10X Genomics libraries, 329

we chose the UMI-aware quantification option. The ERCC spike-in sequences were 330

appended to the genome or transcriptome sequences for quantification. 331

Simulations 332

We used powsimR to estimate, simulate and evaluate single cell RNA-seq experiments 333

10. PowsimR has been independently validated for benchmarking DE-approaches31 and 334

consistently reproduces the mean-variance relationship and dropout rates of genes of 335

scRNA-seq data (see also Supplementary Figure 28). The gene expression quantification 336

using three different aligners in combination with three annotations per library prepara- 337

tion protocol produced 45 count matrices. These count matrices are the basis for our 338

estimation in powsimR. Genes needed at least one read or UMI count in at least one cell 339

to be considered in the estimation for simulation parameters. Since we10 and others46,47
340

have found previously, we assume that UMI counts follow a negative binomial distribution 341

and only Smart-seq2 needs the inclusion of zero-inflation. To simulate spike-in data, 342

we added an implementation of the simulation framework for pure technical variation 343

of spike-ins described in Kim et al.48 to powsimR. The parameters required for these 344

simulations were estimated from 92 ERCC spike-ins in the SCRB-seq, CEL-seq2 and 345

Smart-seq2 data, respectively2. To evaluate the effect of differing sequencing depths, we 346

added a new module to powsimR that estimates the degree of PCR amplification for 347

UMI data. This allows the user to downsample a read count matrix by binomial thinning 348

as implemented in edgeR thinCounts() 27 and then to reconstruct the corresponding 349

UMI count matrix base on the estimated PCR amplification rates. 350

For a detailed evaluation of the pipelines, we simulated two groups of cells for pairwise 351

comparisons with the following three sample size setups: 96 vs. 96, 384 vs. 384 or 50 vs. 352

200 cells (Figure 1B). For simplicity, we kept the number of genes that we simulated 353

constant at 10,000. To introduce slight variation in expression capture, we draw a different 354

size factor for each cell from a narrow normal distribution (X ∼ N(µ = 1, σ = 0.1)) 355

(Figure 1B). This distribution fits the considered data sets well, irrespective of the 356

applied library preparation method. Furthermore, the two groups of cells can have 357

5%, 20% or 60% differentially expressed genes. To capture the asymmetry of observed 358

expression differences, we considered three setups of DE-patterns: symmetric (50% up- 359

and 50% down-regulated), asymmetric (75% up- and 25% down-regulated) or completely 360

asymmetric (100% up-regulated). The magnitude of expression change is drawn from a 361

narrow gamma distribution (X ∼ Γ(α = 1, β = 2)) defining the log2 fold change, which 362

is then added to the sampled mean expression. The combination of these parameters 363

results in a total of 27 DE-setups that were then applied to the parameter estimates 364

from 37 different count matrices to simulate 20 replicates for each setting, producing a 365

total of 19,980 simulated data sets. 366

These data sets were then analysed by a nearly exhaustive number of combinations 367
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of four imputation strategies (scone, SAVER, DrImpute),gene dropout filtering (remove 368

genes with more than 80% zero expression values) together with seven normalisation 369

approaches (TMM, MR, Linnorm, Census, Linnorm, scran, SCnorm) with or without 370

spike-ins, depending on library preparation protocol and method (Figure 1C). Nor- 371

malisation factors were then derived as described in Soneson and Robinson31 and used 372

in conjunction with the raw count matrices for DE-testing using four representative 373

approaches (T-Test, limma-trend, edgeR-zingeR, MAST). The resulting p-values were 374

corrected for multiple testing with Benjamini-Hochberg FDR and we applied a threshold 375

level of 10% to define positive test results. All these steps were seamlessly implemented 376

into powsimR (github: https://github.com/bvieth/powsimR). In total we analysed 2,979 377

different RNA-seq pipelines. 378

Evaluation metrics 379

To evaluate the normalisation results, we determined the root mean squared error 380

(RMSE) of a robust linear model using the difference between estimated and simulated 381

library size factors as response variable in rlm() implemented in R-package MASS49
382

(v.7.3-51.1) (Supplementary Figure S10)9. 383

All other measures are based on the final results of an entire scRNA-seq pipeline 384

ending with DE-testing. Knowing the identity of the genes that were simulated to show 385

differing expression levels and the results of the DE-testing, we used a number of metrics 386

related to the confusion matrix tabulating the number of true positives, false positives, 387

true negatives and false negatives. We define the power to detect differential expression 388

with the TPR (TPR = TP
TP+FN ). The false discovery rate is defined as FDR = FP

FP+TP . 389

We combine these two measures in a TPR versus FDR curve to quantify the trade-off 390

between true and false discoveries in a genome-wide multiple testing setup as advocated 391

by50. We then summarise these curves by their partial area under curve (pAUC) of 392

TPR versus observed FDR that still ensures FDR control at the nominal level of 10% 393

(Supplementary Figure S11). This way of calculating the AUC is ideal for data with 394

relatively high true negative rates as the partial integration does not punish methods 395

that are over-conservative, i.e. that stay way below the nominal FDR. 396

To summarise the whole confusion matrix in one representative value we chose 397

the Matthews Correlation Coefficient (MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

), 398

because it is a balanced measure ensuring a reliable comparison of method performance 399

across all DE-settings50,51. As for the pAUC, we calculated the maximal value of MCC 400

where the cutoff still ensured FDR control at the nominal level of 10%. 401

To quantify the relative contribution of each step in the analysis pipeline, we used the 402

MCC as a response variable in a beta regression model implemented in R-package betareg 403

(v.3.1-1)52 with each individual pipeline step. Because the MCC assumes the extremes 404

of 0 and 1 in some DE-settings, we applied the recommended transformation, namely 405

MCCtransformed = MCC∗(n−1)+0.5
n , where n is the sample size53. The contribution is 406

then given by the difference between the full model pseudo−R2 containing all covariates 407

versus a model leaving one step out at a time. This is then scaled to the total variance 408

explained to give relative ∆R2 percentages. 409
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Data Availability 410

The scRNA-seq data used in this manuscript are all publicly available, and they are 411

summarised in Supplementary Table S1. The SCRB-seq, Smart-seq2, Drop-seq, CEL- 412

seq2 data are available at the Gene Expression Omnibus (GEO) under accession code 413

GSE75790. The HGMM and PBMC data sets are available at 10x Genomics’s official 414

website (https://support.10xgenomics.com/single-cell-gene-expression/datasets). 415

Code Availability 416

The software and code used are summarised in Supplementary Table S3 and S4. 417

A compendium containing processing scripts and detailed instructions to reproduce 418

the analysis for this manuscript is available from the following GitHub repository 419

(https://github.com/bvieth/scRNA-seq-pipelines). 420
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Donaldson, Ian T Fiddes, Carlos Garćıa Girón, Jose Manuel Gonzalez, Tiago Grego, Matthew Hardy,

Thibaut Hourlier, Toby Hunt, Osagie G Izuogu, Julien Lagarde, Fergal J Martin, Laura Mart́ınez,

Shamika Mohanan, Paul Muir, Fabio C P Navarro, Anne Parker, Baikang Pei, Fernando Pozo, Magali

Ruffier, Bianca M Schmitt, Eloise Stapleton, Marie-Marthe Suner, Irina Sycheva, Barbara Uszczynska-

Ratajczak, Jinuri Xu, Andrew Yates, Daniel Zerbino, Yan Zhang, Bronwen Aken, Jyoti S Choudhary,
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