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Abstract 

Recently, long noncoding RNA (lncRNA) were implicated in the etiology of alcohol dependence 

(AD). As lncRNA provide another layer of complexity to the transcriptome, assessing their expression 

in the brain is the first critical step towards understanding lncRNA functions in AD. To that end, we 

profiled the expression of lncRNA and protein coding genes (PCG) in nucleus accumbens (NAc) from 

41 subjects with AD and 41 controls. At false discovery rate (FDR) of 5%, we identified 69 and 309 

differentially expressed lncRNA and PCG genes, respectively. Using co-expression network 

analyses, we identified three lncRNA and five PCG modules significantly correlated with AD at 

Bonferroni adj. p≤0.05. To better understand lncRNA functions, we integrated the lncRNA and PCG 

hubs from the significant AD modules; at FDR of 5%, we identified 3 151 positive and 2 255 negative 

correlations supporting the functional role of lncRNA in the development of AD. Gene enrichment 

analysis revealed that PCG significantly correlated with lncRNA are, among others, enriched for 

neuronal and immune related processes. To highlight the mechanisms, by which genetic variants 

contribute to AD, we integrated lncRNA and PCG hubs with genome-wide SNP data. At FDR≤0.3, we 

identified 276 expression quantitative trait loci (eQTL), affecting the expression of 20 and 256 lncRNA 

and PCG hubs, respectively. Our study is the first to profile lncRNA expression in nucleus accumbens 

in a large postmortem alcohol brain sample and our results may provide novel insights into the 

regulation of the brain transcriptome across disease.  

 

 

 

 

 

 

 

Introduction 
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Alcohol Use Disorder (AUD) is a chronic and debilitating disease with an estimated heritability 

around 50%(1). Previous postmortem brain expression studies have shown that chronic alcohol 

consumption leads to broad transcriptional changes in different brain regions(2;3). Gene expression 

studies in prefrontal cortex (PFC), have identified genes encoding to GABAA receptor subunits or 

related to mitochondrial function(4;5) as well as in functions related to myelination, cell cycling, 

oxidative stress, and transcription(2;6-11). Expression studies in nucleus accumbens (NAc) and 

ventral tegmental area (VTA), have also revealed gene expression changes related to cell 

architecture, signaling, vesicle formation and synaptic transmission(7). These findings suggest that 

there are region-specific susceptibilities and adaptations to chronic alcohol consumption in the brain 

that are likely to have a distinct effect on the behavioral phenotypes comprising AUD(12).  

Evaluation of the regulatory mechanisms underlying genetic differentiation is necessary to 

better understand the neurobiology of alcohol addiction(13). The recent emergence of long noncoding 

RNA (lncRNA) has provided an additional layer of transcriptional and translational control that could 

highlight important neurobiological mechanisms underlying AUD that could be missed if only the 

protein coding genome was studied. LncRNA are longer than 200 base pairs (bp) with limited or no 

protein coding potential(14) and while they have not been functionally fully characterized yet, they 

were shown to participate in chromatin remodeling(15), transcriptional and post-transcriptional 

regulation(16), and in sequestering miRNA(17;18). LncRNA have also been implicated in the 

plasticity of neuronal circuity(19) and in neurodegenerative and neuropsychiatric disorders including 

substance abuse and alcohol dependence(20;21); the potential role of lncRNA in the etiology of AUD 

was also further supported by several recent alcohol-related genome-wide association scans 

(GWAS)(22;23). Due to the complex nature of lncRNA functions, the relationship between lncRNA 

and alcohol consumption has been understudied; while miRNA roles in the control of gene expression 

and functions in the brains of subjects with AUD have been reported(2;24-27), to our knowledge the 

interactions between lncRNA and protein coding genes (PCG) are still largely undescribed.  

 Gene expression alone cannot explain the complex etiology of AUD and assessing lncRNA 
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and PCG expression in the context of available genetic data is necessary to discern the genetic basis 

of AUD susceptibility. This approach models associations between genetic variants and gene 

expression as quantitative traits, i.e. expression quantitative trait loci (eQTL)(28-30). EQTLs can help 

discover unknown AUD risk loci or offer specific, testable, hypotheses for the genetic impact of 

polymorphisms associated with AUD(31-33). Linkage disequilibrium (LD) of eQTLs with genetic 

variants implicated in AUD can further establish a biological mechanism for disease-associated 

variants with no apparent functions; there is empirical evidence suggesting that eQTLs are over-

represented among GWAS signals(34;35).  

We hypothesize that lncRNA are involved in the neuropathology of AUD and that, on a 

molecular level, this involvement is manifested by differential patterns of expression between cases 

with alcohol dependence (AD) and controls. To better understand the lncRNA disease functions in 

subjects with AD we further performed a weighted gene co-expression network analysis (WGCNA) 

that led to identification of lncRNA and PCG modules significantly correlated with AD. Key genes from 

these lncRNA and PCG modules (i.e., ‘hubs’) were then correlated with each other to identify a set of 

interacting lncRNA and PCG modules. Since lncRNA are not yet annotated, we used system 

approaches to assign biological functions for the PCG hubs interacting with the lncRNA hubs. By 

integrating our genome-wide SNP and expression data, we also identified expression quantitative trait 

loci (eQTL) affecting the expression of lncRNA and PCG in NAc. In this study, our overall goal is to 

profile lncRNA and PCG expressions in NAc and test whether these are under the control of specific 

genetic elements. To the best of our knowledge this is the only study to comprehensively assess the 

lncRNA expression between subjects with AD and controls in postmortem AD case and control brain 

tissues.  

 

Methods and Materials 

 Postmortem tissue  
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Brain tissue from 41 cases with AD and 41 controls was received from the Australian Brain 

Donor Program, New South Wales Tissue Resource Centre, which is supported by The University of 

Sydney, National Health and Medical Research Council of Australia, Schizophrenia Research 

Institute, National Institute of Alcohol Abuse and Alcoholism, and the New South Wales Department 

of Health (http://sydney.edu.au/medicine/pathology/trc/). (Suppl. Methods; Suppl. Table 1). 

RNA isolation and sample selection  

Total RNA was isolated from 50mg of frozen tissue from NAc using the mirVana-PARIS kit 

(Thermo Fisher, Carlsbad, CA), following manufacturer's protocols. RNA concentration was 

measured using the Quant-iT Broad Range RNA Assay kit (Life Technologies), and the RNA Integrity 

Number (RIN) was measured on the Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa 

Clara, CA).  

Expression arrays and data normalization 

The RNA samples were assayed using the Arraystar Human lncRNA Array v3.0 (Rockville, 

MD, USA) that is designed to profile both lncRNA and PCG. The expression values were calculated 

and normalized using the 75th percentile value for each microarray in the Agilent Feature Extraction 

text file, followed by Log2 transformation and batch effect removal in the Partek® Genomics Suite® 

(PGS) software, v6.6 (St. Louis, MO, USA). Probes with expression values outside the detectable 

‘spike-in’ range in more than 50% of the sample, or if they were flagged as “gIsWellAboveBG = 0” and 

“gIsPosAndSignif = 0” in more than 75% of the arrays were excluded from the downstream analyses. 

Upon removal of low expressed probes, the final number of probes that were used in the subsequent 

analyses was 19,458. The efficiency of batch effect removal and overall array quality were assessed 

using principal components analysis (PCA) on the expression values in which each array is plotted 

along the first three principle components (PCs) to identify potential outliers. Of the 82 samples, 9 

samples were excluded due to low RINs (i.e. RINs≤4), leaving 73 samples for the microarray run. Of 
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the 73 samples run on the array, 8 samples (5 cases and 3 controls) did not load on two of the first 

three PCs and were removed from the subsequent analysis, leaving a final sample size of N=65.    

 

Statistical Analyses 

Gene Expression Analysis 

The univariate gene expression analyses were performed in the Number Cruncher Statistical 

Software (NCSS) v11, using a robust multiple regression model(2). Prior to the main analyses, 

technical (e.g. RIN, PMI, RI) and biological (e.g. smoking, medication, age) confounds and the first 5 

principle components (PCs) were used as covariates in the regression analysis. Microarray reliability 

was validated by assessing the expression of 5 genes at the Arraystar facilities using quantitative 

PCR (qPCR). The assessed genes showed very high correlation between the two platforms (Suppl. 

Methods and Suppl. Fig. 1).  

 Weighted Gene Co-expression Network Analysis (WGCNA) 

 Gene co-expression networks were constructed separately for the lncRNA and PCG using the 

WGCNA v1.36 package in R environment (v3.5.2). While, WGCNA allows for the inclusion of 

additional variables, it does not correct for their effects, therefore the gene networks were built using 

the residuals from the regression model. WGCNA relies on pair-wise Pearson correlations to 

generate a signed similarity matrix, selecting for positive correlations only. The signed similarity 

matrix of the lncRNA and PCG expression data was raised to the lowest power (β=8 and β=11, 

respectively) that approximated a scale-free network topology (R2>0.90), to generate an adjacency 

matrix. A topological overlap measure (TOM) was calculated to assess transcript interconnectedness. 

A dissimilarity measure was calculated from the TOM and was subsequently used for average linkage 

hierarchical clustering. Module definition parameters included a minimum module size of 35 genes, 

DeepSplit 4, and a minimum module merge height of 0.8.  
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 Following module definition, the first principal component of each module – the module 

eigengene (ME) – was calculated as a synthetic gene representing the expression profile of all genes 

within a given module. Modules are named by a conventional color scheme and then correlated to AD 

case-status, matching demographics and relevant covariates. Statistical significance was assessed at 

Bonferroni-adj. p≤ 0.05 (corrected for number of tested modules).  

 To identify the set of genes with a high module membership and phenotype association, (i.e. 

the hub genes), we applied two selection criteria: 1) genes with the high intra-modular connectivity (r2 

≥0.7) and 2) significantly correlated with AD(36). 

 Gene Set Enrichment Analysis 

 Gene set enrichment analysis (GSEA) was used to detect known biological processes 

and pathways enriched within the PCG modules using GSEA v2.2.3 software from the Broad Institute 

as previously described(37;38). Individual gene lists for each of the PCG modules significantly 

correlated with AD were generated by rank-ordering all differentially expressed PCG by their module 

membership (MM) to each of the AD-associated modules. Prior to running GSEA, the transcript IDs 

were converted to HUGO Gene Nomenclature Committee (HGNC)(39). We derived the a priori gene 

sets from the Molecular Signatures Database v6.2 (MSigDB; 

http://www.broadinstitute.org/gsea/msigdb) from the Broad Institute. A total of 1329 gene sets from 

the Canonical Pathways subset of the C2: Curated Pathways collection of MSigDB were assessed. 

Default parameters were then applied to give a minimum and maximum a priori gene set size 

between 15 and 500 genes, respectively. The identified enriched pathways were further adjusted for 

multiple testing at FDR of 25%.  

Correlation Analyses 

The expression values of lncRNA and PCG hubs from the significant modules, were correlated 

(Pearson r) with each and adjusted at FDR of 5%, separately for the negative and positive 

correlations. To better understand the biological significance of these correlations, we performed 
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gene enrichment analysis, in the Co-lncRNA webtool (http://bio-bigdata.hrbmu.edu.cn/Co-LncRNA/) 

using KEGG pathways. The significance of the enrichment analysis was assessed by hypergeometric 

test and further adjusted for multiple testing at FDR of 10%(40).  

eQTL Detection 

The genotype calls were generated as part of a larger meta-GWAS study(22) and were 

integrated with the lncRNA and PCG hubs expressions to identify expression quantitative trait loci 

(eQTLs) for the lncRNA and PCG. Following a previously described approach and to retain power 

only local, cis-eQTLs, were assessed(2). Specifically, SNPs located 1 mega base pairs (Mbp) 

upstream and downstream from the selected lncRNA and PCG hubs were filtered with Plink v1.07 to 

exclude variants in LD (R2≥ 0.7)(41). To reliably estimate the eQTL effects in a sample size of 65, we 

further considered only SNPs with a minor allele frequency (MAF) ≥10%. After LD pruning we 

retained 58 317 SNPs which were tested as eQTLs. SNP impact on gene expression was detected 

by MatrixEQTL software package in R in using a linear regression framework and adjusting for the 

potential effects of the first 5 PCs(42). The significant eQTL results were adjusted for multiple testing 

at FDR of q≤0.3. 

Test for GWAS association signals enrichment 

 The assessment of enrichment for low p-values was performed by using the SST test(43). 

Briefly, for the analysis we used the latest data from the Psychiatric Genomic Consortium (PGC) 

GWAS of AUD(44). As the postmortem brain sample is composed of subjects with European (EU) 

ancestry, for our analysis we used the EU sample of 46K subjects (Suppl. Methods).   

 

Results  

Chronic alcohol consumption leads to generalized gene expression changes between 

cases and controls 
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At the nominal p≤0.05 we identified a total of 2,859 probes differentially expressed between 

AD cases and controls, representing 676 lncRNA and 2,135 PCG that compromise 3.4% and 11% of 

the total gene pool assayed, respectively. Similar to previous studies, the overall number of 

differentially expressed genes was greater than expected by chance (hypergeometric p=1.3x10-5) 

suggesting that chronic alcohol intake leads to generalized changes in the brain transcriptome(2;45). 

At FDR of 5% we identified 69 lncRNA and 309 PCG. Interestingly among these we also identified a 

few pseudogenes with evidence for differential expression. An unsupervised hierarchical clustering of 

the standardized expression values (i.e., values shift to a mean of 0 and standard deviation of 1) of all 

differentially expressed PCG and lncRNA genes at the nominal p≤0.05 showed general patterns of 

association between gene expression and diagnosis (Suppl. Fig.2A and 2B). The significant results 

from the univariate gene expression analyses are provided in supplementary table (Suppl. Table 2).  

lncRNA and PCG show a disease relevant network pattern 

While the gene expression analysis identified differentially expressed genes in NAc of subjects 

with AD, these do not provide an integrative view of the interaction between the lncRNA and mRNA 

genes. Therefore, we performed a weighted gene co-expression network analysis (WGCNA)(46;47) 

separately on the nominally expressed lncRNA and PCG at p≤0.05. We chose this threshold in order 

to: i) include genes with smaller effect size (which otherwise would be excluded with more stringent 

statistical criteria), ii) enrich for genes likely to play role in AD, and iii) retain a sufficient number of 

genes for building of gene co-expression networks. In the lncRNA network analysis, we identified a 

total of 5 modules (Fig. 1)(46), of which three modules (Mbrown, Mblue, and Mgrey) were significantly 

correlated with AD at a Bonferroni adj. p≤0.01. In the PCG network analysis, we identified 11 

modules, five of which were significantly correlated with AD at a Bonferroni adj. p≤0.005 (Fig.2). In 

addition to the main dichotomous case/control status, we also tested additional quantitative alcohol 

related phenotypes such as age of initiation of alcohol drinking, amount of daily alcohol consumption 

and years of drinking. We identified one module (Mgreen) and two modules (Mbrown and Mgreen) as 

significantly correlated with amount of daily alcohol consumption at a Bonferroni adj. p≤0.05 in the 
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lncRNA and PCG analyses, respectively. Interestingly, two of the five PCG modules were significantly 

correlated with both AD and amount of daily alcohol consumption, while in the lncRNA analysis, we 

did not observe overlap between modules associated with AD (i.e. Mbrown and Mblue) and daily alcohol 

consumption (Mgreen). Full tables with module size, correlations and p-values for all PCG and lncRNA 

modules correlated with AD and daily alcohol consumption are provided in supplementary tables 

(Suppl. Tables 3 and 4).  

To ensure the robustness of our gene co-expression networks and reduce the potential 

influence of outlier samples on network structure, we used the robust ‘boostrapped’ version of 

WGCNA (rWGNCA). We performed 100 iterations in which networks were created after randomly 

subsetting 2/3 of the total samples as previously suggested(48). The resulting 100 networks were 

then merged into one large, final consensus network; the individual sub-networks showed reasonably 

high consistency with the final lncRNA and mRNA networks (Suppl. Fig.3A and 3B). 

In a scale-free network topology, ‘hubs’ are the most highly connected genes (of which there 

are relatively few among all the nodes within a network); thus, we also identified the hub genes for the 

significant modules. Of the three lncRNA modules associated with AD, Mblue was the largest 

containing 200 genes, Mbrown contained 105 genes and Mgrey 73 genes. As the genes in Mgrey are 

unassigned we attempted to identify hubs only in Mblue and Mbrown. Of the 305 transcripts clustered in 

the two modules, 70 transcripts were considered as candidate hubs, while among the five PCG 

modules we identified a larger number of hubs (N=368).  

AD gene modules are enriched in alcohol related processes  

 Previous studies have shown that co-expressed genes are enriched for biologically relevant 

functions [49-51]. We used a gene set enrichment analysis (GSEA) to assess for enrichment of 

cellular process and biological functional categories in modules associated with AD. The gene lists for 

each module were generated by ranking all 2185 differentially expressed transcripts according to their 

MM to each of the five significant modules as previously described(49). Using the default parameters 
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in GSEA, at FDR of 25%, we identified 38 a priori gene sets significantly enriched in four of the five 

PCG modules associated with AD (Table 1). Among these, Mturquoise and Mgreenyellow, showed the 

highest and Mgreen the lowest numbers of enriched GO terms, respectively. The 4 modules showed 

distinct patterns of enrichment, with Mturquoise enriched for gene sets involved in neurodegenerative 

disorders (i.e., Alzheimer, Parkinsons and Huntingtons diseases) as well as gene sets enriched for 

neuronal system, neurotrophins signaling and oxidative stress, while Mtan and Mgreenyellow were 

enriched for immune related processes and for genes involved in metabolic processes among others.  

lncRNA and PCG show a complex pattern of interactions 

Since lncRNA can function as potential molecular “scaffolders”(50;51), i.e. by bringing different 

sets of genes near each other, we were interested to identify PCG hubs significantly correlated with 

lncRNA hubs. Limited studies have shown that lncRNA can affect gene functions by interfering with 

the expression of their specific gene targets(52). We integrated the lncRNA and PCG hubs by 

correlating the expression values of lncRNA and PCG hubs across the significant modules. At FDR of 

5% we observed 5,404 correlations, of which the number of positive correlations (N=3,150) 

significantly exceeded the number of negative (N=2,254) correlations (Mann-Whitney U test p=1E-

36). In these analyses, we observed generalized as well as module specific correlations. For 

example, hubs from the blue and brown lncRNA modules showed distinct either negative or positive 

correlations, respectively with hubs from the black PCG module (Fig.3A and 3B). Similarly, hubs from 

the blue lncRNA module were exclusively positively correlated with the hubs from Mturqoise PCG 

module, while hubs from the brown lncRNA module were negatively correlated with Mturqoise. We 

further observed that the unique module correlations also drove the strongest positive and negative 

individual lncRNA/PCG hubs correlations. For example, the strongest negative correlation (Pearson 

r=-0.72, p=1.63E-11, q=2.07E-8) was observed between lncRNA (G075391) a hub gene in the brown 

lncRNA module on chromosome 7 and VPS51 (a member of the vacuolar protein sorting-associated 

protein 51 family) a hub from Mturquoise on chromosome 11. Further exploring the negative correlation 

between these two hubs we observed a moderate mediating impact of G075391 on the expression of 
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VPS51 between cases and controls (ANCOVA, F=5.07, df=1, p=0.028). In the gene expression 

analysis, G075391 was overexpressed in the alcohol subjects, while VPS51 was underexpressed 

(Fig. 4) suggesting that one potential mechanism by which G075391 contributes to the 

neuropathology of AUD is by reducing the expression of VPS51. The entire list of positive and 

negative lncRNA/PCG hub correlations at FDR of 5% is provided in supplementary table (Suppl. 

Table 5). 

To better understand the overall functional role of the two significant lncRNA modules, we 

performed a pathway enrichment analyses using the Co-lncRNA webtool(40) for the negatively and 

positively correlated lncRNA and PCG modules. We observed distinct pathway enrichments, in which 

PCG modules negatively correlated with the lncRNA modules (Mblue) were enriched for pathways 

related to the complement system, cell adhesion and toll-like receptors, while the positively correlated 

PCG modules were enriched for pathways belonging to neurodegenerative disorders such as 

Parkinson’s, Alzheimer and Huntington disease and in pathways involved in oxidative 

phosphorylation, long-term potentiation among others. PCG modules positively correlated with 

lncRNA Mbrown module were enriched for lysosome trafficking, while PCG modules negatively 

correlated with lncRNA Mbrown were enriched for genes involved in calcium signaling, long-term 

potentiation and neurotrophin signaling (Suppl Figs. 4A-4O). The PCG Mbrown significantly correlated 

with daily alcohol consumption and negatively correlated with lncRNA Mgreen was enriched for gene 

pathways involved in focal adhesion, MAPK signaling, peroxisome (Suppl. Figs. 5A-5D).  

Genetic variants affect lncRNA and PCG expression in a disease specific manner 

To understand the underlying genetic mechanisms of AD risk polymorphisms we further 

integrated the lncRNA and PCG hubs expression data from our significant modules with previously 

collected genotypic data(22). Due to the small sample size, we focused on testing cis-eQTLs (defined 

within 1Mbp up- and down-stream from the tested loci) only. At FDR of q≤0.3 we identified 293 

eQTLs that impact hubs expression, with disproportionate number of eQTLs for the PCG (n=282) vs. 
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lncRNA (n=11) hubs (Suppl. Table 6). In a follow up analysis, we further tested these 293 eQTLs for 

an interaction between genotype and disease status; at FDR of 5% we identified 31 interactions that 

mediate the expression of 30 PCG hubs, and one lncRNA hub (G054549) on Chr. 3 (Table 2). The 

most significant interaction we observed was between FKBP prolyl isomerase 5 (FKBP5) and 

rs9394312 on Chr. 6 (Fig.5).  

GWAS signals of AUD show suggestive enrichment in our lncRNA specific eQTLs  

While we and others have shown alcohol related eQTLs are enriched for GWAS signals of 

AUD and other alcohol related phenotypes (ARPs) in the protein coding genome(53), no such studies 

have been performed to interrogate for such enrichment in lncRNA genes. To increase power of our 

test and be rather inclusive, we selected all eQTLs significant at the nominal p≤0.05. At this threshold 

level we have identified a total of 3064 eQTLs (366 lncRNA and 2698 PCG specific eQTLs). The 

assessment of enrichment was performed by using the SST test (Suppl. Text) and we detected only a 

suggestive enrichment (p=0.16) of AUD signals, most likely due to the underpowered alcohol PGC 

sample and our own postmortem brain sample.   

Discussion 

The main goal of this study is to profile the expression patterns of the non-coding and coding 

transcriptome of NAc in a large sample of subjects with AD and controls. The NAc is a central 

component of the mesocorticolimbic system (MCL) and has been shown to be involved in addictive 

behaviors(54-56). By integrating GWAS data previously collected on the sample(22) with our 

expression data, we further attempted to reveal hitherto unknown relationships between lncRNA and 

PCG and to assess how this relationship is modulated by genetic variants in the brain. Unsurprisingly 

and in agreement with previous alcohol related postmortem brain expression studies, we identified 

differentially expressed PCG, suggesting that chronic alcohol consumption is associated with wide-

spread transcriptomic changes in the brain. We further identified numerous lncRNA differentially 

expressed between alcoholic cases and control, supporting their involvement in the neuroadaptations 
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associated with chronic alcohol consumption. Among the most significant differentially expressed 

PCG, were serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 

(SERPINA3), interferon induced transmembrane protein 2 and 3 (IFITM2 and IFITM3) and solute 

carrier family 14 (urea transporter), member 1 (Kidd blood group) (SLC14A1), that were also 

identified from previous alcohol related postmortem brain gene expression studies(9;57). 

Interestingly, we also detected a few differentially expressed pseudogenes, such as the annexin A2 

pseudogene 2 and 3 (ANXA2P2 and ANXA2P3) and interferon induced transmembrane protein 4 

pseudogene (IFITM4P) on chromosomes 9, 10 and 6, respectively. Previous postmortem brain 

expression studies have shown ANXA2P2 to be involved in stress response pathways in chronic 

alcoholics(57), however, little is known about the functions of ANXA2P3 and IFITM4P; it appears that 

ANXA2P3 is involved in reducing lipids levels in response to statins(58) and in chronic obstructive 

pulmonary disease (COPD)(59), while no known functions were reported for IFITM4P.    

A major limitation of the single gene expression analysis to identify and prioritize a set of genes 

associated with a given phenotype, is its inability to consider the complex molecular interactions 

between such identified genes(60); this is especially relevant in studying the non-coding 

transcriptome, which is poorly annotated, with many lncRNA genes still of unknown function. To 

address this limitation, we performed a weighted gene co-expression analysis (WGCNA), which 

allowed us to identify a set of co-regulated PCG and lncRNA. We identified three lncRNA modules 

and four PCG modules that were significantly correlated with AD. Among the significant lncRNA 

modules correlated with AD status was Mgrey. Genes in the grey module are frequently considered as 

‘noise’, i.e. genes whose expression does not correlate with genes in the other modules, although 

there are suggestions that this interpretation may not always be accurate(61). In general, the genes in 

the grey module are usually ubiquitously expressed, exhibiting oscillating or highly variable patterns 

of expression; of course these could also be simply assigned to the wrong module(62). Regardless, 

one potential explanation for our observation could be that, at least some lncRNA, may impact the 

neuropathology of AD in isolation and not as a part of gene network. For example, other studies have 
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also reported similar observation, where despite of their unassigned status, genes in Mgrey show 

significant disease associations in certain phenotypes(63;64). Using the available quantitative 

measures of alcohol consumption, we further identified one lncRNA module and two PCG modules 

significantly correlated with amount of daily alcohol consumption after correction for multiple testing. 

Interestingly, while we observed same PCG modules to be significantly correlated with both AD status 

and quantitative alcohol phenotype, no such relationship was revealed for the lncRNA module, 

suggesting that different sets of lncRNA genes may impact these related, yet distinct, measures of 

alcohol related phenotypes. To further understand the potential regulatory functions of lncRNA, we 

performed a series of correlation analyses between the hub genes identified from the significant 

lncRNA and PCG modules. In these analyses we observed highly significant positive and negative 

correlations, in which the positive correlations significantly outnumbered the negative correlations; 

this is not entirely surprising, considering that the positive correlation can reflect both a genuine 

regulatory function as well as co-expression patterns between lncRNA and PCG. We further 

observed that the module specific correlations were driven exclusively by lncRNA belonging to 

individual modules, suggesting that individual modules are likely to contain a set of lncRNA with 

different and non-overlapping functions. Indeed, in our pathway enrichment analyses we observed 

the PCG modules negatively or positively correlated with the lncRNA modules are enriched for 

distinct and mostly non-overlapping biological processes, further corroborating the suggestion that 

lncRNA involved in the neuroadaptation to alcohol consumption likely have non-overlapping 

functions. From our GSEA analysis, we observed that similarly to other studies(2;45;65), some of the 

PCG modules are also enriched for immune related or neurodegenerative processes. Immune related 

responses to alcohol consumption in the brain has been well documented(66;67). Likewise, the 

neurodegenerative processes observed for some of our modules may reflect the nature of our 

postmortem sample composed exclusively from chronic alcoholics. This is not surprising considering 

that our sample is composed of subjects that have been exposed to alcohol for over two decades. 

Both animal and human genetic models have demonstrated that prolonged exposure to alcohol leads 
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to activation of the microglial population with the concurrent activation of immune related processes in 

the brain(68;69). It has been well known, for over several decades now, that prolonged and excessive 

alcohol drinking leads to loss of a brain matter(70;71), and consequently activation of genes involved 

in neurodegenerative disorders.  

Integrating our expression and genetic data led to identification of eQTLs that affect lncRNA 

and PCG expression. Having an integrated view on the expression of lncRNA and PCG we were also 

interested to identify eQTL that can impact both lncRNA and PCG expressions; we, however, failed to 

observe eQTLs that have a shared impact on lncRNA and PCG expressions. We further observed 

disproportionate numbers of eQTLs for PCG vs. lncRNA genes. This could reflect either a genuine 

biological mechanism, or conversely can be due to a lack of sufficient power to reliably identify eQTLs 

for lncRNA whose expression is associated with AD. Interestingly, among the eQTLs affecting PCG 

expression, certain polymorphisms showed a strong interaction effect between PCG expression and 

disease status. Among these, the strongest interaction effect was observed for FKBP5 and 

rs9394312. Several studies have implicated FKBP5 in the severity of alcohol withdrawal(72), alcohol 

drinking patterns in rodents(73), problematic drinking(74), as well as direct regulation of FKBP5 

expression and phosphorylation by acute ethanol in mouse prefrontal cortex(75;76).  

The importance of our postmortem brain expression study to assess lncRNA expression in 

nucleus accumbens is further supported by three recent alcohol related GWAS reporting genome-

wide signals near lncRNA genes: i) a study conducted by Gelernter at al. (2014)(77) that implicated 

the ADH gene cluster on chromosome 4 and the LOC100507053 locus, ii) a study conducted by the 

COGA group(78)  that identified a polymorphism near LOC151121 on chromosome 2, and iii) a study 

conducted by our own group that have reported several polymorphisms in LOC339975(22). However, 

in our study none of these three loci showed evidence for differential expression, which also agrees 

with our previous study reporting no evidence for differential expression of these loci, although we 

observed the expression of LOC339975 to be affected by the most significantly associated 

polymorphism (rs11726136) in NAc.        
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In summary, the main goal of this study was to test the hypothesis that lncRNA, as a novel 

class of none coding RNAs, may contribute to the neuropathology of alcohol dependence. In this 

study we identified a set of lncRNA and PCG differentially expressed between cases and controls. 

Our gene network analyses identified lncRNA and PCG modules significantly correlated with AD in 

NAc, which were shown to be enriched for immune related processes and neurodegeneration. We 

further identified distinct patterns of correlation between the lncRNA and PCG hubs with minimal 

overlap between modules, i.e. either positive or negative correlations, but not mixed. Gene pathway 

enrichment revealed that of genes whose functions were related to immune, neurological and 

neurodegenerative processes. Finally, we identified eQTLs that affect the expression of lncRNAs and 

PCG hubs, with some of these eQTLs showing a clear mediating effect on the PCG expression 

between cases and controls. Unlike previous studies though, here we saw only suggestive 

enrichment for association signals among the eQTLs, which could be attributed to either a limited 

importance of lncRNAs in the etiology of AD, or most likely due to our limited sample size.  

While our study is novel in its approach to integrate genetic and molecular data in postmortem 

alcoholic brains as well as addressing important questions regarding lncRNA involvement in the 

etiology of AD, it is not without limitations. First, postmortem brain studies are observational as 

manipulation of living human subjects is not possible. Although the cross-sectional nature of these 

studies limits the causal inference we can make, we believe the eQTL analysis is a major step toward 

clarifying the directionality of these observations. Secondly, although our sample size (N=65) is by far 

the largest postmortem alcohol study to date, in comparison with other publically available 

postmortem brain expression samples(79) used to study neuropsychiatric disorders such as 

schizophrenia, bipolar disorder or major depression, is still prohibitively small. However, we believe 

that with our careful experimental design and implementation of integrative multivariate approaches, 

we can circumvent some of these limitations and further broaden our understanding of alcohol 

addiction processes. We hope that our study will provide additional molecular targets that will help 

translate these advances into effective therapeutic strategies for patients suffering with substance use 
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disorders. Thus, in conclusion, we believe our study to be important in the field, as to the best of our 

knowledge, it is among the first such studies to address the role of lncRNA in the neuropathology of 

alcohol addiction paving the road for future such studies.  
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Fig. 1 Module-trait relationships for lncRNA. The residuals of the expression values used to generate the 

lncRNA module MEs are correlated (Pearson) to the dichotomous AD case/control status (Diagnosis) and to 

quantitative alcohol measures such as daily alcohol consumptions (Alc-Cons), total amount of drinks 

(Tot_drinks) and initial age of drinking (Age_began). The lncRNA modules were also correlated to the first 5 

PCs to assess for confounding. P-values shown are unadjusted for multiple testing. After adjusting for number 

of modules tested, MEbrown, MEblue, and MEgrey, are significantly correlated with AD case-status (Class) and 

MEgreen with daily alcohol consumption. 

Fig. 2 Module-trait relationships for protein coding genes (PCG). The PCG module MEs are correlated 

(Pearson) to the dichotomous AD case/control status (Diagnosis) and to quantitative alcohol measures such as 

daily alcohol consumptions (Alc-Cons), total amount of drinks (Tot_drinks) and initial age of drinking 

(Age_began). The lncRNA modules were also correlated to the first 5 PCs to assess for confounding. P-values 

shown are unadjusted for multiple testing. After adjusting for number of modules tested, MEturquoise, MEblack, 

MEgreenyellow, MEtan and MEgreen are significantly correlated with AD case-status (Class) and Mbrown and MEgreen 

also with daily alcohol consumption. 

Fig. 3 Histogram of lncRNA/PCG module correlations. (A) lncRNA MEbrown shows negative correlation with 

PCG MEturquoise, while lncRNA MEblue showed negative correlations with all five significant PCG MEs. (B) PCG 

MEblack shows a positive correlation only with lncRNA MEbrown and PCG MEturquoise shows a positive correlation 

only with lncRNA MEblue.   

Fig. 4 Plot of the mediating effect of lncRNA (G075391) on the expression of PCG Vacuolar Protein Sorting-

Associated Protein 51 (VPS51) in cases and controls.  

Fig. 5 Plot showing a SNP interaction effect of disease status on the expression of FKBP5. The minor allele of 

rs9394312 confers a higher FKBP5 expression in controls and lower expression in cases. 
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Suppl. Fig. 1 Microarray expression data validation using quantitative PCR. Expression levels of five genes 

measured by the expression array-based approach were validated using quantitative PCR in all 65 postmortem 

Nucleus Accumbens (NAc) RNA samples. 

Suppl. Fig. 2 Unsupervised hierarchical clustering of the lncRNA and PCG differentially expressed at p≤0.05 

was performed on the standardized expression values, which were centered at mean of 0 and SD of 1. The 

genes were clustered according to the similarity of their expression profile in PGS v.6.6 using complete linkage 

and Euclidean distance metrics. The color scheme of the Y-axis reflects the clustering based on diagnosis, 

while the color scheme of the X-axis is an arbitrary identification of the two large clusters. 

Suppl. Fig. 3 Robust, bootstrapped version of WGCNA (rWGCNA). The purpose of rWGCNA is to assess for 

potential influence of outlier samples on network structure. We performed 100 iterations in which networks 

were created after first randomly subsetting 2/3 of the total samples. The resulting 100 networks were then 

merged into one large, final consensus network. The individual sub-networks show consistent structure with 

each other and the final network for (A) lncRNA and (B) PCG.  

Suppl. Fig. 4 Figures show the enrichment of the PCG hubs positively and negatively correlated with lncRNA 

hubs in KEGG pathways for AD status. The pathways were derived from the Co-lncRNA web-tool(40). (A) 

PCG hubs from the MEgreen positively correlated with lncRNA MEblue are enriched for lysosome functions; (B) 

PCG hubs from the MEgreenyellow negatively correlated with lncRNA MEblue are enriched for cell adhesions 

functions; (C) PCG hubs from the MEtan negatively correlated with lncRNA MEblue are enriched for genes with 

functions in complement system; (D) PCG hubs from the MEtan negatively correlated with lncRNA MEblue are 

also enriched for genes involved in Toll-like receptors; (E, F, G) PCG hubs from the MEturquoise positively 

correlated with lncRNA MEblue are enriched for genes involved in neurodegenerative diseases, i.e. Alzheimer’s, 

Huntington and Parkinson; (H, I, J, and K) PCG hubs from the MEturquoise positively correlated with lncRNA 

MEblue are also enriched for genes involved oxidative stress, glioma, long term potentiation, and spliceosome; 

(L) PCG hubs from the MEgreen positively correlated with lncRNA MEbrown are enriched for genes involved in 

processes related to lysosome functions; (M, N, and O) PCG hubs from the MEturquoise negatively correlated 

with lncRNA MEblue are enriched for genes involved in calcium signaling, long term potentiation and 

neurotrophin signaling. 
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Suppl. Fig. 5 Figures show the enrichment of the PCG hubs positively and negatively correlated with lncRNA 

hubs in KEGG pathways for daily alcohol consumption. (A, B, C, D) PCG hubs were enriched for processes 

related to focal adhesion, MAPK signaling, pathways in cancer, and peroxisome functions. 
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Name Module Color SIZE ES NES NOM p-val FDR q-val
REACTOME_GENERIC_TRANSCRIPTION_PATHWAY Green 18 0.39174604 2.0209973 0.00617284 0.09609686
NABA_MATRISOME Greenyellow 52 0.29716566 2.5383055 0 0.002136364
REACTOME_GENERIC_TRANSCRIPTION_PATHWAY Greenyellow 18 0.44453996 2.271343 0.003868472 0.011002417
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM Greenyellow 16 0.36958155 1.8165785 0.01814516 0.052214585
REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES Greenyellow 24 0.30484733 1.7894949 0.009727626 0.055684347
KEGG_FOCAL_ADHESION Greenyellow 25 0.28989616 1.7495718 0.031809144 0.056554362
NABA_MATRISOME_ASSOCIATED Greenyellow 32 0.263354 1.7666267 0.026476579 0.057339538
NABA_CORE_MATRISOME Greenyellow 20 0.33983636 1.8274673 0.011538462 0.058284443
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION Greenyellow 15 0.39268157 1.8297838 0.017045455 0.06925771
REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY_METABOLISM Greenyellow 16 0.39104077 1.8677335 0.01417004 0.07026
REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS Greenyellow 40 0.25898334 1.8926 0.009784736 0.084817424
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM Tan 30 0.5582678 3.6189888 0 0
REACTOME_INTERFERON_SIGNALING Tan 23 0.6121739 3.4482594 0 0
REACTOME_IMMUNE_SYSTEM Tan 80 0.31643414 3.1712813 0 0
REACTOME_INNATE_IMMUNE_SYSTEM Tan 20 0.51097137 2.762049 0 0
REACTOME_GENERIC_TRANSCRIPTION_PATHWAY Tan 16 0.49438202 2.3938062 0 0.001711724
NABA_MATRISOME Tan 52 0.27569824 2.2962203 0 0.002778108
REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION Tan 15 0.46424875 2.1254985 0.001964637 0.007368235
NABA_MATRISOME_ASSOCIATED Tan 36 0.28877163 2.0132291 0.008130081 0.014373438
REACTOME_ADAPTIVE_IMMUNE_SYSTEM Tan 49 0.22688648 1.8398738 0.013861386 0.036948614
REACTOME_HIV_INFECTION Tan 21 0.30654764 1.7100884 0.026871402 0.06993838
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM Tan 16 0.40826204 1.9591156 0.005813954 0.076536424
REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS Tan 15 0.35319522 1.6167567 0.032 0.10237446
NABA_ECM_REGULATORS Tan 15 0.3412781 1.5847824 0.04637097 0.10880603
REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT Turquoise 36 0.52024674 3.5809069 0 0
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT Turquoise 27 0.5581451 3.4332826 0 0
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_C Turquoise 31 0.51506513 3.377205 0 0
KEGG_HUNTINGTONS_DISEASE Turquoise 43 0.43448094 3.345477 0 0
KEGG_ALZHEIMERS_DISEASE Turquoise 38 0.4251922 3.100907 0 0
KEGG_OXIDATIVE_PHOSPHORYLATION Turquoise 36 0.40677297 2.9108124 0 0
KEGG_PARKINSONS_DISEASE Turquoise 36 0.40677297 2.8989124 0 0
KEGG_CARDIAC_MUSCLE_CONTRACTION Turquoise 15 0.5186309 2.4297206 0 0.001646979
REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANE Turquoise 15 0.47475696 2.2123554 0.002136752 0.006105823
REACTOME_NEURONAL_SYSTEM Turquoise 27 0.30835184 1.9067711 0.014522822 0.045417827
REACTOME_METABOLISM_OF_MRNA Turquoise 17 0.365826 1.831359 0.007968128 0.062365737
REACTOME_SIGNALLING_BY_NGF Turquoise 22 0.31402782 1.790927 0.02008032 0.07278288
REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION Turquoise 17 0.35091397 1.7582463 0.013916501 0.081596814
REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES Turquoise 19 0.32222223 1.6900269 0.026262626 0.10649991
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Table 2. Statisitstics associated with SNP x Disease status interaction on gene expression
Gene Symbol transcript_type b(i) t-value p-value q-value
CP protein_coding -4339.099284 -4.17296636 1.06E-04 0.0021200
FKBP5 protein_coding -194.1447756 -3.892794888 2.66E-04 0.0026600
CFB protein_coding -816.8607338 -3.575516617 7.29E-04 0.0048600
CP protein_coding -2674.651616 -3.216831651 0.002155381 0.0090439
VWF protein_coding -10483.74203 -3.200519733 0.002260962 0.0090439
CP protein_coding -2902.166648 -2.992404662 0.004111624 0.0118070
SERPINB1 protein_coding -469.2666009 -2.978236654 0.004278888 0.0118070
MS4A6A protein_coding -892.6519535 -2.941793914 0.004738668 0.0118070
FKBP5 protein_coding -160.8875175 -2.900623299 0.00531313 0.0118070
PEF1 protein_coding 1051.251682 2.835312324 0.006358287 0.0123182
FKBP5 protein_coding -161.1241294 -2.808411694 0.006841617 0.0123182
CFB protein_coding -852.5263206 -2.779889041 0.007390944 0.0123182
ETFB protein_coding 3725.712034 2.710880859 0.008892136 0.0136802
CD14 protein_coding 4597.22194 2.662656152 0.010102021 0.0144315
CFB protein_coding -455.8770002 -2.60100512 0.011867568 0.0150922
CP protein_coding -2998.120486 -2.59435938 0.012073783 0.0150922
CP protein_coding -2937.772237 -2.556507693 0.01331174 0.0156609
KIF19 protein_coding -176.2846059 -2.478319252 0.016240449 0.0176072
FKBP5 protein_coding -135.5325182 -2.464543997 0.016812949 0.0176072
G054549 long noncoding -76.58008707 -2.44596443 0.01761392 0.0176072
CFI protein_coding -479.7336288 -2.422108455 0.018692651 0.0176072
SLC2A5 protein_coding -670.9679148 -2.407797313 0.019367912 0.0176072
LIPA protein_coding 2571.97528 2.377762233 0.02085671 0.0181363
CFB protein_coding -487.8252969 -2.343161594 0.022698128 0.0189151
IRF1 protein_coding -893.4275376 -2.183954119 0.033170244 0.0259525
C1QB protein_coding -794.4082368 -2.16374536 0.034765474 0.0259525
FKBP5 protein_coding -143.4456841 -2.160400441 0.035035906 0.0259525
CLIC1 protein_coding -8449.40885 -1.9737918 0.038346681 0.0381048
SMARCD3 protein_coding -4225.619536 -1.917513507 0.040278624 0.0415715
CLIC1 protein_coding -6404.73533 -1.874201051 0.046122845 0.0440819
CD14 protein_coding -3360.788427 -1.857196165 0.048544994 0.0442226
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