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Abstract 

Time-frequency analysis is ubiquitous in many fields of science. Due to the Heisenberg-Gabor 

uncertainty principle, a single measurement cannot estimate precisely the localization of a finite 

signal in both time and frequency. Classical spectral estimators, like the short-time Fourier 

transform (STFT) or the continuous-wavelet transform (CWT) optimize either temporal or 

frequency resolution, or find a tradeoff that is suboptimal in both dimensions. Following the 

concept of optical super-resolution, we introduce a new spectral estimation method that enables 

time-frequency super-resolution. Sets of wavelets with increasing bandwidth are combined 

geometrically in a superlet to maintain the good temporal resolution of wavelets and gain 

frequency resolution in the high frequency range. We show that superlets outperform the STFT 

and CWT on synthetic data and brain signals recorded in humans and rodents. Superlets are able 

to resolve temporal and frequency details with unprecedented precision, revealing transient 

oscillation events otherwise hidden in averaged time-frequency analyses. 
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Introduction 

Time-series describing natural phenomena, such as sounds, earth movement, or brain activity, 

often express oscillation “packets” at various frequencies and with finite duration. In brain 

signals, these packets span a wide range of frequencies (e.g., 0.1-600Hz) and temporal extents 

(10-2-102 s)1. Identifying the frequency, temporal location, duration, and magnitude of finite 

oscillation packets with high precision is a significant challenge. 

 Time-frequency analysis of digitized signals is traditionally performed using the short-

time Fourier transform (STFT)2, which computes Fourier spectra on successive sliding windows. 

Long windows provide good frequency resolution but poor temporal resolution, while short 

windows increase temporal resolution at the expense of frequency resolution. This is known as 

the Heisenberg-Gabor uncertainty principle3 or the Gabor limit4, i.e. one cannot simultaneously 

localize precisely a signal in both time and frequency. Importantly, this limit applies to a single 

measurement. Frequency resolution is proportional to window size, as defined by the Rayleigh 

frequency5,6. Therefore, shortening the window to gain temporal resolution leads to a degradation 

of frequency resolution (Fig. 1a, left). 

 For a given window size, the STFT has fixed frequency resolution but its temporal 

precision relative to period decreases with increasing frequency (Fig. 1a, right). To overcome 

this limitation multi-resolution techniques have been introduced, based on the continuous-

wavelet transform (CWT). The CWT provides good temporal localization by 

compression/dilation of a mother wavelet as a function of frequency7. The most popular wavelet 

in time-frequency analysis is the Morlet wavelet8,9, defined as a plane wave multiplied by a 

Gaussian envelope (see Fig. E1): 

𝜓𝑓,𝑐(𝑡) = 1
𝐵𝑐√2𝜋

𝑒
− 𝑡2

2𝐵𝑐2𝑒𝑗2𝜋𝑓𝜋 (1) 
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𝐵𝑐 = 𝑐
5𝑓

 (2) 

where, f is the central frequency, c is the number of cycles of the wavelet, Bc is the 

bandwidth (in Hz-1 = s) or variance of the wavelet10. A Morlet with higher bandwidth contains 

more cycles, is wider in time but has a narrower frequency response. Here we will use Morlet 

wavelets for time-frequency analysis, but other choices are possible. 

The CWT localizes well the oscillation packets in time, but trades in frequency resolution 

as frequency increases11,12 (Fig. 1b). Neighboring high frequencies cannot be distinguished, i.e. 

the representation is redundant across wavelets with close central frequencies in the high-range. 

For this reason, analyses are often performed using a diadic representation, like in the discrete 

wavelet transform (DWT), where frequencies are represented as powers of 212,13. This 

representation however resolves very poorly the high-frequencies. 

Both the STFT and CWT (or DWT) have significant limitations. The STFT provides 

good frequency resolution but poor temporal resolution at high frequencies, while the CWT 

maintains a good temporal resolution throughout the spectrum but degrades in frequency 

resolution, becomes redundant with increasing frequency. This time-frequency uncertainty 

plagues analysis of neuronal signals, which have a rich time-frequency content14,15. Inspired by 

super-resolution methods used in imaging16,17, we introduce a novel approach that reveals a 

much sharper localization of oscillation packets in both time and frequency. 

 

Methods 

Superlets 

We introduce a technique similar to structured illumination microscopy (SIM). SIM uses a set of 

known illumination patterns17 to obtain multiple measurements that are combined to achieve 
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super-resolution. The super-resolution technique proposed here employs multiple wavelets for 

each time-frequency bin to detect localized time-frequency packets. 

The method can be formalized as follows. A base wavelet, e.g. Morlet with a fixed 

number of cycles, provides multi-resolution in the standard sense, with constant relative temporal 

resolution but degrading frequency resolution (increased redundancy) as the central frequency of 

the wavelet increases. By increasing the bandwidth of the wavelet (more cycles) one increases 

frequency resolution (Fig. 1b) but loses temporal resolution. To achieve super-resolution we 

propose to combine wavelets with high temporal resolution (small number of cycles, low 

bandwidth) with wavelets having high frequency resolution (larger number of cycles, lower 

temporal resolution) (Fig. 1c).  

[Insert Figure 1 about here] 

We define a “superlet” (SL) as a set of Morlet wavelets with a fixed central frequency, f, 

and spanning a range of different cycles (bandwidths): 

𝑆𝑆𝑓,𝑜 = �𝜓𝑓,𝑐�𝑐 = 𝑐1, 𝑐2, … , 𝑐𝑜� (3) 

where, o is the “order” of the superlet, and c1, c2, ..., co are the number of cycles for each 

wavelet in the set. A superlet of order 1 is a single (base) wavelet with c1 cycles. In other words, 

a superlet is a finite set of o wavelets spanning multiple bandwidths at the same central 

frequency, f. The order of the superlet represents the number of wavelets in the set. The number 

of cycles defining the wavelets in the superlet can be chosen multiplicatively or additively. In a 

multiplicative superlet, ci = i ⋅ c1, whereas in an additive superlet ci = c1 + i – 1, for i = 1, 2, ..., o. 

We define the response of a superlet to a signal, x, as the geometric mean of the 

responses of individual wavelets in the set: 

𝑅[𝑆𝑆𝑓,𝑜] = �∏ 𝑅[𝜓𝑓,𝑐𝑖]
𝑜
𝑖=1

𝑜  (4) 
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where, R[ψf,ci] is the response of wavelet i to the signal, i.e., the magnitude of the 

complex convolution (for complex wavelets, such as Morlet): 

𝑅�𝜓𝑓,𝑐𝑖� = �𝜓𝑓,𝑐𝑖 ∗ 𝑥� (5) 

where, * is the convolution operator and x the signal. The superlet is an estimator of the 

magnitude of oscillation packets present in the signal at the central frequency, f, of the superlet. 

We will show that, while increasing frequency resolution locally, the superlet does not 

significantly lose time resolution.  

The superlet transform (SLT) of a signal is computed analogously to the CWT, except 

that one uses superlets instead of wavelets. A SLT with superlets of order 1 is the CWT. As will 

be shown next, the SLT with orders > 1 is a less redundant representation of the signal that the 

corresponding CWT. 

Adaptive superlets 

At low central frequencies, single wavelets (i.e., superlets of order 1) may provide sufficient 

time-frequency resolution. Indeed, the CWT is less redundant at low than at high frequencies12. 

Adaptive superlets (ASL) adjust their order to the central frequency to compensate decreasing 

bandwidth with increasing frequency. In an adaptive superlet transform (ASLT) one starts with a 

low order for estimating low frequencies and increases the order as a function of frequency to 

achieve an enhanced representation in both time and frequency across the entire frequency 

domain, as follows: 

𝐴𝑆𝑆𝑓 = 𝑆𝑆𝑓,𝑜|𝑜 = 𝑎(𝑓) (6) 

 where, a(f) is a monotonically increasing function of the central frequency, having integer 

values. A simple choice is to vary the order linearly: 

𝑎(𝑓) = 𝑜𝑚𝑖𝑚 + 𝑜𝑚𝑚𝑚 �
𝑓−𝑓𝑚𝑖𝑚

𝑓𝑚𝑚𝑚−𝑓𝑚𝑖𝑚
� (7) 
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 where, omin is the order corresponding to the smallest central frequency, fmin, and omax is 

the order corresponding to the largest central frequency, fmax, in the time-frequency 

representation, and [] is the nearest integer (round) operator. We recommend using the ASLT 

when a high frequency range needs to be resolved, and the SLT for narrower bands. 

Experimental data and ethics 

High-density electroencephalography (EEG – Biosemi ActiveTwo 128 electrodes) data was 

recorded @1024 samples/s from healthy human volunteers freely exploring visual stimuli 

consisting of deformed lattices of dots that represented objects and were presented on a 22” 

monitor (1680×1050@120fps; distance 1.12m). Subjects had to signal a perceptual decision by 

pressing one of three buttons congruent with perception (“nothing”, “uncertain”, “seen”). A 

similar protocol was described elsewhere18. Here, we used data from a single subject, including 

trials with correct, “seen” responses (63 trials). The protocol was approved by the Local Ethics 

Committee (approval 1/CE/08.01.2018). Data was collected in accordance with relevant 

legislation: Directive (EU) 2016/680 and Romanian Law 190/2018. 

In vivo electrophysiology data was recorded with A32-tet probes (NeuroNexus 

Technologies Inc) at 32 kSamples/s (Multi Channel Systems MCS GmbH) from primary visual 

cortex of anesthetized C57/Bl6 mice receiving monocular visual stimulation (1440×900@60fps; 

distance 10cm) with full-field drifting gratings (0.11 cycles/deg; 1.75 cycles/s; contrast 25-

100%; 8 directions in steps of 45°, each shown 10 times). Anesthesia was induced and 

maintained with a mixture of O2 and isoflurane (1.2%) and was constantly monitored based on 

heart and respiration rates and testing the pedal reflex. Within a stereotaxic device (Stoelting) a 

craniotomy (1×1mm) was performed over visual cortex. To minimize animal use, multiple 

datasets were recorded over 6-8 hours from each animal. Experiments were approved by the 
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Local Ethics Committee (3/CE/02.11.2018) and the National Veterinary Authority (ANSVSA; 

147/04.12.2018). Local field potentials were obtained by low-pass filtering the signals @300Hz 

and downsampling to 4kHz. 

 

Results 

We will first illustrate the basic principle behind superlets by considering a known set of packets 

composed of 7 sinusoidal cycles. A target oscillation packet, T, is composed of a finite number 

cycles at a target central frequency. We define two additional oscillation packets: a temporal 

neighbor NT having the same frequency but shifted in time with a temporal offset ∆t, and a 

frequency neighbor NF, at the same location in time but shifted with a frequency offset ∆f (Fig. 

2a, top). For convenience, all three packets have a magnitude of 1.  

 An example instantiation of this scenario is shown in Fig. 2a, bottom, for a target 

frequency of 50 Hz in a signal sampled at 1 kHz. We next evaluated how the presence of NF or 

that of NT influences the estimation at the location of T. In other words, without T being present, 

we systematically moved NF in frequency or NT in time and computed their contribution 

(leakage) to the estimate at the time-frequency location of T (Fig. 2b). As estimators, we initially 

considered a wavelet with c=3 cycles and a multiplicative superlet with c1=3 and o=5. The 

bandwidth of the wavelet was poor, with a broad frequency response around the target frequency 

of T, indicating that NF was hard to distinguish from T over a large frequency domain (Fig. 2b, 

top). By contrast, the superlet significantly sharpened the frequency response, reducing 

frequency cross-talk between NF and T. When NT was shifted in time away from the target’s 

location (time offset 0), the response of both the wavelet and the superlet dropped sharply after 

half the size of the target packet (3.5 cycles) (Fig. 2b, bottom). This indicates that, while 
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significantly increasing frequency resolution, the superlet did not induce a significant reduction 

in temporal resolution. 

[Insert Figure 2 about here] 

To evaluate how the superlet achieves high frequency resolution without losing temporal 

resolution we quantified these two properties by evaluating the full width at half maximum 

(FWHM) of the frequency and temporal responses measured at T and induced by NF and NT, 

respectively (Fig. 2c). We varied the order of the superlet and compared its response to the 

response of the largest wavelet in its corresponding wavelet set (co, see eq. 3). As the order was 

increased, both the largest wavelet (with highest bandwidth) and the superlet approached the 

frequency resolution limit (Rayleigh frequency corresponding to the Gaussian-windowed 

oscillation packet) (Fig. 2c, top). By contrast, while the single wavelet’s temporal resolution 

decreased rapidly by increasing its number of cycles, the temporal resolution of the superlet 

degraded considerably slower (Fig. 2c, bottom). These results indicate that, as its order is 

increased, a superlet nears the theoretical frequency resolution possible for a limited duration 

oscillation packet (Rayleigh frequency) while maintaining a significantly better time resolution 

than a single wavelet. 

 In a second test, we generated a signal as a sum of multiple time-frequency packets (Fig. 

3a), as follows. Three target packets of 11 cycles were generated at target frequencies of 20, 40, 

and 60 Hz. For each target, a neighbor in frequency (+10 Hz) and a neighbor in time (+12 

cycles) were added to the signal. Due to constructive-destructive summation a clear modulation 

of magnitude is visible where the target was summed with its frequency neighbor. The correct 

time-frequency representation of this phenomenon should reveal corresponding bursts of 

magnitude (or power) at the two summed frequencies. We computed the time-frequency power 
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representation of the signal using Blackman-windowed Fourier (STFT), wavelets (CWT), and 

adaptive additive superlets (o = 1:30; order varied linearly from 1@10 Hz to 30@75 Hz) (see 

Fig. 3).  

[Insert Figure 3 about here] 

The STFT with varying window sizes revealed either the temporal modulation (Fig. 2b, 

left) or the two frequencies (Fig 2b, right), but it was unable to fully segregate time and 

frequency, in spite of an “optimized” intermediate window size (Fig. 2b, center). A similar 

conclusion was reached with a CWT using increasing number of wavelet cycles (increasing 

bandwidth; Fig. 2c), with the difference that the CWT provided better frequency resolution in the 

low frequency range. By contrast, adaptive superlets (ASLT) provided a faithful representation 

with high resolution in both time and frequency across the entire spectrum (Fig. 3d). Increasing 

the number of base cycles (c1) had the effect of further increasing frequency precision, albeit at 

the cost of losing some temporal resolution at the low frequencies. 

 The CWT provides a representation of the signal that is increasingly redundant for higher 

frequencies11,12 because the frequency response of wavelets becomes wider as the number of 

samples per cycle decreases. The SLT (and ASLT) decreases the redundancy of the 

representation with increasing order of the superlets. Figure 4 depicts the average power 

measured over a long signal composed of three frequency components (20, 50, 100 Hz) with 

unitary amplitude. The average power in a perfect energy-conserving transform should be 1.5 

(Fig. 4, green).  

[Insert Figure 4 about here] 

We used two types of superlets with base cycles c1 = 3 and 5, and progressively increased 

their order while computing the SLT and collapsing it in time (Welch-like). As the order was 
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increased, the redundancy in the representation of high frequencies was reduced and the average 

power approached that of an energy-conserving transform (e.g., Fourier; Fig. 4). Importantly, 

superlets with larger base cycles provide a less redundant representation than those with smaller 

number of base cycles (compare Fig. 4 red with Fig. 4 blue), albeit at the expense of decreased 

temporal resolution (see Fig. 3d). 

 We next used superlets to analyze brain signals (EEG) recorded from humans in response 

to visual stimuli representing objects (deformable dot lattices)18 (see Methods). Because EEG 

signals are strongly affected by the filtering properties of the skull and scalp, having a 

pronounced 1/f characteristic19,20 that masks power in the high frequency range, we have 

baselined spectra to the pre-stimulus period21. The time-frequency power spectrum of the 

occipital signal over the Oz electrode was estimated using STFT, CWT, and ASLT (Fig. 5a). The 

STFT window was chosen to optimize the representation in the gamma range (> 30 Hz), while 

the number of cycles for the CWT was chosen to maximize temporal resolution. The STFT 

provided a poor resolution in the low frequency range (Fig. 5a, top), while the CWT showed 

good temporal resolution but poor frequency resolution for higher frequencies (Fig. 5a, middle). 

By contrast, the ASLT provided sharp time-frequency resolution across the whole frequency 

range and revealed fine details that could not be resolved by the other methods (Fig. 5a, bottom). 

[Insert Figure 5 about here] 

 We next zoomed in the gamma frequency range, which poses particular challenges for 

time-frequency analysis22–25. The Fourier window (Fig. 5b, top row) and the number of wavelet 

cycles (Fig. 5b, middle row) were varied to optimize the temporal (left) or frequency (right) 

estimation, or a trade-off between the two (middle). Superlets (Fig. 5b, bottom) shared the major 
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features with the other representations but provided time-frequency details that could not be 

simultaneously resolved by any of the latter. 

In vivo electrophysiology signals are recorded at much higher sampling rates than EEG 

(32 kHz compared to 1 kHz), offering the opportunity to observe time-frequency components 

with higher resolution in local-field potentials (LFP) than in EEG. We next focused on LFPs 

recorded from mouse visual cortex during presentation of drifting sinusoidal gratings (see 

Methods). LFPs suffer from the 1/f issue significantly less than EEG and therefore baselining 

was not necessary. We computed the time-frequency representation of an LFP signal using STFT 

(Fig. 6a, top), CWT (Fig. 6a, bottom), and ASLT (Fig. 6a, middle) around the presentation of the 

visual stimulus and averaged across 10 presentations (trials). As was the case for EEG data, 

adaptive superlets provided the best time-frequency representation across the entire analyzed 

spectrum. They revealed 45 Hz gamma bursts induced by the passage of the grating through the 

receptive fields of cortical neurons26 and resolved many details in both the low and high 

frequency range. 

[Insert Figure 6 about here] 

 The true power of superlets was, however, revealed when we zoomed in on a single 

gamma burst induced by the passage of the grating (see Fig. 6b). Superlets were computed with a 

base cycle c1 = 2, to maximize temporal resolution, and we used a fixed multiplicative order of 7 

(SLT). The SLT provided very fine temporal and frequency details, whose presence in the signal 

was validated by computing the local CWT optimized for time (c = 2), frequency (c = 11), or a 

tradeoff between time and frequency (c = 6). The components seen in the superlet representation 

could be inferred from these multiple wavelet representations but none of the latter was able to 

simultaneously reveal all the time-frequency details (Fig. 6b). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2019. ; https://doi.org/10.1101/583732doi: bioRxiv preprint 

https://doi.org/10.1101/583732
http://creativecommons.org/licenses/by/4.0/


13 
 

 To push the envelope, we further explored a time-frequency detail (Fig. 6b, left-bottom 

and Fig. 6c) revealed by superlets, composed of a lower ongoing rhythm at ~17.5 Hz (LOR), two 

time neighboring packets at 24.5 Hz (NP1 and NP2), and one higher frequency packet at ~31 Hz 

(HP) (Fig. 6c, top-left). To determine if these features were actually present in the signal over the 

10 trials, we narrow-band filtered the signal (IIR, order 3, band-pass 10-40 Hz) such as to 

remove frequency contamination plaguing the wavelet estimates in the gamma range. This 

enabled us to largely validate the presence of the time-frequency packets using narrow (c = 3) 

and wider (c = 11) wavelets (Fig. 6c, bottom-left and top-right). However, while the frequency of 

HP could be identified, its clear temporal location could not be established, irrespective of the 

parameters of the wavelet (Fig. 6c, top-right). We suspected that this may originate from 

averaging over 10 trials such that time/frequency smearing of the long/short CWT could hide this 

detail. Indeed, we found that HP was expressed clearly in at least one of the trials in the set (Fig. 

6c, bottom-right). Thus, all the packets in the time-frequency detail revealed by superlets were 

actual features in the signal and, in addition, the optimal time-frequency concentration provided 

by superlets was able to reveal bursts expressed at single-trial level. The latter, could be not 

identified by other methods because they were averaged out due to the time/frequency smearing 

in the wavelet or Fourier representations (see also Fig. E2). 

 

Discussion 

Superlets provide remarkable time-frequency resolution by taking advantage of multiple 

measurements at a range of temporal resolutions and frequency bandwidths. These 

measurements are combined geometrically to evaluate the temporal and frequency location of 

finite oscillation packets. To the best of our knowledge, this is the first super-resolution method 
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for both time and frequency. Techniques exist for frequency super-resolution based on model 

fitting27, polyphase analysis filter banks28, Pisarenko harmonic decomposition29, or multiple 

signal classification (MUSIC)30. However, these other techniques ignore the temporal component 

and focus on the frequency dimension only. 

 Superlets do not violate the laws of physics. For a finite oscillation packet, their 

frequency resolution approaches the theoretical Rayleigh frequency as the order of the superlet is 

increased (see Fig. 2c). In addition, each single wavelet estimate obeys the Heisenberg-Gabor 

uncertainty principle but, since the signal is stored, multiple evaluations can be performed and 

combined to transcend the joint time-frequency resolution of each individual estimate. The same 

procedure is applied in SIM optical super-resolution17. 

 Superlets use the geometric mean (GM) across a set of wavelet responses to determine 

the best time-frequency localization. Intuitively, GM “correlates” responses with high temporal 

precision with those with high frequency precision. For example, if a large bandwidth wavelet 

(many cycles) detects a narrow frequency component this will be vetoed out in time if the narrow 

wavelet at a certain location has a low response, and vice versa. This property is not shared by 

the arithmetic mean (see Fig. E3). 

The frequency resolution limit for a finite oscillation packet depends on the packet’s 

duration but temporal resolution can be increased by increasing sampling rate. Typically, LFPs 

are obtained by low-pass filtering (@300Hz) the electrophysiology signal sampled at much 

higher rate (32-50kHz), and then downsampling the signal. When using superlets, one should 

keep a high sampling rate after downsampling (e.g., 2-4 kHz) to enable the method to resolve 

very fine time-frequency details (see Fig. 6b). 
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Cortical responses exhibit a significant trial-to-trial variability31. Therefore, results are 

typically averaged across multiple trials. In time-frequency analysis this can pose significant 

problems22,32,33. Due to the time-frequency uncertainty, isolated packets, even when expressed in 

a significant number of trials, can be masked out by strong neighboring packets whose estimate 

leaks over the target’s representation. Because they concentrate the time-frequency estimate in 

each individual trial, superlets prevent this effect and provide a much sharper image of the time-

frequency landscape, revealing oscillation packets that remain hidden from other estimation 

methods (STFT, CWT). 

Superlets provide super-resolution in the time-frequency space and may become 

instrumental in discovering new phenomena in biological signals. They may find multiple 

applications in the analysis of brain signals, whose time-frequency landscape is complex. 
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Figures 

 

 

Fig. 1 | Sketch of time-frequency uncertainty in Fourier (STFT), wavelet (CWT), and 

superlet (SLT) analysis. a, Time and frequency resolution of the STFT for a short (top) and 

wide (bottom) window at three different frequences. Temporal resolution is expressed in time 

(left) or in oscillation cycles at the target frequency (right). b, Same as in a but for wavelets 

(CWT). Here, the number of cycles is fixed across the spectrum but the spanned temporal 

window decreases with frequency increase. c, Superlets of order 2 (SLT). Time-frequency super-

resolution is achieved by combining short, low-bandwidth wavelets, with longer, high-bandwidth 

wavelets. 
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Fig. 2 | The principle behind superlets. a. A test setup where a target oscillation packet, T, is 

contaminated by frequency and time neighbors (NF and NT). Top: using a wavelet with small 

number of cycles enables good time separation but has poor frequency resolution (red), while 

wavelets with many cycles enable good frequency separation but suffer from temporal 

contamination (blue). Bottom: a particular instantiation with packets of 7 cycles having: target 

frequency 50 Hz, neighbor frequency 70 Hz, neighbor time offset 10 cycles. b. Target 

contamination in frequency by NF (top) and in time by NT (bottom). Contamination is measured 

as the normalized response (magnitude) of a single wavelet (c = 3) or a multiplicative superlet 

(c1 = 3; o = 5) at the time-frequency location of the target (without the target being present) to NF 

with various frequencies (top) or NT with various time offsets (bottom). c. Frequency (top) and 

time (bottom) superlet resolution measured as the half-width of the frequency and time peak in 

b., respectively, as a function of the order of a multiplicative superlet (line). The same is shown 

for the longest wavelet in the superlet set (dotted line). The frequency resolution limit is the 
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Rayleigh frequency of T with Gaussian windowing. The temporal resolution limit is half the size 

of T (3.5 cycles). 

 

 

Fig. 3 | Evaluation of time-frequency resolution on a known signal structure. a, Test signal 

containing 3 target packets with 11 cycles at 20, 40, and 60 Hz, each accompanied by a neighbor 

in frequency (+10 Hz) and a neighbor in time (+12 cycles). The signal sampling rate is 1024 

samples/s. b, Time-frequency power representation of the signal using STFT (Blackman 

window) and window size 38, 200, and 413ms (roughly matching the size of a single wavelet 

with 3, 16, 33 cycles at the largest target frequency). c, Same as in b but using Morlet wavelets 

with increasing number of cycles. d, Same as b and c but using adaptive additive superlets with 
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linearly varying order from o = 1, for 10 Hz, to o = 30, for 75 Hz, and with different number of 

base cycles (c1 = 3, left; c1 = 5, right). 

 

 

 

Fig. 4 | Redundancy of the spectral representation. A long signal composed of 3 summed 

unitary amplitude sine waves has an average power of 1.5 (green). Two superlet transforms 

(SLT) using multiplicative superlets with c1 = 3 (blue) and 5 (red) give an increasingly sharper 

representation of the higher frequencies, as their order is increased. Sharper representations 

signify less redundancy. 
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Fig. 5 | Time-frequency analysis of the EEG signal recorded over occipital electrode Oz. a, 

Global time-frequency power spectrum around stimulus onset computed using Fourier analysis 

(STFT; top), wavelets (CWT; middle), and adaptive additive superlets (ASLT; bottom). Power 

scale is logarithmic. b, Zoom-in analysis over the gamma frequency band (30-150Hz) using 

STFT with various windows (top), CWT with different number of Morlet cycles (middle), and 

adaptive multiplicative superlets (bottom). Power scale is linear. All analyses are baselined to 

1.5s pre-stimulus period. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2019. ; https://doi.org/10.1101/583732doi: bioRxiv preprint 

https://doi.org/10.1101/583732
http://creativecommons.org/licenses/by/4.0/


25 
 

 

Fig. 6 | Time-frequency analysis of acute electrophysiology data recorded in mouse visual 

cortex. a, Fourier (STFT; top), adaptive multiplicative superlets (ASLT; middle), and wavelet 

power spectra (CWT; bottom) around stimulus onset. b, Zoom-in on a gamma burst induced by 

the passage of the grating through the receptive field of cortical neurons. The SLT used 

multiplicative superlets of order 7 and c1 = 2, optimized to provide high temporal and frequency 

resolution (bottom-left). By comparison, individual walevets optimized for time (top-left), 

frequency (bottom-right) or a compromise between the two (top-right) cannot reveal all the 

details evidenced by the superlet. c, Further zoom-in on a detail provided by the superlet (top-

left). Tuned wavelets on 10-40Hz band-passed data indicate roughly the presence of the temporal 

(left-bottom) and frequency (top-right) components. The location of a high-frequency packet 

(HP) cannot be determined by wavelet analysis in the average time-frequency spectrum, but is 
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recovered by single-trial analysis, indicating that superlets can correctly reveal very fine time-

frequency details, which are smeared out in the average spectra by other methods. No baselining 

used. The power scale is logarithmic in a, but linear in b and c. 
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Extended figures 

 

 

Fig. E1 | The complex Morlet wavelet. Parameters: c=3 cycles and central frequency f = 50 Hz, 

generated at a sampling rate of 1 kHz. 

 

 

Fig. E2 | Identification of oscillation packets revealed by super-resolution using Fourier 

analysis (STFT). Top-left: super-resolution using multiplicative superlets with c1 = 2, and o = 7. 
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Top-right: identification of frequency components using a large Fourier window (W = 600ms). 

Bottom-left: identification of temporal components using a small Fourier window (W = 100ms). 

The signal was band-pass filtered at 10-40Hz for the STFT analysis only. See also Fig. 6. 

 

 

Fig. E3 | Comparison of arithmetic mean and geometric mean. Estimates using a set of 

windows with varying frequency and temporal resolution are averaged (left) or geometrically 

combined (right) conveying different time and frequency concentration profiles. In particular, the 

arithmetic mean suffers from significantly higher temporal smearing than the geometric mean, 

offering a lower temporal resolution. 
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