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Abstract 24 

In plants, water use efficiency is a complex trait derived from numerous physiological and 25 

developmental characteristics. Here, we investigated the involvement of circadian regulation 26 

in long-term water use efficiency. Circadian rhythms are generated by the circadian 27 

oscillator, which provides a cellular measure of the time of day. In plants, the circadian 28 

oscillator contributes to the regulation of many aspects of physiology, including stomatal 29 

opening, the rate of photosynthesis, carbohydrate metabolism and developmental 30 

processes. We investigated in Arabidopsis the impact upon whole plant, long-term water use 31 

efficiency of the misregulation of genes encoding a large number of components of the 32 

circadian oscillator, identifying a major role for the circadian oscillator in plant water use. 33 

This appears to be due to contributions of the circadian clock to the control of transpiration 34 

and biomass accumulation. We also identified that the circadian oscillator specifically within 35 

guard cells contributes to both long-term water use efficiency and dehydration tolerance. Our 36 

experiments indicate that knowledge of circadian regulation will be important for developing 37 

future crops that use less water. 38 

 39 

Introduction 40 

World population growth is increasing the demand for fresh water for agriculture, with 41 

climate change predicted to exacerbate this competition for water resources (Ruggiero et al., 42 

2017). One strategy to sustainably increase agricultural production involves the 43 

improvement of crop water use (Condon et al., 2004; Xoconostle-Cazares et al., 2010; Hu 44 

and Xiong, 2014; Ruggiero et al., 2017). Since up to 97% of water taken up from the soil by 45 

plants is lost through stomatal transpiration (Yoo et al., 2009; Na and Metzger, 2014), the 46 

manipulation of transpiration represents an excellent candidate for designing crops with 47 

increased water use efficiency. 48 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 20, 2019. ; https://doi.org/10.1101/583526doi: bioRxiv preprint 

https://doi.org/10.1101/583526


 

 3 

Plant water loss can be manipulated through changes in the regulation of stomatal opening 49 

and by altering stomatal density and patterning (Pei et al., 1998; Hugouvieux et al., 2001; 50 

Schroeder et al., 2001; Hetherington and Woodward, 2003; Yoo et al., 2010; Lawson and 51 

Blatt, 2014; Franks et al., 2015; Caine et al., 2019). In addition to stomatal responses to 52 

environmental cues such as light, temperature and phytohormones, there are circadian 53 

rhythms of stomatal opening (Gorton et al., 1989; Hennessey and Field, 1991). Circadian 54 

rhythms are self-sustaining biological cycles with a period of about 24 h. These rhythms are 55 

thought to adapt plants to daily cycles of light and dark, by anticipating daily changes in the 56 

environment and co-ordinating cellular processes. In higher plants, circadian rhythms are 57 

generated by several interlocked transcription-translation feedback loops known as the 58 

circadian oscillator (Hsu and Harmer, 2014). The phase of the circadian oscillator is adjusted 59 

continuously to match the phase of the environment through the process of entrainment, in 60 

response to light, temperature and metabolic cues (Somers et al., 1998; Millar, 2004; 61 

Salomé and McClung, 2005; Haydon et al., 2013). Additionally, the circadian oscillator 62 

communicates an estimate of the time of day to circadian-regulated features of the cell, 63 

initially through transcriptional regulation (Harmer et al., 2000). The known circadian 64 

oscillator controls circadian rhythms of stomatal opening because mutations that alter the 65 

circadian period or cause circadian arrhythmia lead to equivalent alterations in the circadian 66 

rhythm of stomatal opening (Somers et al., 1998; Dodd et al., 2004; Dodd et al., 2005). The 67 

circadian oscillator is also involved in the responses of guard cells to environmental cues 68 

such as drought and low temperature (Dodd et al., 2006; Legnaioli et al., 2009). 69 

Circadian rhythms are often studied under conditions of constant light. However, the 70 

circadian oscillator is also important for the regulation of stomatal opening under cycles of 71 

light and dark. For example, overexpression of the circadian oscillator component CCA1 72 

(CCA1-ox) alters the daily regulation of stomatal opening such that stomatal conductance 73 

increases steadily throughout the photoperiod (Dodd et al., 2005). In comparison, in wild 74 

type plants stomatal conductance remains relatively uniform during the photoperiod and is 75 
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substantially lower than CCA1-ox (Dodd et al., 2005). This suggests that misregulation of the 76 

circadian oscillator might alter plant water use under cycles of light and dark. 77 

Overexpression of CCA1 specifically within guard cells, using a guard cell specific promoter, 78 

alters flowering time and drought response phenotypes under cycles of light and dark 79 

(Hassidim et al., 2017). Like constitutive CCA1 overexpression (Dodd et al., 2005), CCA1 80 

overexpression specifically within guard cells generally causes greater stomatal opening 81 

during the light period (Hassidim et al., 2017). Therefore, the circadian oscillator within guard 82 

cells is important for the daily regulation of stomatal opening (Hassidim et al., 2017). 83 

Modelling suggests that under light/dark cycles, the circadian oscillator contributes at the 84 

canopy scale to daily rhythms in stomatal aperture and carbon assimilation in bean and 85 

cotton (Resco de Dios et al., 2016). 86 

The contribution of the circadian oscillator to both stomatal opening and growth and biomass 87 

accumulation (Dodd et al., 2005; Graf et al., 2010) suggests that the circadian oscillator 88 

might make an important contribution to water use efficiency (WUE). WUE is the ratio of 89 

carbon dioxide incorporated through photosynthesis into biomass to the amount of water lost 90 

through transpiration. At the single leaf level, instantaneous, intrinsic WUE is often 91 

measured with gas exchange techniques and expressed as net CO2 assimilation per unit of 92 

water transpired (Vialet-Chabrand et al., 2016; Ruggiero et al., 2017; Ferguson et al., 2018). 93 

However, such measurements do not provide an accurate representation of WUE over the 94 

plant lifetime, which is influenced by features such as leaf position, dark respiration, and time 95 

of day changes in instantaneous WUE (Condon et al., 2004; Tomás et al., 2014; Medrano et 96 

al., 2015; Ferguson et al., 2018). It is important to note that WUE is not a drought resistance 97 

trait (Blum, 2009). 98 

Given that the circadian oscillator affects stomatal opening and biomass accumulation 99 

(Gorton et al., 1989; Hennessey and Field, 1991; Dodd et al., 2005; Edwards and Weinig, 100 

2010; Graf et al., 2010; Edwards et al., 2012), we hypothesized that specific components of 101 

the circadian oscillator might make an important contribution to long-term WUE of plants. 102 
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Therefore, we investigated the impact of the misregulation of parts of the circadian oscillator 103 

upon the long-term WUE of Arabidopsis. We identified that the circadian oscillator has 104 

profound effects upon the long-term WUE of plants. Importantly, some alterations in 105 

oscillator function increase long-term WUE, suggesting potential targets for future 106 

improvements of crop WUE. 107 

Results 108 

Circadian oscillator components contribute to water use efficiency 109 

Each background accession had a distinct WUE (C24: 3.01 ± 0.07 mg ml-1; Col-0: 2.22 ± 110 

0.02 mg ml-1; L. er.: 1.60 ± 0.04 mg ml-1; Ws: 1.91 ± 0.06 mg ml-1) (Fig. S1). These 111 

differences between backgrounds are consistent with previous studies of WUE, stomatal 112 

function and stomatal density in Arabidopsis (Nienhuis et al., 1994; Woodward et al., 2002; 113 

Dodd et al., 2004; Masle et al., 2005; Karaba et al., 2007; Ruggiero et al., 2017; Ferguson et 114 

al., 2018). 115 

We identified that correct regulation of the circadian oscillator makes a substantial 116 

contribution to WUE. 33 single mutants or overexpressors of genes associated with 117 

circadian regulation, representing 22 circadian oscillator-associated components, were 118 

screened for WUE (Fig. 1). Nearly half of the mutants or overexpressors examined had a 119 

significantly different WUE from the wild type (p < 0.05; 16 of 33 genotypes). This 120 

corresponded to mutants or overexpressors representing half of the circadian oscillator 121 

components covered by our study (11 of 22 genes) (Fig. 1). The cca1-11, elf3-1, prr5-3, 122 

prr9-1, tps1-11, tps1-12, and ztl-1 mutants, as well as the TOC1 and KIN10 (line 6.5) 123 

overexpressors, had significantly lower WUE than the wild type (Fig. 1). The gi-2, gi-11, 124 

grp7-1, prr7-11 and tej-1 mutants had significantly greater WUE than the wild type (Fig. 1). 125 

This suggests that misregulating the expression of circadian clock components CCA1, ELF3, 126 

GI, GRP7, PRR5, PRR7, PRR9, TEJ, TOC1 and ZTL changes whole plant long-term WUE 127 

(Fig. 1). tic-2 had significantly greater WUE than the wild type, whereas tic-1 had 128 

significantly lower WUE than the wild type, so the effect of TIC mutation upon WUE is 129 
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unclear (Fig. 1). We also included the che-2 mutant in our initial analysis, but inconsistency 130 

of its WUE phenotype between experimental repeats led us to exclude the data. WUE was 131 

also altered by changing the expression of the energy signalling components TPS1 and 132 

KIN10 that participate in inputs to the circadian oscillator (Shin et al., 2017; Frank et al., 133 

2018) (Fig. 1). Therefore, correct expression of these circadian clock-associated genes 134 

contributes to long-term WUE of Arabidopsis. 135 

We were interested to determine whether the WUE alterations caused by misregulation of 136 

circadian oscillator gene expression arose from changes in either biomass accumulation or 137 

transpiration. There was no clear evidence that a change in one of these parameters alone 138 

underlies the altered WUE phenotypes (Fig. 2A). This suggests that the altered WUE of lines 139 

with misregulated circadian clock genes is due to the net effect of altered biomass 140 

accumulation and altered transpiration in these genotypes (Fig. 2A). 141 

We hypothesised that variations in WUE might be explained by specific circadian 142 

phenotypes in the mutants and overexpressors that we tested. For example, mutations in 143 

clock genes expressed with a particular set of phases might have a pronounced effect on 144 

WUE. Likewise, the nature of the circadian period change or flowering time change resulting 145 

from misexpression of each oscillator component might be associated with certain changes 146 

in WUE. To test this, we related the data from our WUE screen to the circadian phase of 147 

expression of each mutated or overexpressed gene. We also compared the direction of 148 

change of WUE to the period and flowering time phenotypes that arise from each mutant or 149 

overexpressor (Fowler et al., 1999; Schultz et al., 2001; Doyle et al., 2002; Nakamichi et al., 150 

2002; Yanovsky and Kay, 2002; Imaizumi et al., 2003; Más et al., 2003; Murakami et al., 151 

2004; Farré et al., 2005; Hazen et al., 2005; Baena-González et al., 2007; Streitner et al., 152 

2008; Wang et al., 2008; Baudry et al., 2010; Nakamichi et al., 2010; Rawat et al., 2011; 153 

Wahl et al., 2013; Hsu and Harmer, 2014). We note that the phenotypes reported by these 154 

studies were often identified under constant conditions, whereas our experiments occurred 155 

under light/dark cycles. 156 
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There was no obvious relationship between the circadian phenotypes that are caused by 157 

each mutant or overexpressor investigated and the WUE of each of these lines (Fig. 2B, C, 158 

D). For example, mutating morning-phased circadian oscillator components can either 159 

decrease or increase WUE (Fig. 2B). Mutants that cause long circadian periods and short 160 

circadian periods can both increase and decrease WUE (Fig. 2C). Furthermore, mutants and 161 

overexpressors that cause both early and delayed flowering can each increase and 162 

decrease WUE (Fig. 2D). 163 

Circadian regulation of water use efficiency combines multiple traits 164 

Mutation or overexpression of components of the circadian oscillator can cause changes in 165 

the development of Arabidopsis, such as alterations in rosette size, leaf shape and petiole 166 

length (Fig. 3A) (Zagotta et al., 1992; Schaffer et al., 1998; Wang and Tobin, 1998; Dodd et 167 

al., 2005; Ruts et al., 2012; Rubin et al., 2018). These changes are likely to have 168 

implications for gas exchange because, for example, spatially separated leaves are 169 

predicted to transpire more water (Bridge et al., 2013). We investigated whether the changes 170 

in WUE that were identified by our screen might arise from differences in rosette architecture 171 

between the circadian clock-associated mutants and overexpressors and the wild types. 172 

There was a weak positive correlation between rosette leaf surface area and WUE (r = 173 

0.400; r2 = 0.160; p < 0.001) (Fig. 3B). Therefore, approximately 16% of variability in WUE 174 

can be explained by the variations in rosette leaf surface area that arise from misregulation 175 

of the circadian oscillator. 176 

In comparison, rosette leaf surface area was strongly correlated with each of the individual 177 

parameters of water used and dry biomass accumulated. The variation in rosette surface 178 

area accounted for 83% of the variability in water transpired across the genotypes (Fig. 3C). 179 

Furthermore, the variation in rosette surface area accounted for 73% of the variability in 180 

biomass accumulation across the genotypes (Fig. 3D), which is unsurprising given that 181 

larger leaves are likely to contain more biomass. This demonstrates that one way that 182 

circadian regulation affects WUE is through the influence of the circadian oscillator upon 183 
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plant development and rosette architecture, but this variation in leaf area does not account 184 

for the majority of the influence of circadian regulation upon WUE. It also further supports 185 

the notion that the influence of the circadian oscillator upon WUE is complex, and cannot be 186 

explained by variation in one of water use or biomass accumulation alone. 187 

Circadian regulation within guard cells alone contributes to water use efficiency 188 

Next, we identified that the circadian oscillator within guard cells contributes to WUE. There 189 

is evidence that guard cells contain a circadian oscillator that regulates stomatal opening 190 

(Gorton et al., 1989; Hassidim et al., 2017). To investigate the contribution of the guard cell 191 

circadian oscillator to WUE, we overexpressed two circadian oscillator components (CCA1, 192 

TOC1) in guard cells, using two guard cell-specific promoters (GC1, MYB60) for each of 193 

CCA1 and TOC1 (Fig. 4A) (Cominelli et al., 2005; Galbiati et al., 2008; Yang et al., 2008; 194 

Nagy et al., 2009; Meyer et al., 2010; Cominelli et al., 2011; Bauer et al., 2013; Rusconi et 195 

al., 2013). GC1 is a strong guard cell-specific promoter that is relatively unresponsive to a 196 

variety of environmental cues (cold, light, ABA, gibberellin) (Yang et al. 2008). We used the 197 

full-length MYB60 promoter sequence, because truncated and chimeric versions of this 198 

promoter appear to have weaker activity and/or become rapidly downregulated by 199 

dehydration and ABA (Francia et al., 2008; Cominelli et al., 2011; Rusconi et al., 2013). This 200 

produced four sets of transgenic lines; GC1::CCA1:nos (GC), GC1::TOC1:nos (GT), 201 

MYB60::CCA1:nos (MC) and MYB60::TOC1:nos (MT). We termed these guard cell specific 202 

(GCS) plants. We confirmed the guard cell specificity of the GC1 and MYB60 promoters in 203 

our hands, by driving green fluorescent protein (GFP) under the control of these promoters. 204 

GFP accumulation was restricted to the guard cells (Fig. S2A, B). There was not a circadian 205 

oscillation in the activity of either the GC1 or MYB60 promoter under our experimental 206 

conditions (Fig. S2C), demonstrating that these promoters are appropriate for constitutive 207 

overexpression of circadian oscillator components within guard cells under our experimental 208 

conditions. 209 
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To further verify the guard cell-specific overexpression of CCA1 and TOC1 in the GCS 210 

plants, we examined CCA1 and TOC1 transcript accumulation within guard cells. Under 211 

constant light conditions, we measured CCA1 transcript accumulation in epidermal peels at 212 

dusk (when CCA1 transcript abundance is normally low in the wild type) and TOC1 213 

transcript accumulation at dawn (when TOC1 transcript abundance is normally low in the 214 

wild type). Guard cell CCA1 overexpressors had greater CCA1 transcript abundance in 215 

epidermal peels at dusk than the wild type (GC: t₄ = - 2.233, p>0.05; MC: t₄ = -7.409, p = 216 

0.002) (Fig. S2D), and guard cell TOC1 overexpressors had greater TOC1 transcript 217 

abundance at dawn than the wild type (GT: t₄ = -6.636, p = 0.003; MT: t₄ = -2.736, p = 218 

0.050) (Fig. S2D). These data indicate that CCA1 and TOC1 were overexpressed within the 219 

guard cells of the guard cell-specific CCA1 or TOC1 overexpressor plants that we 220 

generated, respectively. 221 

We investigated the effect on WUE of overexpression of CCA1 and TOC1 within guard cells. 222 

Two independent GC1::CCA1 lines (GC-1 and GC-2) were significantly more water use 223 

efficient than the wild type (GC-1: p < 0.001; GC-2: p = 0.002) (Fig. 4B). GC-1 and GC-2 224 

were 8% and 4% more water use efficient than the wild type, respectively (Fig. 4B). Two 225 

independent MYB60::CCA1 lines also had numerically higher WUE than the wild type, but 226 

this was not statistically significant (p > 0.05) (Fig. 4B). In contrast, overexpression of TOC1 227 

in guard cells with both the GC1 and MYB60 promoters did not alter WUE (p > 0.05) (Fig. 228 

4B). Together, these data suggest that overexpressing CCA1 in guard cells can increase 229 

whole plant long-term WUE. 230 

A previous study identified that constitutive overexpression of TOC1 (TOC1-ox) reduces the 231 

dehydration tolerance of seedlings (Legnaioli et al., 2009). We wished to determine whether 232 

this altered dehydration tolerance is due specifically to the circadian oscillator within guard 233 

cells. Using a similar experimental system to Legnaioli et al. 2009, we found that 234 

MYB60::CCA1 and GC1::CCA1 increase dehydration survival (Fig. 4C). In contrast, 235 

GC1::TOC1 and MYB60::TOC1 had decreased dehydration survival relative to the wild type 236 
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(Fig. 4C). This suggests that overexpressing CCA1 or TOC1 in guard cells can increase or 237 

decrease survival to dehydration under constant light conditions, respectively. 238 

Like MYB60::CCA1 and GC1::CCA1, more seedlings constitutively overexpressing CCA1 239 

(CCA1-ox) survived dehydration under our experimental conditions (Fig. 4C). Similarly, like 240 

GC1::TOC1 and MYB60::TOC1, more seedlings overexpressing TOC1 constitutively (TOC1-241 

ox) were killed by dehydration (Fig. 4C). Therefore, manipulation of the expression of these 242 

clock genes in guard cell and whole plants causes similar phenotypes, with some 243 

differences in magnitude (Fig. 4C). One interpretation is that altered dehydration survival in 244 

CCA1-ox and TOC1-ox seedlings might be partly or wholly due to the circadian clock that is 245 

specifically within guard cells. Because the stomatal density was unaltered relative to the 246 

wild type in the guard cell overexpressors of CCA1 and TOC1 (Fig. 4D, E), the WUE and 247 

dehydration survival phenotypes that we identified might be due to alterations in processes 248 

within guard cells rather than due to altered stomatal density. 249 

Discussion 250 

Pervasive influence of the circadian oscillator upon water use efficiency 251 

Our data indicate that the circadian oscillator is important for regulating the long-term WUE 252 

of Arabidopsis. Misregulation of several functional subsections of the circadian oscillator 253 

altered the WUE of Arabidopsis. Misexpression of morning (PRR7, PRR9, CCA1), late day 254 

(GI, PRR5) and evening (TOC1, ZTL, ELF3) components of the circadian oscillator all 255 

perturb WUE under our experimental conditions (Fig. 1, Fig. 2B). Additionally, altered 256 

expression of TEJ and GRP7 also alters WUE (Fig. 1). Therefore, oscillator components that 257 

impact WUE are not confined to a specific region or expression phase of the multi-loop 258 

circadian oscillator. Misexpression of genes encoding some proteins that provide 259 

environmental inputs to the circadian oscillator (ELF3, TPS1, ZTL, KIN10; (Covington et al., 260 

2001; Kim et al., 2007; Shin et al., 2017; Frank et al., 2018)) also alters WUE. Together, this 261 

suggests that the entire circadian oscillator influences WUE, and that alterations in water 262 

use that are caused by mutations to the circadian oscillator are not confined to a specific 263 
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sub-loop of the circadian oscillator or restricted to its input or output pathways. One 264 

explanation for these circadian-system wide alterations in WUE relates to the nature of 265 

feedback within the circadian oscillator. The complex feedback and interconnectivity of the 266 

circadian oscillator means that individual components of the circadian oscillator that directly 267 

influence stomatal function or water use are likely to be altered by mutations that are distal 268 

to that component. Therefore, if correct circadian timing is required for optimum water use 269 

efficiency, multiple components of the circadian oscillator are likely to influence water use 270 

efficiency. 271 

The sugar signalling proteins TPS1 and KIN10 influence a broad range of phenotypes, in 272 

addition to participating in circadian entrainment (Baena-González et al., 2007; Gómez et al., 273 

2010; Paul et al., 2010; Delatte et al., 2011; Shin et al., 2017; Frank et al., 2018; Nietzsche 274 

et al., 2018; Simon et al., 2018). The tps1-12 TILLING mutant of TPS1 decreases stomatal 275 

aperture and increases the ABA sensitivity of guard cells (Gómez et al., 2010), whereas we 276 

found that tps1-11 and tps1-12 had lower long-term WUE than the wild type (Fig. 1). 277 

Reduced biomass accumulation in tps1-11 and tps1-12 (Fig. 2A) was consistent with slow 278 

growth of these alleles (Gómez et al., 2010). Overall, this suggests that the decreased 279 

stomatal aperture of tps1-12 mutants does not translate into an overall increase in WUE, 280 

potentially due to slower growth of the tps1 mutants (Fig. 2A) (Gómez et al., 2010). The 281 

broad range of phenotypes that are altered in tps1-11, tps1-12 and KIN10-ox 6.5 indicates 282 

that these genotypes might alter WUE through mechanisms other than circadian regulation. 283 

Potential roles for the evening complex in WUE 284 

Our finding that ELF3 is important for WUE (Fig. 1) is supported by previous evidence. 285 

Under constant light conditions, wild type Arabidopsis has circadian rhythms of stomatal 286 

aperture, whereas elf3 stomata are constantly open and unresponsive to light and dark 287 

(Kinoshita et al., 2011). Furthermore, ELF3 negatively regulates blue light-mediated stomatal 288 

opening (Kinoshita and Hayashi, 2011). Therefore, perturbation of the anticipation of 289 
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day/night transitions or responses to environmental cues in elf3 stomata might cause long-290 

term alterations in WUE. 291 

ELF3 binds to the PRR9 promoter and elf3-1 has elevated PRR9 transcript abundance 292 

(Thines and Harmon, 2010; Dixon et al., 2011; Herrero et al., 2012). The low WUE of elf3-1 293 

might potentially be caused by altered PRR9 expression, because misregulation of PRR9 294 

also affected WUE (Fig. 1). In a similar fashion, ELF3/ELF4 signalling represses PRR7, and 295 

elf3-1 has elevated PRR7 transcript abundance (Herrero et al., 2012). Under light-dark 296 

cycles, elf3-1 also has high and constitutive GI expression (Fowler et al., 1999), and elf3-1 297 

and gi mutants have opposite WUE phenotypes (Fig. 1). Therefore, the WUE phenotype of 298 

elf3-1 (Fig. 1) might be caused by disruption of ELF3 itself, or alterations in PRR7, PRR9 299 

and/or GI expression. 300 

Mutating further components of the evening complex (EC) (ELF4 and LUX) did not affect 301 

WUE (Fig. 1). This is despite the way that these genes influence circadian oscillator function 302 

and plant physiology (Hsu and Harmer, 2014; Huang and Nusinow, 2016), and nocturnal 303 

regulation of stomatal aperture impacts WUE (Costa et al., 2015; Coupel-Ledru et al., 2016). 304 

One possibility is that the impact of elf3 on WUE may be greater than that of elf4 or lux 305 

because ELF3 is key to EC scaffolding, with ELF3 operating genetically downstream from 306 

ELF4 and LUX (Herrero et al., 2012; Huang and Nusinow, 2016). 307 

ELF4 appears to play a greater role in circadian regulation in the vascular tissue than 308 

stomatal guard cells, with vasculature expression up to ten times higher than other tissues 309 

(Endo et al., 2014). Because elf3-1 affects WUE differently from elf4-101 and lux-1 (Fig. 1), it 310 

appears that ELF3 regulates WUE independently from ELF4 and LUX.  311 

Multiple physiological causes of altered WUE in circadian oscillator mutants 312 

Our data suggest that changes in WUE caused by misexpression of circadian clock 313 

components might be due to a combination of physiological factors. Some mutants or 314 

overexpressors tested alter biomass accumulation, whilst others predominantly alter water 315 
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loss (Fig. 2), so mutations to the circadian oscillator did not alter water use by specifically 316 

altering one of carbon assimilation or transpiration. This is consistent with previous work 317 

demonstrating that both stomatal opening and CO2 fixation is perturbed in circadian 318 

arrhythmic plants under light/dark cycles (Dodd et al., 2005), and with the findings that daily 319 

carbohydrate management is dependent upon correct circadian regulation (Graf et al., 320 

2010). We speculate that delayed or advanced stomatal and photosynthetic responses to 321 

the day-night cycle might occur in circadian period mutants, because period mutants 322 

inaccurately anticipate the onset of dawn (Dodd et al., 2014). Circadian clock mutants might 323 

also affect WUE by changing the sensitivity of stomatal movements and photosynthesis to 324 

environmental transitions, because there is circadian gating of the responses of both 325 

stomata and photosynthesis to environmental cues (Dodd et al., 2006; Kinoshita et al., 2011; 326 

Litthauer et al., 2015; Joo et al., 2017; Cano-Ramirez et al., 2018). Some effects of the 327 

circadian oscillator upon WUE arise from alterations in leaf size that occur in some circadian 328 

oscillator mutants (Fig. 3A, B). This suggests that developmental alterations arising from 329 

lesions in the circadian oscillator can lead to changes in WUE. Such developmental 330 

alterations might alter WUE by changing airflow around the rosette, boundary layer 331 

conductance, or internal leaf structure.  332 

Conclusions 333 

We show that circadian regulation contributes to whole plant long-term WUE under cycles of 334 

day and night. This control occurs partly through the influence of the circadian oscillator 335 

upon rosette architecture. Mutation or overexpression of CCA1, TOC1, ELF3, GI, GRP7, 336 

PRR5, PRR7, PRR9, TEJ and ZTL altered WUE under our experimental conditions. The 337 

roles of these genes in WUE may be independent or overlapping, and their WUE 338 

phenotypes might be due to direct effects of these genes, or indirect effects on transcript 339 

and/or protein abundance of other circadian clock gene(s). Misregulation of the expression 340 

of CHE, FKF1, LKP2, RVE4, RVE8, PRR3, ELF4, LUX and WNK1 did not appear to alter 341 

WUE under our experimental conditions. 342 
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Our results have a number of broad implications. Firstly, our data suggest that alterations in 343 

circadian function that arise during crop breeding could have the potential to increase or 344 

decrease WUE. Therefore, manipulation of the functioning of the circadian oscillator might 345 

represent a pathway to tune the WUE of crops. Second, our results indicate that circadian 346 

regulation in a single cell type can have implications for whole-plant physiology. Finally, our 347 

findings suggest that circadian regulation can alter a single trait (WUE) by affecting many 348 

aspects of physiology. In future, it would be informative to distinguish the contribution to 349 

overall WUE of circadian regulation within additional cell types, such as the mesophyll, 350 

vascular tissue, and root cell types. 351 

 352 

Materials and methods 353 

Plant material and growth conditions 354 

Arabidopsis (Arabidopsis thaliana (L.) Heynh.) seeds were surface-sterilised as described 355 

previously (Noordally et al., 2013). For experiments investigating stomatal density and index, 356 

seeds were stratified for 3 days at 4 °C, then sown on compost mix comprising a 3:1 ratio of 357 

coarsely sieved Levington Advance F2 seed compost (Everris) and horticultural silver sand 358 

(Melcourt), supplemented with 0.4 g l-1 thiacloprid insecticide granules (Exemptor; Everris). 359 

Plants were grown in controlled environment chambers (Reftech, Netherlands) under an 8 h 360 

photoperiod at 70% humidity, 20 °C, and photon flux density of 100 µmol m-2 s-1 of overhead 361 

lighting supplied by cool white fluorescent tubes (Reftech, Netherlands). For experiments 362 

investigating long-term WUE, seeds were sown within a custom Falcon tube system then 363 

stratified. Plants were cultivated in plant growth chambers (Snjider, Netherlands) under the 364 

experimental conditions described above. The genotypes that were screened for WUE 365 

alterations are identified in Table S1, and all have been described previously. For all 366 

experiments, at least two completely independent experimental repeats were performed per 367 

genotype and per treatment, with multiple replicate plants within each of the experimental 368 

repeats. 369 
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Generation of transgenic lines 370 

To create the GC1::CCA1:nos (GC), GC1::TOC1:nos (GT), MYB60::CCA1:nos (MC) and 371 

MYB60::TOC1:nos (MT) constructs, the CaMV nos terminator sequence was ligated 372 

between the SpeI and NotI restriction sites in the pGREENII0229 binary vector (Hellens et 373 

al., 2000). The GC1 upstream sequence (-1894 to -190) or MYB60 upstream sequence (-374 

1724 to -429) was then ligated between the KpnI and ApaI restriction sites of 375 

pGREENII0229. Finally, the CCA1 coding sequence or TOC1 coding sequence, obtained 376 

using RT-PCR, was ligated between the restriction XhoI and XmaI sites. Primers used are 377 

identified in Table S2. Constructs were transformed into Col-0 wild type Arabidopsis using 378 

transformation with Agrobacterium tumefaciens strain GV3101. Transformants were 379 

identified by screening for phosphinothricin resistance, then further validated using genomic 380 

DNA PCR. Homozygous lines were identified via phosphinothricin (BASTA) resistance, and 381 

two independently transformed homozygous lines were investigated in detail per genotype. 382 

Guard cell specificity of promoter activity was investigated using GC1::GFP:nos and 383 

MYB60::GFP:nos promoter-reporter lines (Sup. Fig. 3A-C), which were created as above 384 

with the GFP coding sequence ligated between the XhoI and XmaI restriction sites. Leaf 385 

discs (5 mm diameter) from seedlings or mature plants were mounted on microscope slides 386 

with dH2O, and examined for GFP fluorescence using confocal microscopy (Leica DMI6000). 387 

The following settings were used: argon laser at 20% capacity, 488 nm laser at 48% 388 

capacity with a bandwidth of 505 nm–515 nm, gain of 1250, offset at 0.2%, 20x or 40x 389 

objective, zoom x1 to x4. 390 

Measurement of water use efficiency 391 

The WUE assay was adapted from Wituszynska et al. (2013) (Wituszyńska et al., 2013). 392 

Plants were grown for 6 weeks in modified 50 ml Falcon tubes. The Falcon tube systems 393 

consisted of a 50 ml Falcon tube filled with 37.5 ml of a 1:1 ratio of compost: perlite and 35 394 

ml of Milli-Q water (Merck), with the remaining volume filled with a 1:1 ratio of compost: Milli-395 

Q water (Fig. S3). Each Falcon tube lid had a 2 mm diameter hole drilled in its centre to 396 
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allow plant growth. The lid was spray-painted black (Hycote) because we found that the 397 

orange colour of the Falcon tube lid caused leaf curling (Fig. S3). The system was wrapped 398 

in aluminium foil to exclude light (Fig. S3). 10-15 seeds were sown through the Falcon tube 399 

lid using a pipette. Following stratification, Falcon tube systems were placed under growth 400 

conditions using a randomised experimental design. 7 days after germination, seedlings 401 

were trimmed to one per Falcon tube system, and initial Falcon tube weight was recorded. 402 

After 6 weeks of growth, rosette leaf surface area was measured by photography (D50; 403 

Nikon) and Fiji software, rosette dry weight was measured (4 d at 60°C), and final Falcon 404 

tube weight was recorded. Negative controls (Falcon tube systems without plants) were 405 

used to assess soil water evaporation over 18 experimental repeats, with an overall mean 406 

weight loss of 0.513 g ± 0.004 g over 6 weeks for plant-free Falcon tubes.  407 

Plant WUE was calculated as follows: 408 

𝑊𝑈𝐸 =
𝑑

(𝑡𝑖 − 𝑡𝑓) − 𝑒
 

Where d is the rosette dry weight at the end of the experiment (mg), ti and tf are the falcon 409 

tube weight at the start and end of the experiment, respectively (g), and e is the amount of 410 

water evaporation directly from the compost (g). WUE is derived as mg biomass per ml-1 411 

water lost. These calculations assumed that 1 g of weight change was equivalent to a 412 

change of 1 ml of water. For each of 3 independent experimental repeats, 15 plants were 413 

screened per genotype. Due to variation between the WUE of each background (Fig. S1), 414 

the WUE of each circadian oscillator genotype was normalized to its respective background 415 

and expressed as a percentage of that background. Statistical comparisons with the wild 416 

types were conducted before this normalization. 417 

Dehydration tolerance assay 418 

This assay was adapted from Legnaioli et al. (2009). For experiments investigating survival 419 

to dehydration, surface-sterilized seeds were sown on Petri dishes containing half strength 420 

Murashige & Skoog basal salt mixture (0.5x MS) (Duchefa), supplemented with 0.8% (w/v) 421 
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agar and 3% (w/v) sucrose, then stratified for 3 days at 4 °C before transfer to the growth 422 

chamber. For these experiments, seedlings were cultivated in MLR-352 growth chambers 423 

(Panasonic) at 19°C with photon flux density of 120 µmol m-2 s-1. 14-day old seedlings were 424 

dehydrated on a double layer of filter paper (Fisher Scientific) for 9 h under constant light 425 

conditions, watered with sterile dH2O, and kept under constant light conditions for a further 426 

48 h before being scored for survival. Seedlings with a green apical meristematic region 427 

were counted as survivors. 32 seedlings were treated per genotype and within each 428 

experimental repeat. 429 

Measurement of stomatal density 430 

Plants were grown for 7-8 weeks on compost mix. Dental paste (Coltene) was applied to the 431 

abaxial surface of fully expanded leaves. Transparent nail varnish (Rimmel) was applied to 432 

these leaf moulds once they had set, and then peeled away from the mould using clear 433 

adhesive tape (Scotch Crystal). Stomatal and pavement cells were counted within an 434 

800 µm x 800 µm square at the centre of each leaf half, using an epifluorescence 435 

microscope (HAL100; Zeiss) and Volocity (Perkin Elmer) and Fiji software. For each 436 

experimental repeat, two leaves were sampled per plant and eight plants sampled per 437 

genotype. Stomatal index was calculated as follows: 438 

𝑆𝐼 =  
𝑠

𝑠 + 𝑝 ∗ 100 

Where SI is the stomatal index, s the number of stomata in the field of view (800 µm x 439 

800 µm), and p the number of pavement cells in the field of view. 440 

RNA extraction and qRT-PCR 441 

RNA extractions, cDNA synthesis, and qRT-PCR were performed according to (Simon et al., 442 

2018), except approximately 10 seedlings were used per RNA sample and analysis was 443 

performed using an MXPro 3005 real time PCR system (Agilent) with 5x HOT FIREPol 444 

EvaGreen qPCR mastermix (Solis Biodyne). qRT-PCR primers are provided in Table S3. 445 

Rhythmic features within qPCR data were identified using the BioDare2 platform (Zielinski et 446 
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al., 2014), using the Fast Fourier Transform Non-Linear Least Squares method (FFT-NLLS). 447 

One independently-transformed line of each guard cell-specific circadian clock gene 448 

overexpressor was also investigated using qRT-PCR conducted on RNA isolated from 449 

epidermal peels. Abaxial leaf epidermis was detached, then washed in 10 mM MES (pH 450 

6.15, adjusted using 10 M KOH) to remove RNA derived from ruptured epidermal cells. Each 451 

RNA sample was derived from 20 epidermal peels (five plants, four leaves per plant) that 452 

were collated and flash-frozen in liquid nitrogen. Guard cell RNA was extracted using the 453 

RNeasy UCP Micro Kit (Qiagen) according to manufacturer’s instructions, with the following 454 

modification: guard cell lysis was performed by adding glass beads (425 μm - 600 μm 455 

diameter, acid washed, from Sigma-Aldrich) and 350 μl RULT buffer to the sample, then 456 

vortexed for 5 min. 457 

Accession numbers 458 

Arabidopsis Genome Initiative identifiers for the genes mentioned in this study are: CCA1 459 

(CIRCADIAN CLOCK ASSOCIATED1, At2g46830), CHE (CCA1 HIKING EXPEDITION, 460 

At5g08330), ELF3 (EARLY FLOWERING3, At2g25930), ELF4 (EARLY FLOWERING4, 461 

At2g40080), FKF1 (F BOX1, At1g68050), GI (GIGANTEA, At1g22770), GRP7 (GLYCINE 462 

RICH PROTEIN7, At2g21660), KIN10 (SNF1-RELATED PROTEIN KINASE1.1, At3g01090), 463 

LKP2 (LOV KELCH PROTEIN2, At2g18915), LUX (LUX ARRHYTHMO, At3g46640), 464 

MYB60 (MYB DOMAIN PROTEIN60, At1g08810), PRR3 (PSEUDO-RESPONSE 465 

REGULATOR3, At5g60100), PRR5 (PSEUDO-RESPONSE REGULATOR5, At5g24470), 466 

PRR7 (PSEUDO-RESPONSE REGULATOR7, At5g02810), PRR9 (PSEUDO-RESPONSE 467 

REGULATOR9, At2g46790), RVE4 (REVEILLE4, At5g02840), TEJ (POLY(ADP-468 

RIBOSE)GLYCOHYDROLASE1, At2g31870), TIC (TIME FOR COFFEE, At3gt22380), 469 

TOC1 (TIMING OF CAB EXPRESSION1, At5g61380), TPS1 (TREHALOSE-6-PHOSPHATE 470 

SYNTHASE1, At1g78580), WNK1 (WITH NO LYSINE KINASE1, At3g04910), ZTL 471 

(ZEITLUPE, At5g57360). 472 
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Figure legends 484 

Figure 1. The circadian clock regulates long-term water use efficiency of Arabidopsis under 485 

light/dark cycles. The WUE of circadian clock mutants and overexpressors is expressed as a 486 

percentage of their respective background (normalized to 100%, red reference line) to 487 

account for WUE variation between background accessions (n = 5 - 15). Data were analysed 488 

using independent-samples t-tests and statistical significance is indicated relative to the 489 

background using (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). Statistical analysis was 490 

performed on raw data, with data subsequently converted to a percentage of the wild type 491 

for the purposes of comparison and presentation. Screens were repeated independently 492 

three times per genotype, with one representative experimental repeat shown here for each 493 

genotype. 494 

Figure 2. Altered WUE of plants with mutations or overexpression of circadian clock 495 

associated genes is not caused consistently by variation in one of dry weight, water use, 496 

phase of expression of each gene, or resultant altered period or flowering time. Data are 497 

derived from Fig. 1 and expressed as a percentage of the respective background (WT, 498 

normalised to 100%, red reference line) (n = 5 - 15). (A) Altered WUE is not specifically due 499 

to altered water use or altered dry weight of screened genotypes, but results from the 500 

combination of both. (b-d) Variations in WUE are not explained by (B) phase expression of 501 

mutated/overexpressed gene, nor by altered (C) period or (D) flowering time of the 502 

mutated/overexpressor genotype. Genotypes reported to have no change (N/C) in period or 503 

flowering time relative to the wild type are included on the left of panels (B) and (C), while 504 

those for which period and/or flowering time are unknown are included on the right. Studies 505 

describing the phase of expression, period and flowering time of the genotypes tested are 506 

identified in the main text. We note that the phase of expression and period data used for 507 

this analysis were often obtained under constant conditions, in contrast to our experiments 508 

occurring under light/dark cycles. 509 
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Figure 3. The circadian oscillator alters WUE partially by changing rosette architecture. (A) 510 

Altering circadian-associated gene expression can affect rosette architecture and size, as 511 

illustrated for elf3-1, lux-1, and gi-2 in (Col-0 background). Image backgrounds removed for 512 

clarity. Variation in rosette leaf surface area across the genotypes investigated explained (B) 513 

16% of variation in WUE (p < 0.001, r = 0.400, r2 = 0.160), (C) 83% of variation in 514 

transpiration (p < 0.001, r = 0.912, r2 = 0.832) and (D) 73% of variation in rosette dry 515 

biomass (p < 0.001, r = 0.857, r2 = 0.734). Data were analysed using Pearson correlation 516 

tests. 517 

Figure 4. Overexpressing CCA1 or TOC1 in guard cells affects WUE and survival of 518 

dehydration by seedlings. (A) Constructs used to overexpress CCA1 or TOC1 coding 519 

sequence under control of GC1 or MYB60 promoters. (B) Guard cell CCA1 overexpression 520 

can increase WUE. WUE expressed as a percentage of the wild type (normalised to 100%, 521 

red reference line). Two to four independent experimental repeats were performed, with data 522 

from one representative dataset shown (n = 5 - 15). Data for CCA1-ox and TOC1-ox are 523 

derived from Fig. 1, for purposes of comparison. Data were analysed with independent 524 

samples t-tests, and statistical significance compared to Col-0 is indicated using starring (** 525 

= p < 0.01; *** = p < 0.001). (C) Guard cell CCA1 or TOC1 overexpression alters 526 

dehydration survival of seedlings compared with the wild type. Data were obtained from 527 

three independent experimental repeats (mean; n = 32 per experimental replicate; at least 528 

two independent experimental repeats were performed for each genotype). A single 529 

GC1::TOC1 line is shown here because other lines produced extremely variable data. (D,E) 530 

Guard cell CCA1 or TOC1 overexpression does not affect (D) stomatal index nor (E) 531 

stomatal density. Two independent experimental repeats were performed, with data from 532 

one representative dataset shown (n = 19 - 32; mean ± S.E.M.). Data were analysed with 533 

ANOVA and Tukey’s post hoc tests (NS = p > 0.05). Bar colours identify the whole plant 534 

overexpressor control (black), wild type control (dark grey), and guard cell-specific 535 

overexpressor genotypes (light grey). 536 
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Figure 2. Altered WUE of plants with mutations or overexpression of circadian clock 
associated genes is not caused consistently by variation in one of dry weight, water use, 
phase of expression of each gene, or resultant altered period or flowering time. Data are 
derived from Fig. 1 and expressed as a percentage of the respective background (WT, 
normalised to 100%, red reference line) (n = 5 - 15). (A) Altered WUE is not specifically due 
to altered water use or altered dry weight of screened genotypes, but results from the 
combination of both. (b-d) Variations in WUE are not explained by (B) phase expression of 
mutated/overexpressed gene, nor by altered (C) period or (D) flowering time of the 
mutated/overexpressor genotype. Genotypes reported to have no change (N/C) in period or 
flowering time relative to the wild type are included on the left of panels (B) and (C), while 
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those for which period and/or flowering time are unknown are included on the right. Studies 
describing the phase of expression, period and flowering time of the genotypes tested are 
identified in the main text. We note that the phase of expression and period data used for 
this analysis were often obtained under constant conditions, in contrast to our experiments 
occurring under light/dark cycles. 
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Figure 3. The circadian oscillator alters WUE partially by changing rosette architecture. (A) 
Altering circadian-associated gene expression can affect rosette architecture and size, as 
illustrated for elf3-1, lux-1, and gi-2 in (Col-0 background). Image backgrounds removed for 
clarity. Variation in rosette leaf surface area across the genotypes investigated explained (B) 
16% of variation in WUE (p < 0.001, r = 0.400, r2 = 0.160), (C) 83% of variation in 
transpiration (p < 0.001, r = 0.912, r2 = 0.832) and (D) 73% of variation in rosette dry 
biomass (p < 0.001, r = 0.857, r2 = 0.734). Data were analysed using Pearson correlation 
tests. 
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Figure 4. Overexpressing CCA1 or TOC1 in guard cells affects WUE and survival of 
dehydration by seedlings. (A) Constructs used to overexpress CCA1 or TOC1 coding 
sequence under control of GC1 or MYB60 promoters. (B) Guard cell CCA1 overexpression 
can increase WUE. WUE expressed as a percentage of the wild type (normalised to 100%, 
red reference line). Two to four independent experimental repeats were performed, with data 
from one representative dataset shown (n = 5 - 15). Data for CCA1-ox and TOC1-ox are 
derived from Fig. 1, for purposes of comparison. Data were analysed with independent 
samples t-tests, and statistical significance compared to Col-0 is indicated using starring (** 
= p < 0.01; *** = p < 0.001). (C) Guard cell CCA1 or TOC1 overexpression alters 
dehydration survival of seedlings compared with the wild type. Data were obtained from 
three independent experimental repeats (mean; n = 32 per experimental replicate; at least 
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two independent experimental repeats were performed for each genotype). A single 
GC1::TOC1 line is shown here because other lines produced extremely variable data. (D, E) 
Guard cell CCA1 or TOC1 overexpression does not affect (D) stomatal index nor (E) 
stomatal density. Two independent experimental repeats were performed, with data from 
one representative dataset shown (n = 19 - 32; mean ± S.E.M.). Data were analysed with 
ANOVA and Tukey’s post hoc tests (NS = p > 0.05). Bar colours identify the whole plant 
overexpressor control (black), wild type control (dark grey), and guard cell-specific 
overexpressor genotypes (light grey). 
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