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ABSTRACT 

Sensory input arrives in continuous sequences that humans experience as units, e.g., 
words and events. The brain’s ability to discover extrinsic regularities is called statistical 

learning. Structure can be represented at multiple levels, including transitional 
probabilities, ordinal position, and identity of units. To investigate sequence encoding in 
cortex and hippocampus, we recorded from intracranial electrodes in human subjects as 

they were exposed to auditory and visual sequences containing temporal regularities. We 

find neural tracking of regularities within minutes, with characteristic profiles across brain 
areas.  Early processing tracked lower-level features (e.g., syllables) and learned units 

(e.g., words); while later processing tracked only learned units. Learning rapidly shaped 
neural representations, with a gradient of complexity from early brain areas encoding 

transitional probability, to associative regions and hippocampus encoding ordinal position 
and identity of units. These findings indicate the existence of multiple, parallel 
computational systems for sequence learning across hierarchically organized cortico-

hippocampal circuits. 
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INTRODUCTION 

 

We receive continuous input from the world and yet experience it in digestible chunks. In 
the domain of language, for example, acquisition and use require extracting meaningful 
sequences such as words, phrases and sentences out of a continuous stream of sounds, 

often without clear acoustic boundaries or pauses between linguistic elements (1). This 
segmentation ability occurs incidentally and effortlessly and is thought to be a core 

building block of development. Indeed, young infants can learn transitional probabilities 

between syllables (2) or shapes (3) to extract embedded regularities after minimal 
exposure. In a seminal study (2), eight month-old infants segmented words after brief 

exposure to a continuous sequence of an artificial language in which transitional 
probabilities between syllables indicated word boundaries. Since this discovery, similar 
abilities have been demonstrated in adults (4, 5), who also rely on transitional probabilities 

and other statistical properties (6-8). This behavior—referred to as “statistical learning” 
(SL)—occurs across many different sensory modalities, tasks, and even species. SL 

represents a fundamental behavior, and yet the brain mechanisms that support this 

cognitive function are poorly understood. 

Brain regions such as the hippocampus and the inferior frontal gyrus have been implicated 
in visual (9, 10) and auditory SL (10, 11). As prior studies have focused on how the brain 

changes after SL, the role of these brain areas during the acquisition of statistical 
regularities remains largely unexplored. Even less is known about what information is 

represented in these learned regularities, and whether sequences are encoded similarly or 

in a complementary fashion across these brain areas. Regularities extracted during SL 
range from simple to complex, including transitional probabilities between adjacent 

elements (i.e., uncertainty given a local context), ordinal position in a sequence (i.e., 
whether an element takes the first, second, third, etc. position), and the identity of the 
learned unit (i.e., a specific higher-order chunk such as a word) (12). Finally, the fact that 

SL has been observed across sensory modalities raises the question of whether the same 
brain areas and algorithms support extraction and representation of regularities (13). 

To answer these questions, we collected intracranial recordings (ECoG) from 23 human 

epilepsy patients with broad cortical and hippocampal coverage during an SL task. We 
used neural frequency tagging (NFT) (14, 15) to identify recording sites responsive to the 

underlying regularities of the SL stimuli over different timescales (e.g., syllables and 
words). Combining ECoG and NFT, we describe the location and temporal tuning of the 
neural response. Following identification of responsive sites, we used representational 

similarity analysis (RSA) to determine which aspect(s) of the temporal regularities are 

represented i.e., transitional probabilities, ordinal position and identity. Finally, we related 
the neural circuits, online dynamics and representational changes for SL across auditory 

and visual modalities. 

We found that SL occurs quickly in both auditory and visual modalities. In both modalities, 
partially overlapping neural circuits encoded statistical units (e.g., words, fractal pairs) and 

their constituent sensory elements (e.g., syllables, images). This learning was supported 
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by rapid changes in the similarity space of neural representations, with structure encoded 
at multiple levels: (1) transitional probabilities, with elements grouped by probability 

strength; (2) ordinal position, with elements grouped by sequence order; and (3)  identity, 

with elements grouped by unit in which they are embedded. Auditory and visual elements 

underwent similar SL-related representational changes, yet involved brain areas only 
partially overlapped (generally supramodal areas, such as inferior frontal gyrus, anterior 
temporal lobe, and the hippocampus). These results provide mechanistic insight into a 

fundamental human learning ability, revealing how cortical areas respond to the structure 
of the world.  Our findings also highlight NFT as a versatile tool for investigating incidental 
learning in preverbal infants and other non-verbal patient populations. 

RESULTS 

Behavioral evidence of auditory statistical learning 

To investigate the neural circuits and computations underlying SL, we presented a group 

of 17 epilepsy patients with brief (2 min x 5 blocks) auditory streams of syllables in which 
the structure of the sequence was manipulated. In structured streams, each syllable was 
placed into the first, second, or third position of a three-syllable word or “triplet” (Fig. 1A). 

A continuous stream of syllables was generated by randomly inserting multiple repetitions 
of each word without pauses or prosodic cues between words. In random streams, 

syllables were inserted the same number of times but in a random order at the syllable 

level. Thus, the transitional probabilities were low and uniform, without a word-level of 
segmentation. 

Participants were blinded to the stimulus structure. They were asked to perform a 1-back 
cover task, in which they had to detect occasional repetitions of individual syllables that 

had been inserted into both stream types (16). This task has been used to evaluate SL 
online while assuring attention to the SL stimulus. Accuracy in both streams was high and 
not statistically different (t(16)=2.03, p=0.06), indicating that participants attended to the 

stimuli across both the structured (mean d’ = 1.04, t(16) =14.41, p<0.01) and random (mean 

d’=0.87, t(16)=14.27, p<0.01) streams. Critically, we found that behaviorally, reaction times 

to repeated syllables in the structured stream (mean=733 ms) were significantly faster than 
in the random stream (mean=917 ms; Z=-3.3, p=0.001, fig. S1), suggesting that facilitation 
had occurred due to learning of the underlying structure.  

Immediately after exposure to both streams, participants were informed of the hidden 
structure and were asked to perform an explicit recognition task. Recognition of the 

hidden words in the structured stream was assessed using a 2-alternative forced choice 
(2AFC) task between the hidden words and part-words. Part-words consisted of previously 

shown sequences of syllables but that spanned words and thus had overall lower 
transitional probabilities. Offline explicit recognition of the hidden words did exceed 
chance performance in some subjects (50%; mean=45.4%, SD=10%; Z=-1.84, p=0.07).  

The same procedure was used in a separate cohort of healthy subjects in which we 
replicated the online incidental learning effect in the reaction times i.e., faster responses 

to syllable repetition in the structured than in then random condition (mean structured = 
625 ms, mean random = 828 ms, Z=-3.8, p<0.001, N=18). Offline explicit recognition was 
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significantly better than chance in this neurotypical cohort (50%; mean=57.3%, Z=2.04, 
p=0.04, fig. S1). 

Neural tracking of auditory statistical learning 

We obtained direct neurophysiological signals from 1,898 intracranial electrodes in the 17 
participants, comprehensively covering the frontal, parietal, occipital, temporal lobes and 

the hippocampus in both hemispheres (fig. S2). We capitalized on NFT to evaluate the 
temporal dynamics of the neural activity in order to scout for cortical areas responding at 
the rate of the learned regularities. The sensitivity of NFT to track SL has been previously 

demonstrated using non-invasive techniques, i.e., EEG and MEG (17, 18) enabling us to 
definitively resolve the cortical areas exhibiting selective temporal tuning to the learned 
regularities. Specifically, NFT was used to track representations of segmented units at two 

hierarchical levels of the stream (14, 15, 17).  Entrainment at the syllabic frequency (4 Hz) 
should be present in both structured and random streams; while entrainment at the  word-

level frequency (corresponding to triplet boundaries or 1.33 Hz) should emerge during 
exposure to the structured but not random stream. 

We first evaluated within-electrode phase coherence in the field potential (FP)(15) for the 
structured and random streams, respectively. Consistent with our hypothesis, there was a 
significant peak in the phase coherence spectrum at the syllable rate (i.e., 4 Hz) for both 

structured and random streams (p<0.05, FDR corrected). In addition, there was a 
significant peak at the word rate (i.e., 1.33 Hz), but only for the structured stream (p<0.05, 

FDR corrected; Fig. 1B). There was also a significant phase coherence peak at 2.66 Hz for 
the structured stream (p<0.05, FDR corrected). This may reflect an oscillation at the rate of 
syllable pairs, consistent with evidence that participants can learn sequential pairs 

embedded in triplets, in addition to the triplets themselves (19); alternatively, this may be 
a harmonic of the word rate. The word-rate response in the structured stream emerged 

rapidly within 260 seconds (exceedance mass: sum(T) = 98, p= 0.003) and increased over 
time (Fig. 1C); while no increase in the strength of the word-rate response was observed 
for the random stream, ruling out effects of endogenous entrainment over time unrelated 

to learning. Coherence at the word rate in the structured stream was replicated across 
participants with 16/17 patients exhibiting significant entrainment in at least one 
electrode; by contrast, no electrodes showed entrainment at the word rate for the random 

stream. This finding further supports NFT as a sensitive and robust tool for assessing 
online SL. 

 
We then exploited the unique spatial resolution afforded by ECoG to localize which cortical 
areas became synchronized to the word rate in the structured condition (Fig. 1D). 

Different temporal tuning responses were observed across electrodes. One tuning profile 

corresponds to electrodes that tracked both words and syllables (word+syll). These were 
located primarily in the superior temporal gyrus (STG), with smaller clusters in motor 

cortex and pars opercularis. The other tuning profile reflected electrodes which exclusively 
tracked the words (word-only). These were located in inferior frontal gyrus (IFG) and 

anterior temporal lobe (ATL) (table S1). These functional responses indicate temporal 
selectivity to both the input (in this case the syllable) and higher-order learned units (for 
word+syll electrodes), or to higher-order learned units alone without responding to the 

acoustic features of the input conveying the structure (for word-only electrodes). This 

organization reflects the neuroanatomy of the auditory processing hierarchy, with lower-
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order function in STG and higher-order function in surrounding fronto- and temporo-
parietal cortex (20). Thus, we reasoned that word-only responses may arise from higher-

level stages of processing than word+syll responses. To quantify this anatomical grouping 

by electrode type, we tested the hypothesis that electrodes belonging to one type (i.e., 

word-only or word+syll) tend to group together (e.g., nearest electrode was of the same 
type) using a Bayesian binomial test. Bayesian analysis provided evidence in support of 
this hypothesis (nearest electrode in ‘same-type’ vs. ‘different type’, log(BF10)=40.75). 

We also conducted the same analysis with the high-gamma band (HGB). The HGB 
responses is thought to reflect multiunit firing (21) and considered more selective and 

spatially confined compared to the FP (22). We observed the same two types of responses 
and the topographies for the two types resemble those described above for FP (fig. S3).  

 

 

 

 
Fig. 1 Neural tracking of auditory statistical learning. (A) Schematic depiction of the auditory SL task. The structured 

stream (left) contained 12 syllables (250 ms SOA, 4 Hz) in which the transitional probabilities formed four words (color 

coded for visualization, 750 ms SOA, 1.33 Hz). The random stream (right) contained the same 12 syllables in a random 

order. The predicted neural response is shown below each syllable stream: syllable tracking (top) was expected in both 

conditions, whereas word tracking (bottom) was expected only in the structured condition. (B) Phase coherence 

spectrum in neural data for the structured (left, black) and random (right, gray) conditions from 1,898 electrodes in 17 

patients. Each electrode is depicted with a thin line and the average with a thick line. (C) Timecourse of coherence 

response for all electrodes showing word-rate tracking (1.33Hz) for the structured (black) and random (gray) conditions. 
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Solid line above the timecourse indicates when the change in coherence increased above zero (p<0.05, one-sided cluster-

corrected permutation test). (D) Phase coherence spectrum in the structured condition for electrodes showing word-

tracking responses, in two groups: electrodes that tracked words only (top, blue) and electrodes that tracked both words 

and syllables (bottom, orange). Inset shows the localization of word-only (blue) and word+syll (orange) electrodes.  

 

 

Representational analysis in auditory statistical learning  

The results so far provide evidence of segmentation of the continuous auditory stream 

with characteristic tuning in lower-order areas in STG and higher-order areas in 
surrounding fronto- and temporo-parietal cortex. But what is driving this segmentation? 
The neural response to segmentation could be based on at least three statistical cues in 

the stream: transitional probabilities (within word, 1.0; between word, 0.33), ordinal position 

(1st, 2nd, or 3rd position), or word identity (blue, green, purple, or red word, as in colors from 

Fig. 1A). Although all three cues could be used to mark the start and end of the words and 
thus drive segmentation, they differ in content and facilitate unique cognitive functions. 
For instance, coding based on transitional probabilities and the entailed difference in 

entropy between high and low TP can serve as a strong prediction error cue to drive 
attention and segmentation. Coding of ordinal position represents a flexible and abstract 
code allowing the recombination of elements and might explain previous findings on 

phantom words (23), whereby subjects accept as legal, strings that have never appeared 
during the exposure phase as long as ordinal position is preserved. Yet, only coding based 

on identity gives access to individual words which can then be mapped onto meaning (24). 

To evaluate what information is being represented we used a multivariate pattern 

similarity approach. In the case of word identity, for example, we reasoned that SL would 
change the representational space of stimuli such that syllables belonging to the same 
word would evoke more similar neural activity patterns across electrodes (9); this 

clustering could in turn provide a basis for segmentation (7). Alternatively, the neural 
representations of syllables may cluster by ordinal position or transitional probability, 

allowing us to test which of these cues was learned and whether similar or complementary 

codes are observed across brain areas. We quantified the representational space of 
syllables from FP separately within the sets of electrodes identified as exhibiting word-

only and word+syll coherence. We focused on electrodes exhibiting such tuning in the 
HGB, given previous reports of its correlation to neural spiking (21). In addition, we 

separately investigated neural representations across electrodes in the hippocampus, as 
previous studies have shown that the hippocampus is necessary for robust SL (10, 25). We 
calculated the correlation distance between the patterns of neural activity across 

electrodes within each set of electrodes (word-only, word+syll, and hippocampus), for 
each pair of syllables, and applied multidimensional scaling (MDS) to visualize the 

similarity structure. 

We found that the three sets of electrodes encoded different information: For word+syll 
electrodes, MDS of the distances between syllables revealed a representation of 

transitional probabilities (Fig. 2A), grouping syllables based on whether their probability 
given the preceding syllable was low (1st) vs. high (2nd, 3rd). In contrast, word-only 

electrodes represented ordinal position (Fig. 2B), grouping syllables based on which 
position they occupied in the words (1st vs. 2nd vs. 3rd), as well as based on the identity of 
the word to which they belong (Fig. 2B, dimension 2). Finally, hippocampal electrodes 
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showed grouping by word identity only (Fig. 2C). The clustering of responses by 
transitional probability, ordinal position and identity is consistent with fast learning during 

exposure as they were absent during the first block (~2 mins) and present by the fifth block 

(fig. S4). Moreover, no clustering of syllable representations was observed in any 

electrode set when the same analysis was performed on the random stream (fig. S5). This 
demonstrates that changes in representational space for the structured stream resulted 
from SL and not properties of the individual stimuli per se.  

 

 

 
Fig. 2 Pattern similarity results during auditory statistical learning. Multidimensional scaling (MDS) distances 

between syllabic responses across electrodes showing significant (A) word+syll responses and (B) word-only responses, 

as well as (C) across electrodes from the hippocampus. Individual words are color-coded, subscripts represent ordinal 

position (e.g., “tu1pi2ro3”). Dot-dashed ellipses indicate grouping by transitional probability, solid ellipses outline 

grouping by ordinal position, and dashed ellipses indicate grouping at the level of the individual words (color coded). (D) 

Comparison of multivariate similarity for syllables in the auditory SL task. Left: similarity by transitional probability. 

Greater within-class similarity indicates stronger grouping of syllables with low transitional probability (0.33) than 

syllables with high transitional probability (1.0). A Friedman test indicated a main effect of electrode type on TP 

similarity (χ2
 = 22.03, p<0.001).  Middle: within vs. between similarity for ordinal position. Greater within-class similarity 

indicates stronger grouping of syllables holding the same 1
st

, 2
nd

, or 3
rd

 position in a word. A Friedman test indicated a 

significant main effect of electrode type (χ2
 = 790.35, p<0.001). Right: within vs. between similarity for word identity. 

Greater within-class similarity indicates grouping of syllables into individual words. A Friedman test indicated a 

significant main effect of electrode type (χ2
 = 265.29, p<0.001). (***p<0.001, **p<0.01, Wilcoxon rank sum test, error 

bars denote the population standard error of the mean). 

  

 

To evaluate statistically what information is encoded in each set of electrodes, we 
compared pattern similarity across syllables for grouping consistent with transitional 

probability, ordinal position and unit identity. To that end, we compared pattern similarity 

for same versus different classes i.e., similarity of syllables with low vs. high transitional 
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probability, same vs. different ordinal position, and same vs. different word identity, for 
each electrode types (word-only, word+syll, hippocampus). Consistent with the MDS, low 

transitional probability coding was only observed for word+syll electrodes (Fig. 2D, left). 

Reliable coding for ordinal position was observed for the word-only electrodes (Fig. 2D, 

middle). Word identity was observed both in word-only electrodes and in the 
hippocampus (Fig. 2D, right). These results show that even brief exposure to auditory 
regularities can reshape the representational space of syllables throughout cortex and the 

hippocampus, giving rise to clustered neural representations along several dimensions. 
That is, learning of sequences shapes representations at multiple levels concurrently, with 
a division of labor across lower- and higher-order brain areas in terms of simple and 

generic vs. complex and specific regularities. 

 
Behavioral evidence of visual statistical learning 

Segmenting continuous input into discrete units extends also to stimuli in the visual 
domain, e.g., to build representations of scenes and events (26). Controversy remains as to 

whether similar SL mechanisms are engaged in segmenting and acquiring structure across 
auditory and visual domains (13). To investigate whether similar coding principles could be 

at work in the visual modality, we tested visual SL in 12 intracranial patients. These 

participants were exposed to brief (2 min x 5 blocks) visual streams of fractal images (375 
ms each) in which the structure of the sequence was manipulated (9). In the structured 

streams, each fractal was assigned to the first or second position of a pair (Fig. 3A). We 
generated a continuous stream of fractal pairs by randomly inserting each pair without 
breaks or other cues between pairs. In the random streams, fractals were inserted the 

same number of times but in a random order at the fractal level. As a result, there were no 
pairs to segment. 

As in the auditory sequence, participants were not informed about the presence of 

structure in some of the sequences. Instead, they were asked to perform a 1-back cover 

task, in which they had to detect repetitions of individual fractals that had been 
occasionally inserted into both stream types (16). Accuracy was similarly high in both 
structured (mean d’= 1.66, t(11) =5.27, p<0.001) and random (mean d’=1.78, t(11)=6.96, 

p<0.001) streams, and did not differ (t(11)=-0.46, p=0.65). This suggests that participants 
were equally engaged and attentive during both streams. Consistent with incidental SL of 
the structure, we again found significantly faster reaction times in the structured stream 

(mean=621 ms) than in the random stream (mean=729 ms; Z =-1.99, p=0.04, fig. S6).  

Following exposure to both streams, participants performed a 2AFC recognition task to 
assess explicit learning of the fractal pairs. Offline explicit recognition was at chance 

performance in these participants (50%; mean=53.3%, SD=8%; Z = 1.23, p=0.22). However, 
as with auditory SL, we again replicated the findings in a neurotypical sample and found 
evidence of incidental leaning in the reaction times (e.g. faster reaction times in the 

structured condition; mean structured = 630 ms, mean random = 648 ms; Z=-2.1, p=0.03, 
N=14), while offline, explicit recognition was significantly better than chance (50%; 

mean=57.7%, SD=10%;  Z=2.45, p=0.01, N=14, fig. S6) in this cohort.  
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Neural tracking of visual statistical learning 

We next turned to NFT to identify brain areas exhibiting SL in neurophysiological 
recordings from 1606 intracranial electrodes in the 12 patients, extensively covering 

frontal, parietal, temporal and occipital cortex (fig. S2). Specifically, we expected an 

entrainment response at a 2.66 Hz frequency to individual fractals and at a 1.33 Hz 
frequency to the learned pairs, the latter only for the structured stream. Providing 

evidence for the acquisition of regularities, we observed a significant peak in the phase 
coherence spectrum at the pair rate (i.e., 1.33 Hz) but only for the structured stream 
(p<0.05, FDR corrected; Fig. 3B). A significant peak at the fractal rate (i.e., 2.66 Hz) was 

found for both structured and random streams (p<0.05, FDR corrected). 

Coherence at the pair rate was replicated across subjects with 12/12 patients exhibiting 

entrainment in at least one electrode. Increases in pair-rate responses were observed 
within 160 s of exposure (exceedance mass: sum(T) = 103, p= 0.004), subsequently 

plateauing despite further exposure to the structured stream. Such an increase in the pair-
rate response was absent in the random stream ruling out spurious entrainment as a 
function of time (Fig. 3C). 

As in the auditory SL, we observed an anatomical and hierarchical segregation between 
two temporal tuning profiles of electrodes: one showing entrainment at the fractal and 

pair rates (pair+fractal, Fig. 3D, bottom) and clustered mostly within occipital (striate and 
extrastriate) and parietal cortex (IPS); the other showing entrainment at the pair-rate only 

(pair-only, Fig. 3D, top) localized more anteriorly in frontal (middle and superior), parietal 
and temporal cortex (table S1). The same separation between pair+fractal and pair-only 
responses and spatial arrangement across electrodes was observed when restricting the 

analysis to the HGB (fig. S3). 
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Figure 3 Neural tracking of visual statistical learning (A) Schematic depiction of the visual SL task. The structured 

stream (left) consisted of a continuous visual stream of eight fractals (375 ms SOA, 2.66 Hz). The transitional probabilities 

were adjusted to form four fractal pairs (750 ms SOA, 1.33 Hz). Note that the SOA of the fractals was elongated 

compared to the syllables to match the frequency of the learned units (pairs and words), given that there were two 

fractals per unit and three syllables. The random stream (right) contained the same fractals but in random order. The 

predicted neural responses are shown under each stream: fractal tracking is expected for both streams while pair 

tracking is expected for the structured stream only. (B) Phase coherence spectrum in neural data for the structured (left, 

black) and random (right, gray) conditions from 1606 electrodes in 12 patients. Each electrode is depicted with a thin line 

and the average with a thick line. (C) Timecourse of coherence response for all electrodes showing pair-rate tracking 

(1.33Hz) in the structured (black) and random (gray) conditions. Solid line above the timecourse indicates when the 

change in coherence increased above zero (p<0.05, one-sided cluster-corrected permutation test). (D) Phase coherence 

spectrum in the structured condition for electrodes showing pair-tracking responses, in two sets: electrodes that tracked 

pairs only (left, blue) and electrodes that tracked pairs and fractals (right, orange). Inset shows the localization of pair-

only (top, blue) and pair+fractal (bottom, orange) electrodes.  

 

Representational analysis in visual statistical learning 

In the auditory modality we observed representational changes indicative of sequence 
learning based on transitional probabilities, ordinal position and word identity across sets 

of electrodes. How do visual regularities shape neural representations? As learned units in 
the visual modality contained only two elements (i.e., pairs), grouping based on 
transitional probabilities and ordinal position yield similar results — both cues predict 

grouping of the first fractal in each pair with the first fractals of other pairs and grouping of 
the second fractal with the other second fractals. However, although both transitional 

probability and ordinal position depend on grouping of first fractals together and second 
fractals together, the representational impact of these cues can be quantified in different, 

non-exclusive ways (see below). Thus, in the following, we refer to this grouping as 
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consistent with either transitional probability or ordinal position, in contrast with pair 
identity, which predicts that the first and second members of each pair will be grouped 

together and different from the other pairs (9). Follow-up quantification will allow to 

differentiate grouping based on transitional probability, ordinal position and identity. 

We conducted multivariate pattern analysis on the FP separately for the sets of  electrodes 
showing pair+fractal responses, pair-only responses, in addition to electrodes in the 

hippocampus. For the pair+fractal and pair-only responses we selected electrodes 
demonstrating NFT in the HGB. We calculated the correlation distance between the 
spatial patterns of neural activity across electrodes for every pair of fractals for each of the 

three electrode sets. We again found that the three sets of electrodes encoded different 
information. For the pair+fractal electrodes, multidimensional scaling of the distances 

between fractals revealed a representation consistent with transitional probabilities and/or 
ordinal position (representation of first vs. second, Fig. 4A). Replicating the auditory 
findings, for pair-only electrodes we found concurrent grouping for transitional 

probabilities and/or ordinal position (first dimension) and grouping for pair identity 
(second dimension) (Fig. 4B). In the hippocampus, however, grouping was only by pair 
identity (Fig. 4C). Clustering was not observed in any electrode set for the random stream 

(fig. S7) and consistent with fast learning during exposure the clustering emerged by the 
fifth block but was absent during the first block (fig. S8). These results indicate rapid 

changes in representational space as a function of visual SL.  

 

 

 

 

Fig. 4 Pattern similarity results during visual statistical learning. Multidimensional scaling (MDS) of distances between 

responses to individual fractals across (A) pair-only, (B) pair+fractal, and (C) hippocampal electrodes. Pairs are color-
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coded, odd numbers refer to the first position, even numbers to the second position. Dot-dashed ellipses outline 

grouping by transitional probability/ordinal position in pair+fractal electrodes. Solid ellipses outline grouping by 

transitional probability/ordinal position in pair-only electrodes. Dashed ellipses indicate grouping by pair in pair-only and 

hippocampal electrodes. (D) Comparison of multivariate pattern similarity for fractals in the visual SL task. Left: within 

vs. between similarity for low vs. high transitional probability. Greater within-class similarity indicates stronger grouping 

of fractals with a low transitional probability (0.33) over fractals with a high transitional probability (1.0). A Friedman test 

indicated a main effect of electrode type on TP similarity (χ2
 = 19.3, p<0.001). Middle: within vs. between similarity for 

ordinal position. Greater within-class similarity indicates grouping of fractals holding the same 1
st

 or 2
nd

 position in a pair. 

A Friedman test indicated a main effect of electrode type (χ2
 = 122.2, p<0.001).  Right: within vs. between similarity for 

pair identity. Greater within-class similarity indicates grouping of fractals into pairs. A Friedman test indicated a main 

effect of electrode type (χ2
 = 40.04, p<0.001). (***p<001, *p<0.05, Wilcoxon rank sum test, error bars denote the 

population standard error of the mean). 

 

 

To statistically evaluate the groupings, we collapsed pattern similarity across fractals 

belonging to different classes for each electrode set (pair+fractal, pair-only, and 
hippocampus). This allowed us to quantify the representational impact of each coding 

scheme. Transitional probability was examined by comparing pattern similarity among 
first fractals (first-first) with low transitional probability (i.e., relatively unpredictable given 
preceding fractal) vs. among second fractals (second-second) with high transition 

probability (i.e., predictable given preceding fractal). Ordinal position was examined by 
comparing pattern similarity within the same position (first-first, second-second) vs. 

between different positions (first-second). Pair identity was examined by comparing 

pattern similarity within pair (e.g., first1-second1) vs. between pair (first1-second2). 

In line with the MDS, we observed complementary coding across the three sets of 
electrodes. Pair+fractal electrodes showed greater similarity for low transitional 
probability but not for ordinal position or identity. In contrast, pair-only electrodes showed 

greater similarity for fractals with low transitional probability (Fig. 4D, left), reliable 
coding for ordinal position (Fig. 4D, middle), and also reliable coding for pair identity (Fig. 

4D, right). Finally, hippocampal electrodes exclusively showed coding for pair identity. 

DISCUSSION 

Using intracranial recordings in humans, we have described how the brain tracks and 
learns structure within sensory information. SL is accompanied by rapid changes in neural 

representations, reflected in two functionally and anatomically distinct responses: brain 
regions tracking lower-level sensory input (i.e. syllables and fractals) and higher-order 

units (i.e. words and pairs), and brain regions only representing learned higher-order units 

(i.e. words and pairs). These distinct responses reveal a hierarchical arrangement: the 
former maps onto early, sensory processing stages (e.g., STS and occipital cortex), while 

the latter encompasses late, amodal processing stages (e.g., IFG and ATL). In other words, 
while early processing is domain-specific, late processing is domain-general.  Remarkably, 
these nested structures within sensory streams are extracted and represented in the brain 

in as little as ~2 min, consistent with previous behavioral studies (2), and even when 
subjects are not aware of the process. 

Our results are consistent with prior work demonstrating how the cortical hierarchy 

integrates information over increasingly longer temporal windows (22, 27). Yet, they go 
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beyond topographical mapping of temporal receptive fields. First, we show how SL shapes 
the neural representational space within these areas profoundly and rapidly. This contrasts 

with the much more gradual representational change that occurs over development or 

with longer-term perceptual learning. Second, we discovered that qualitatively different 

aspects of sequence knowledge are encoded across different brain areas: sites 
representing the sensory input and higher-order units encode local and generic aspects of 
sequences, such as their transitional probabilities (or degree of uncertainty). In contrast, 

sites exclusively representing higher-order structure encode global and also more specific 
aspects of the sequences such as the ordinal position of the elements, but most 
importantly the specific identity of the learned unit. 

Prior studies on SL suggest that an increase in predictive uncertainty serves as the primary 
cue for event segmentation. Our results extend this body of work demonstrating that SL 
also involves the acquisition of higher-order sequence knowledge, i.e., ordinal position and 

identity. Higher-order structure or “chunks” may serve as the mental units for mapping 
segmented word forms onto novel word referents (24). These results are in line with the 
hypothesis that the output of the word boundary discovery may provide cues to edges of 

constituents which in turn can serve as scaffolding for the subsequent discovery of internal 

structure, i.e., which elements are contained and in which positions (28). 

Our finding that sequences are represented at multiple levels, from simple and generic to 

complex and specific regularities, may reconcile two opposing theoretical models in SL. 
The ‘statistical model’ posits that learners represent statistical relations between elements 

in the input and do not explicitly represent statistically coherent units in memory. In 
contrast, ‘chunking models’ posit that learners represent statistically coherent units of 

information from the input in memory, such that the stored representations are discrete 

chunks of information . So far, these models have been only contrasted at the behavioral 
level, e.g., by studying sensitivities to illusory or embedded units (29, 30). An intriguing 
possibility is that these two models actually coexist and map onto the different networks 

and sequence representations that we report here — i.e., simple representations encoding 
transitional probabilities and complex representations encoding positional information 

and unit identity. Previously reported discrepancies in behavioral results may reflect the 
differential engagement of these two neural processes across different tasks.  Alternative 

mechanisms for SL can also be tested using the RSA approach. In particular, two novel 

theories can be tested. One posits that SL reflects changes in the similarity space and that 
transitions are then learned as trajectories through that space (31). Another account 
conceives SL as acquiring a community structure in a symmetric graph with uniform 

transitional probabilities which are captured by changes in representational similarity (7). 

The main organizational principles of neural changes underlying SL are shared across the 

auditory and visual domain. We observed a similar functional clustering of responses, i.e., 

sensory input + higher-order units and higher-order units-only, in both the auditory and 
the visual modalities (compare Fig. 1 with Fig. 3). In addition, no clear hemispheric 

lateralization was observed for the auditory or visual SL in any of the electrodes following 
higher-order units, perhaps reflecting the abstract quality of the stimuli. Nevertheless, 
there were also striking differences between domains: For instance, during the temporal 

evolution of SL, responses to higher-order units continuously increased in the auditory 
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domain, whereas responses in the visual domain developed faster and plateaued. This may 
reflect an artificial difference in the chunk sizes (pair vs. triplet) between the two 

modalities, or an innate difference in the learning curves between the auditory and visual 

learning pathways. In addition, the cortical areas involved in auditory and visual SL only 

partially overlapped (fig. S9 and table S1). This was to be expected at the level of the 
sensory responses: responses encoding the sensory input and higher-order units clustered 
around the STG for the auditory SL involving syllables and around occipital cortex for the 

visual SL involving fractals. Perhaps more interestingly, areas engaged exclusively in 
higher-order unit representation were also partially separated.  While areas such as IFG 
and ATL tracked higher-order units in both modalities, middle frontal and superior parietal 

cortices seemed to be differentially involved in auditory and visual SL, respectively. This 

result cannot be explained by the fact that different groups of subjects (and electrode 

coverage) contributed to the different tasks, as we confirmed this functional separation in 
six subjects who completed both auditory and visual SL tasks (fig. S9).  

This suggests that while sequence operations performed across domains might build on 
similar representations (transitional probability, ordinal position and identity), the circuits 
performing these operations might be modality-specific to some extent, much like the 

nested tree structures involved in language, music, and mathematics that are each 
represented in distinct circuits . Our results speak for a more modularized representation 

of sequences for the encoding of local and simple aspects such as transitional probability 

represented in sensory areas, but a less modularized representation as complexity 
increases, as IFG and ATL encoded positional and identity information for both visual and 

auditory SL, in line with a domain-general role in SL. In turn, the hippocampus, at the top 
of the hierarchy, uniquely represents the identity of both visual and auditory sequences 
(32).  

To our knowledge, the complementary representation of sequences across the cortex and 

the hippocampus, with a gradient of abstraction, has not been previously reported for SL. 
Our findings shed light on the elementary operations during SL and how cortex and 

hippocampus differentially support these processes.  For instance, lower-level cortical 

coding based on transitional probabilities could facilitate initial segmentation, as 
uncertainty drives prediction errors and boundaries. Coding based on transitional 
probabilities, while a powerful cue to discover boundaries in the continuous stream, does 

not easily accommodate the integration and binding across elements. Higher-order 
cortical encoding based on ordinal position permits novel recombination of elements to 

create unique entities. In this case, so long ordinal position is respected, novel 
recombination of elements can be allowed.  Finally, hippocampal integration and binding 
across stable combinations of units facilitates the attachment of meaning or identity. 

Thus, a great benefit of the observed complementary coding across the cortex and the 
hippocampus is that it may allow the further use of those information for different 
cognitive operations. These complementary roles of the cortex and the hippocampus were 

observed even during a brief exposure (~10 mins). An interesting question for future 
research is to investigate the stability of these functions across longer exposure, and 

whether complementary coding persists or is replaced for a winner-take-all coding 
depending in the number of repetitions. Another question relates to how sleep 
consolidation affects these complementary representations. 
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An unexpected observation was the dissociation between ‘online’ and ‘offline’ behavioral 
measures of SL. Through frequency tagging we were able to localize with precision the 

areas involved in the acquisition of higher-order regularities in the structured stream — a 

response found in virtually all participants and that increased as a function of exposure. 

Furthermore, representational analysis demonstrated learning of transitional probability, 

ordinal position and unit identity after short exposure. Faster reaction times during the 

cover task showed that structured stream presentation facilitated learning behavior. Yet, 

the patients did not perform better than chance in the subsequent ‘offline’ behavioral 

recognition test. In neurotypical subjects, however, we observed facilitation in the reaction 

time in the structured stream and subsequent above-chance recognition performance in 

the offline behavioral task. In other words, cortical circuits for automatic SL appear intact 

in our patients, while episodic memory appear impaired.  Indeed, episodic memory 

dysfunction is prevalent in temporal lobe epilepsy (33).  

Relatedly, the fact that we observed SL in patients with epilepsy may challenge the 

importance of the medial temporal lobe (MTL) and hippocampus for SL. Previous fMRI 
studies in healthy subjects have demonstrated that visual SL leads to changes in 
representational similarity in the hippocampus (9); which we also observed in our 

population of patients. The critical role of the hippocampus has been corroborated by 
lesion studies in humans? of visual and auditory SL (10, 25). Computational models 

indicate a division of labor in the hippocampus between the monosynaptic pathway 

(connecting entorhinal cortex directly to CA1) which supports SL and the trisynaptic 
pathway (connecting entorhinal cortex to CA1 through dentate gyrus and CA3) which 

supports episodic memory (34). Given that epilepsy can lead to selective deficits in 
hippocampal circuits (35), the observed dissociation between online and offline behavioral 
measures of SL could reflect disproportionate damage to the trisynaptic pathway.  

The dissociation between online and offline behavioral measures is also noteworthy given 

the large variability observed when SL is measured through explicit behavioral tasks (36). 
NFT may provide a more sensitive and robust measure of learning compared to explicit 

tasks, even in healthy populations. NFT can also be used to track learning in both the 

auditory and visual domains. This technique opens up exciting opportunities to 
characterize learning trajectories across clinical and healthy populations, across sensory 
modalities. Because NFT does require task demands, it is well-suited to tracking the 

acquisition of sequence knowledge across the lifespan from newborns to the elderly, and 
even in cognitively impaired patients. The combination of NFT with representational 

similarity analysis provides a powerful toolkit to reveal the how the brain engages in SL 
rapidly across multiple levels of organization in the human brain. 

 

Materials and Methods 

Stimulus materials and summary of experimental procedures 
Auditory statistical learning task. Twelve consonant-vowel (CV) syllables were synthetically 
generated using MacTalk. Syllable lengths were equated and prosody was flattened using 

Praat (Boersma, Paul & Weenink, David, 2018). The individual syllables were concatenated 
in MATLAB. Two sequences were created: a structured and a random sequence. In the 

structured sequence transitional probabilities between syllables was manipulated such 
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that 4 hidden words (3 syllables each) were embedded in the sequence (see Fig. 1), 
resulting in a continuous artificial language stream with an underlying syllable 

presentation rate of 4Hz, and word-rate of 1.33Hz.  In the random sequence transitional 

probabilities across syllables were the same (e.g., p=1/11 syllables). Each sequence lasted 

approximately 2 minutes (540 syllable presentations) and was presented 5 times. To avoid 
potential cueing of the words at the start and end of the stream, the volume of the audio 
stream was ramped on and off, over the first and last 1.5s, respectively. Participants were 

not informed of the structure, and instead, to ensure task compliance, participants were 
asked to perform a cover task in which they indicated syllable repetitions that were 
randomly embedded in the auditory streams. Sixteen (16) syllable repetitions were 

randomly embedded into each presentation block of a sequence. 

 

Once both streams (random and structured) had been played to the participants, they 
were then informed that one of the audio streams consisted of a hidden structured 
containing “words”. Subjects then performed a two-alternative forced-choice (2AFC) task 

where they had to select from two audio segments, presented one after the other, the one 
containing a “word”. One audio segment contained a “word” (e.g., “tupiro”), while the 
other was a lower probability “part-word” from the stream spanning word boundaries 

(e.g., “butupi”). Presentation order was counterbalanced across trials. Since exposure to 
the individual syllables is equated, a preference for the true words over the part-word is 

indicative of statistical learning. Two of the seventeen patients who participated in this 
experiment did not complete the 2AFC task, one for technical reasons and one because 
the participant was confused about the task. 

 
Visual statistical learning task. The procedure for the visual SL task was identical to the 

auditory SL task, however, in this task, sequences were formed from 8 fractals (4-sets of 
two fractal pairs, duplets). Fractals were taken from the same set of images previously 
used in (9). The stimulus onset asynchorony between fractals was set to 375, whereby each 

fractal was presented for 233 ms with an interstimulus interval of 150 ms.  In the structured 
sequence transitional probabilities between fractals were manipulated such that 4 hidden 
fractal-pairs (2 fractal each) were embedded in the sequence (see Fig. 3), resulting in a 

continuous stream of fractals with a presentation rate of 2.6 Hz and a fractal-pair rate of 
1.3 Hz. In the random sequence, transitional probabilities remained fixed between all 

possible fractals (e.g., p=1/7). Each sequence lasted approximately 2 minutes (360 fractals 
presentations). As in the auditory learning task, participants were not informed of the 
structure, however, to ensure task compliance, participants were asked to perform a cover 

task in which they indicated, using the keyboard, when a fractal had been repeated. 

Sixteen (16) fractal repetitions were randomly embedded within each sequence block.  
 

Participants and recordings 
Electrocorticography (ECoG). ECoG recordings were obtained from a total of 23 patients (13 

female, average age 35 yrs, range 16-59 yrs, 21 right-handed) with drug-resistant focal 
epilepsy undergoing clinically motivated invasive monitoring at the Comprehensive 
Epilepsy Center of the New York University Langone Medical Center. 11 subjects 

participated in the auditory statistical learning only, 6 in the visual statistical learning only, 

and 6 subjects participating both in the auditory and the visual statistical learning task. All 
subjects participating in the study provided oral and written informed consent prior to 
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participation in the study, in accordance with the Institutional Review Board at the New 
York University Langone Medical Center. Patients were informed that participation in the 

study would not affect their clinical care and that they could withdraw from the study at 

any point without affecting medical treatment. Brain activity was recorded from a total of 

3689 (average of 120+/-30 per subject) intracranially implanted subdural platinum-iridium 
electrodes embedded in silastic sheets (2.3 mm diameter contacts, Ad-Tech Medical 
Instrument). The decision to implant, electrode targeting, and the duration of invasive 

monitoring were determined solely on clinical grounds without reference to this or any 
other study. Macroelectrodes were arranged as grid arrays (8 × 8 contacts, 10 or 5 mm 
center-to-center spacing), linear strips (1 × 8/12 contacts), or depth electrodes (1 × 8/12 

contacts), or some combination thereof. Subdural electrodes covered extensive portions 

of lateral and medial frontal, parietal, occipital, and temporal cortex of the left and/or right 

hemisphere (see fig. S2 for electrode coverage across all subjects, and for the individual 
coverage of each subject). Recordings from grid, strip and depth electrode arrays were 
acquired using a NicoletOne C64 clinical amplifier (Natus Neurologics, Middleton, WI), 

bandpass filtered from 0.16-250 Hz and digitized at 512 Hz. Intracranial EEG signals were 
referenced to a two-contact subdural strip facing towards the skull near the craniotomy 
site. Data were subsequently downsampled to 250 Hz and a 60-Hz notch filter was applied 

to remove any line-noise artifacts. All electrodes were visually inspected, those with 
excessive noise artifacts were removed from subsequent analysis (185/3689 electrodes 

removed). In addition to analyzing the field potential (FP), high-gamma band (HGB) 
activity was extracted by applying an additional high-pass filter (fc=70 Hz) and the 
envelope of HGB activity was estimated by taking the square of the Hilbert transform of 

the filtered signal.  
 

Data analysis 
ECoG Surface reconstruction and electrode localization. Pre-surgical and post-surgical T1-
weighted MRIs were acquired for each patient, and the location of the electrode relative to 

the cortical surface was determined from co-registered MRIs following the procedure 
described in Yang and colleagues(37). Co-registered, skull-stripped T1 images were 
nonlinearly registered to an MNI-152 template and electrode locations were then 

extracted in Montreal Neurological Institute (MNI) space (projected to the surface) using 
the co-registered image. A three-dimensional reconstruction of each patient’s brain was 

computed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). In all figures, electrode 
locations are projected onto the left hemisphere of the MNI-152 template brain, unless 
otherwise noted. 

 

Behavioral data analysis 
Performance during the online incidental task was assessed by calculating a d’ score for 

every participant across all 5 exposure trials. As the incidental task was embedded in the 
continuous stream of auditory or visual stimuli, detection of a syllable or image repetition 

was deemed accurate (“hit”) if the participant made a keyboard response within 250-
1500ms of the occurrence of the repetition (Results are robust to the selection of the 
response window, as comparable results were obtained using response windows up to 

750ms, 1000ms, and 3000ms). All other keyboard responses outside the valid response 

window were deemed false alarms. Significance of d’ scores were assessed via a one-
sample t-test and comparison of d’ scores across conditions (structured vs. random) was 
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assessed with a paired t-test. Analysis of reaction times between conditions was assessed 
using a Wilcoxon two-sided paired signed rank test between the average reaction times 

per condition and participant. Performance on the offline 2AFC explicit recognition test 

was assessed by determining the percent of correctly identified “words” or “fractal-pairs”, 

and subjected to a Wilcoxon signed rank test against chance performance (50%). 
 
Phase coherence analysis 

For each experiment, signals from all five (5) blocks of a sequence (structured or random) 
were concatenated and then reshaped into 10-word segments (10 words x 90 trials x 
electrodes) and converted into the frequency domain via FFT (0.134 Hz resolution). Phase 

coherence was computed for each electrode, �� � �∑ ��� �� 	� 
  �∑ �� �� 	� over the 90 trials (38). 

Significance of the response at each frequency of interest (e.g., 1.33Hz & 4Hz) was 

determined by comparing the magnitude of the coherence response to 1000 phase-
shuffled surrogate datasets  and then subjected to FDR correction across all electrodes.  
 

Phase coherence latency analysis 
The response latency was computed for all electrodes with a significant phase coherence 
at the higher-order rate (i.e., word rate or pair rate, 1.33 Hz) across all blocks. To identify a 

time-point when each electrode exhibited a significant response (e.g., time to first 
significant response), phase coherence was computed on smaller segments of data (10 

words x 9 trials), using a sliding window of 10 words. A nonparametric cluster-based 
permutation statistic was used to test for a significant change in coherence from baseline 
(e.g. random condition) across time (e.g. exceedance mass test on the sum of t-values in a 

cluster compared to 1000 permutations of the condition labels, (39)). 
 

Representational similarity analysis  
To assess the similarity of neural responses to each token (syllables, fractals), a 
multivariate spatial pattern analysis was performed. First, all individual trials were 

‘whitened’ by the noise covariance matrix computed across all tokens and trials(40) and 
the average response across all tokens (e.g., non-specific response) was subtracted from 
each trial. Next, the data were vectorized across all significant electrodes (e.g., samples x 

significant electrodes) within a cluster (e.g., word+syll or word-only) and the dissimilarity 
of the spatial patterns was computed between each pair of tokens. Dissimilarity was 

assessed using the correlation distance,  � � 1 �
������·������

||����|| ||����||
, where A and B represent 

the mean spatial vectors for two of the tokens being compared (e.g., syllables ‘tu’ vs. ‘pi’), 
and using 5-fold cross-validation. The resultant representational dissimilarity matrix 

(RDM) was subjected to a principal component analysis and the first two dimensions were 

plotted against each other to produce a 2-dimensional mapping of dissimilarity scores 
across all pairs (see Fig. 2). 

 
Within vs. between category similarity analysis 
To quantify the degree to which responses are able to capture features of the learned 

streams i.e., transitional probability, ordinal position and/or identity, we calculated the 
difference in similarity (Pearson correlation) between items in the same category and 

items belonging to the other category in question. This similarity estimate was calculated 

by randomly sampling the significant electrodes by type (e.g., FP, word-only) and 
computing a similarity matrix between all tokens (e.g., syllables or fractals), for each 
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resampling. This resampling procedure was repeated 200 times (with replacement), and 
the average fisher-transformed correlations of all elements within a category was 

compared against all items that spanned the opposing category using a Wilcoxon’s rank 

sum test (two-sided). 
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