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Abstract. Viruses outnumber every other biological entity on Earth, and soil viruses are 

particularly diverse compared to other habitats. However, we have limited understanding of soil 

viruses because of the tremendous variation in soil ecosystems and because of the lack of 

appropriate screening tools. Here, we determined the global distribution of more than 24,000 soil 

viral sequences and their potential hosts, including >1,600 sequences associated with giant 

viruses. The viral sequences, derived from 668 terrestrial metagenomes, greatly extend existing 

knowledge of soil viral diversity and viral biogeographical distribution. We screened these 

sequences to identify a suite of cosmopolitan auxiliary metabolic genes (AMGs) encoding 

enzymes involved in soil organic carbon decomposition across soil biomes. Additionally, we 

provide evidence for viral facilitation of multi-domain linkages in soils by locating a fungal 

chitosanase in bacteriophages, generating a new paradigm of how viruses can serve as exchange 

vectors of carbon metabolism across domains of life. 
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Viruses outnumber every other biological entity on Earth by a wide margin1. Estimates 

suggest that 1031 virus particles exist globally, equivalent to the biomass of 75 million blue 

whales (200 million tons)2. A global meta-analysis of viral distribution revealed that the vast 

majority of viruses are clearly habitat-specific3. The soil virome in particular is poorly 

characterized in terms of its size and composition, but limited evidence shows that soil viruses 

are more abundant and diverse than viruses from other ecosystems4,5,6. This high viral diversity 

may be a result of the heterogeneous physical matrix of soil where spatial structuring generates a 

plethora of environmental niches7,8. Although viruses are recognized as key players in C and 

nutrient cycles in aquatic ecosystems9, we know comparatively little about the roles of viruses in 

soils. Major limitations to studies of soil viral ecology include difficulties in isolating soil 

viruses, the enormous range of soil ecosystems with distinct properties that prevent 

generalization between sites, and, until lately, the lack of appropriate molecular screening tools.  

Shotgun metagenomics is a useful approach for analyzing soil viromes because most 

viruses lack a universal marker gene to target with primer-based methods10 and because many 

viruses in soil are double-stranded DNA phages that can be sequenced11. Several recent studies 

have used shotgun metagenomics in soil to characterize the soil virome in a limited range of soil 

types and biomes12-16. In the most comprehensive examination of soil viruses to date, exploration 

of 197 metagenomes from thawed permafrost enabled discovery of 3,112 soil viral sequences12. 

Emerson et al.12 predicted 14 viral glycoside hydrolase (GH) enzymes in these sequences with 

projected functions for breaking glycosidic linkages in pectin, hemicellulose, starch, and 

cellulose molecules; one of these was confirmed to express an endomannanase enzyme12. 

However, viral GHs can also be involved in general lysogenic functions (rev. in Davies et al.17), 

and the exact role of viral GHs in soils in unclear. Additionally, new nucleocytoplasmic large 
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DNA viruses (NCDLV), colloquially known as giant viruses, were recently identified using a 

'mini-metagenomics' approach in soil collected from the Harvard forest long-term experimental 

research site (LTER)18. To our knowledge, no study has investigated soil viruses at more than a 

few locations (Extended Data Fig. 1), and we lack a comprehensive assessment of virus diversity 

and function in soils, including the discovery of new viruses and their distribution, host 

associations, and possible exchange of genetic information across host domains. 

Here, we greatly extend existing knowledge to identify >24,000 soil viral sequences from 

a wide range of globally distributed soil metagenomes. By deep analysis of the viral sequence 

data, we determine viruses that are prevalent across soil biomes, as well as their associations 

with soil microorganisms and patterns through space. In addition, we estimate the global 

distribution of soil viruses and identify thousands of new virally encoded auxiliary metabolic 

genes (AMGs) that could play key functional roles in soil ecosystems. 

 

Viral Abundance and Diversity 

To assess the geographic distribution, diversity, and functional potential of viruses in soil 

microbiomes, we gathered metagenomic sequences from 668 soil samples spanning 75 locations 

on three continents (Supplementary Tables 1-2, Fig. 1A). We manually assigned biomes to each 

study using metadata deposited into Integrated Microbial Genomes with Microbiomes 

(IMG/M)19. We applied our previously described pipeline for identification of viral contiguous 

sequence regions (contigs)3,20 to the samples and identified 24,335 viral sequences (clustering 

into 17,229 unique viral operational taxonomic units, vOTUs) greater than 5 kilobases (kb), of 

which 20,700 were predicted to be bacteriophages, 96 were putative Eukaryotic viruses, and 

3,300 were unknown (Supplementary Table 3). These viral sequences encoded a total of 4,306 
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distinct protein families (pfams) when searched against the Pfam database21 using HMMER 

3.022. Because many viral functions lack annotation in the Pfam database, we also conducted de 

novo sequence clustering to identify novel protein families which yielded 105,730 distinct 

clusters. Of these clusters, only 10,441 contained at least one function annotated in the Pfam 

database, indicating a large proportion of the functional capacity of soil viruses is completely 

novel. Additionally, we identified 1,676 sequences attributed to giant viruses and 538 sequences 

attributed to virophages of all sizes. Our study thus represents an enormous expansion of 

knowledge of the global distribution of soil viruses with a 25-fold increase in sample locations 

and a doubling of the number of soil viral sequences obtained (Extended Data Fig. 1). 

We assessed the relationship between metagenome size and number of viruses by 

comparing the number of base pairs from raw sequence reads that were attributed to viruses, 

versus all base pairs (bp) in the corresponding metagenome. This relationship was significant (P 

< 0.001, R2 = 0.58; Fig. 1F) with approximately 1 of every 5000 bp (0.2%) mapping to a viral 

sequence. Given an estimated average soil bacterial genome size of 5Mb, average soil viral 

genome size of 5000 bp3, and 109 bacterial cells per gram dry soil, this equates to 2.37 x 108 

viruses per gram dry soil, in line with previous estimates of 107 to 1010 viruses per gram dry 

weight soil4,5,6 and 10-100x fold lower than estimates in marine and human systems respectively 

(Fig. 1D-E). Fitting a quadratic model to the relationship between bacterial and viral bp did not 

improve fit, indicating that deeper sequencing will linearly increase the number of viruses 

discovered in soils and that soil viral diversity has been significantly under sampled by existing 

metagenomic sequencing efforts.  

Subsequently, we explored the soil virome to examine biogeographical patterns in viral 

distributions. We sorted the metagenomes into 18 different biomes based on their ecosystem type 
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in the GOLD database23 and Supplementary Table 2.  We used the linear regression line between 

soil viral bp and microbial bp to identify biomes that had higher or lower abundances of viruses 

than expected (Fig. 1B, G). Rhizosphere soils and some terrestrial sediments had significantly 

higher viral loads than expected, whereas grassland and forest soils had lower viral 

concentrations (Fig. 1B, G, p ≤ 0.0001). Most soil viruses were highly biome-specific, but we 

identified 30 sequences that were cosmopolitan across grassland, forest, arctic, and rhizosphere 

biomes (Extended Data Table 1). Twelve of these sequences clustered into a single vOTU, and 

14 sequences contained a single protein family (pfam00877) that is involved in phage lytic 

functions, providing an avenue for future investigation into viral traits that may be of particular 

importance in the soil virome. 

 Eukaryotic viruses with large genomes typically spanning several megabases have been 

identified in aquatic systems24,25 and, more recently, in terrestrial ecosystems, including 

soils18,26,27. Schulz et al.18 uncovered 16 novel giant virus genomes from metagenomes of forest 

soils and indicated that their discoveries constituted only a small fraction of the heretofore 

unknown giant virus diversity of soils. Here, we identified 1,676 putative giant virus sequences 

containing hallmark protein families of major capsids in NCLDV viruses (Supplementary Table 

4). By filtering putative sequences to those with a contig length of greater than 5000 bp, we 

generated a list of 42 sequences that were assigned as giant viruses (longest assembled sequence 

of 259,840 bp). These 42 sequences were present in 19 samples – one rhizosphere, three arctic 

soils, one Mediterranean forest soil, three unassigned biomes, and eleven aquifer sediments from 

Rifle, Colorado. Additionally, the normalized abundance of giant viruses was 1-3 times greater 

in magnitude in Rifle samples than in any other sample set (Fig 1C).  
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 Finally, 538 metagenomic viral contigs were assigned to virophages, DNA viral genomes 

that replicate along with giant viruses and co-infect eukaryotic cells, from which 26 were larger 

than 5000 bp; three of them were predicted to be complete (Supplementary Table 5). 

 

Eco-Evolutionary Patterns 

 Implementing ecological frameworks to understand biogeographic patterns has bolstered 

the growth of microbial ecology over the last few decades28. Such frameworks rely on commonly 

observed trends – such as latitudinal decreases in biomass and diversity29 and inverse 

correlations between community composition and geographic distance30 – to derive expectations 

for new environments and have aided in disentangling mechanisms driving biodiversity across 

the globe31. Given this history, we sought to uncover biogeographical patterns in the soil virome 

that could link soil viral diversity to established ecological frameworks. 

Because of the wide range of geographic distances between our samples, we specifically 

focused on distance-decay relationships whereby community dissimilarity tends to increase with 

increasing distance30, and we hypothesized that phylogenetic distance between viruses would 

follow the same trend. Accordingly, we constructed de novo viral protein clusters through all-vs-

all pairwise alignment of all open reading frames (Fig. 2A) and generated a phylogenetic tree for 

each viral protein clusters with at least 15 members (10,544). Over ten percent (1,046) of these 

showed a statistically significant rank-order correlation between the phylogenetic and geographic 

distances among their members, indicating a distance-decay relationship that is consistent with 

increasing dispersal limitation (Fig. 2B). Further, more diverse protein clusters were less likely to 

exhibit distance-decay relationships (Fig. 2C). Protein clusters with higher levels of diversity 

may be associated with a wider variety of viruses that are able to maintain their abundances 
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across different habitat types and host availabilities, thus promoting their persistence across 

distances. Alternatively, the probability that a viral gene will overrun its own dispersal footprint, 

either by migrating around the planet or by doubling back on itself, may simply increase with 

time.  

 

Microbial Hosts for Soil Viruses 

We identified putative hosts of the soil viruses by assessing relationships between 

specific viral and microbial sequences. We first assigned hosts based on the similarity of 

CRISPR-spacer sequences to those found in microbial hosts deposited in the IMG/VR32 

database. We also screened for similarities between viral contigs in our dataset and in viral 

isolates with known hosts. From these sequence-based approaches, we assigned microbial hosts 

to 208 viral contigs (0.8%). To extend this analysis, we also inferred virus-host relationships 

from co-occurrence networks containing both viral contigs and microbial OTUs (bacterial and 

archaeal) derived from 16 rRNA gene sequences in the metagenomes. When comparing these 

two approaches, we found that host assignment based on sequence homology substantially 

underestimated the number of viral hosts and yielded a distinct set of host organisms typically 

associated with pathogenesis, clinical applications, and/or marine environments (Fig. 3C). By 

contrast, correlations between viral contigs (Fig. 3A) and microbial sequences resulted in a more 

expansive range of putative host organisms associated with viruses. Only a small fraction of viral 

contigs had significant associations with specific microorganisms (440 of 19,094 contigs in the 

rarefied table; 2.3%), although many viral contigs (18,567) and microbial OTUs (12,512 of 

21,895) were present at less than three locations and therefore excluded from our network (see 

methods). In the co-occurrence network, four viral contigs (0.9%) also had hosts identified by 
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sequence homology, consistent with the proportion of sequence-identified hosts in the full 

dataset (0.8%). These contigs were predicted by sequence homology to target the same Dickeya 

species and were contained within a single cluster in the co-occurrence network, reinforcing 

similar host-relationships among these viruses (Fig. 3A, inset).  

More broadly, we also examined correlations between viral protein functional groups 

(pfams, Fig. 3B) and viral traits (e.g., tail, capsid, and membrane characteristics) with microbial 

OTUs. Using this trait-based approach, we obtained a much larger network of viral-host 

associations including correlations between 1,063 unique pfams and 5,665 unique microbial 

OTUs that grouped into 260 modules. Correlations between specific microorganisms and many 

viral traits were confined to a limited set of microorganisms per trait (79% of assigned modules 

contained 10 or fewer OTUs). However, the three largest modules each contained more than 250 

interconnected pfams and microbial OTUs, and they were centered around viral traits for 

biosynthesis of vitamin B1 precursors (pfam13379), glycosyl transfer (pfam00953), and 

activation of the Hsp90 ATPase chaperone (pfam08327). The importance of these traits in co-

occurrence network structure positions them as primary targets for deeper investigation viral-

microbe relationships in soils, and more generally, we propose that trait-based approaches for 

studying the soil virome are beneficial for deciphering viral-host relationships in the highly 

diverse soil virome. 

The network analysis also helped to identify potential broad host ranges in viruses, as 

most viral contigs showed significant positive correlations with phylogenetically-widespread 

microorganisms, consistent with recent work contrasting the historical paradigm of highly 

specific associations between viruses and microorganisms3,33. We identified 3,795 microbial 

OTUs as possible virus hosts via network analysis in contrast to 226 by sequence homology, 
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over a ten-fold increase (Fig. 3A). Each viral contig was associated was 187 OTUs in the 

network on average, while individual viruses were assigned to a maximum of 19 possible hosts 

through sequence-based methods. Nevertheless, we detected some host specificity for some 

viruses because the microbial OTUs correlated with different viral contigs were distinct (mean 

Bray-Curtis dissimilarity = 0.89), as expected because specific viruses tend to infect certain 

groups of microorganisms34. The narrow set of hosts identified by sequence homology reveals a 

shortcoming of annotations that are relevant in soil settings. Improving sequence-based detection 

methods for detecting viral hosts in soil ecosystems is needed, as evidenced by the expansion of 

virus-microbe relationships with the network approach used here. 

 

Auxiliary Metabolic Genes (AMGs) 

 Possible AMGs were identified by removing known viral-associated protein families (as 

determined by Pfam) from our viral contigs. This yielded a large number (3,761) of unique 

protein families that were possible AMGs Screening of the AMG families according to their 

representation in different biomes revealed 302 cosmopolitan AMGs found in grassland, forest, 

sediment, arctic, and rhizosphere samples in comparison to 1,796 AMGs present in only one of 

these biomes. Cosmopolitan AMGs encoded functions such as glycosyl hydrolase/transferases 

(GH), peptidases, and cellulases (Supplementary Table 6).  

Viral genes belonging to GH families were widespread in soils, as we found 43 GH 

families totaling 7,632 occurrences and three GH families in the top ten most abundant AMGs in 

our dataset (Supplementary Table 7), supporting previous studies indicating GHs as a key aspect 

of soil carbon cycles12,16. Among these, GH25 (lysozymes), GH108 (lysozymes), GH16 

(transglycosylases active on plant and marine compounds), GH5 (cellulases, endomannanases, 
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and related enzymes), and GH26 (endomannanases) were the most abundant (Supplementary 

Table 8). Some GH families are known to be active in viral lytic cycles (rev. in Davies et al.17), 

and the abundance of GH25 and GH108 in soil metagenomes further delineate this role. 

However, it is notable that three of the five most abundant GH families have possible functions 

in soil decomposition processes. When considering the broader suite of 43 GH families found in 

soil metagenomes, we posit that many of these genes play roles in soil decomposition that are 

beyond typical viral lysis functions. For instance, Emerson et al.12 previously suggested that 

viral-encoded endomannanases mediate permafrost C cycling and confirmed their functional 

abilities. In our soil dataset, putative endomannanase genes belonging to GH5 and GH26 alone 

occurred 532 times and were found in rhizosphere, arctic, and aquifer sediment biomes. 

Regardless, the distribution and sheer number of GHs as a whole generate a new understanding 

of virus-encoded C cycling genes as a ubiquitous feature of soil ecosystems and a reservoir of 

biogeochemical function. 

We also investigated the impact of agriculture on soil viral AMGs. We predicted that 

cultivation would shift the composition of soil viromes due to shifts in soil properties such as pH, 

total nitrogen content, and fertilizer application, as previously demonstrated5,6,13,35,36. 

Metagenomes were screened from paired native soils and cultivated soils that were previously 

shown to contain a diverse array of microbial GHs known to degrade plant-derived 

polysaccharides37 . We observed a 65% reduction AMG richness, including a lower number of 

GHs in cultivated relative to uncultivated soil metagenomes (Table 1). The disruption of this 

functional reservoir by land cultivation adds a new aspect to consider when investigating loss of 

soil function due to agricultural practices. 
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 A New Paradigm: Cross-domain Transfer of Biogeochemical Function 

We found genetic evidence for viral facilitation of multi-domain linkages in soils by 

uncovering bacteriophage sequences encoding a fungal chitinolytic gene; possibly signaling the 

transfer of a gene involved in fungal metabolism into bacterial hosts by viral infection. 

Specifically, we observed a fungal chitosanase (pfam07335) encoded by bacteriophages and 

verified the similarity of the bacteriophage chitosanase sequences to bacterial and fungal 

reference sequences previously deposited in databases (Fig. 4). Reference sequences clustered 

into distinct groups, and viral sequences from all soil metagenomes were interspersed with both 

domains of reference sequences. Chitosanases hydrolyze chitosan, a polymer of glucosamine 

residues that is an intermediate in chitin degradation, and are widely distributed in soil 

microorganisms that modulate C and nitrogen cycling (rev. in Somashekar and Joseph38). Chitin 

itself is a component of some fungal cell walls and insect exoskeletons that are common in 

terrestrial environments39. We identified 36 bacteriophage contigs in the full dataset that 

contained this chitosanase gene (Extended Data Figs. 2 and 3) and these contigs were primarily 

from vegetated biomes (Extended Data Tables 2 and 3). Also, when analyzing the entire 

IMG/VR virus database40, viral chitosanases were exclusively found in soil or freshwater viruses 

(66% vs. 33% of the cases, respectively). This finding highlights the potential importance of 

viral-encoded chitosanase functions in bacteria in ecosystems where chitin is abundant. 

Additionally, the limited distribution of viral chitosanase underlines the underexplored functional 

diversity associated with viruses in soils. The viral chitosanase genes that we identified may 

enable bacterial hosts to have easier access to nutrients in the heterogeneous soil environment by 

degrading free polysaccharides typically associated with fungal metabolism or by parasitizing 

live fungi41.  
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Further support of a role for viruses in multi-domain metabolic exchange of soil C 

cycling genes include associations between viral sequences containing pfam07335 and microbial 

clades involved in decomposition within our co-occurrence network (Fig. 2B). Pfam07335 was 

the seed of a cluster containing three additional viral AMGs pfams encoding generic growth, 

replication, or unknown functions and three microbial OTUs belonging to Actinobacteria, 

Rhizobiales, and Sphingomonas (Extended Data Table 4). The co-occurrence of pfam07335 in 

viral sequences with microorganisms known to be major influencers of soil C cycling indicates 

that viruses may serve as both a reservoir encoding potential decomposition activities and a 

vector for the exchange of key soil functions across organisms. While unverified in the current 

work, such a relationship would be the first indication of cross-domain linkages in C cycling 

between bacteria, fungi, and viruses; and therefore, is a key area of future investigation. 

 

Conclusion 

By mining over 24,000 viral metagenomic sequences from globally distributed terrestrial 

biomes, we reveal an incredibly diverse soil virome. We show that current computational 

methods for host assignment significantly underestimate possible viral-microbial interactions. 

Some viral proteins exhibit clear geographical distance-decay patterns similar to ecological 

patterns well-known in other soil-borne organisms. The soil virome contains a suite of 

cosmopolitan auxiliary metabolic genes (AMGs) encoding enzymes critical to decomposition. 

GHs, in particular, are highly abundant and co-occur with microorganisms mediating C cycling, 

thus lending genetic support to a biogeochemical role for soil viruses in exchanging 

decomposition metabolisms among key soil microorganisms. Finally, we show a fungal 

chitosanase found almost exclusively in soil bacteriophages in the uncultivated environment and 
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vegetated environments more broadly. As a whole, our work exposes the soil virome as a 

reservoir of unexplored diversity that may be critical in the decomposition of soil organic matter 

and provides genetic evidence for viruses to aid in the transference of metabolic functions 

between bacterial and fungal domains. 

 

Materials and Methods. All statistical analyses were performed in R software version 3.3.1 

using the packages ‘factoextra’42, ‘NbClust’43, ‘dplyr’44, ‘ggplot2’45, vegan46, and ‘gplots’47 

unless otherwise noted. 

  

Viral sequence retrieval. All the viral sequences used in this work as well as their metadata 

(predicted host, viral grouping, taxonomy, and geographic location) were retrieved from the 

IMG/VR32 public data repository (https://img.jgi.doe.gov/vr/) version 1.0, a data management 

resource for visualization and analysis of globally identified metagenomic viral assembled 

sequences3 integrated with associated metadata within the IMG/M system48. All the viral 

sequences are over 5 kb. Both identification of the viral sequences and virus grouping were 

predicted using a computational approach fully described in Paez-Espino et al.20 in which an 

expanded and curated set of viral protein families was used as bait to identify viral sequences 

directly from metagenomic assemblies and highly related sequences (based on 90% identity over 

75% of the alignment length on the shortest sequence) were clustered. For this work, we 

specifically mined the habitat type information of all the viral sequences and obtained 36,385 

viral sequences under any of the categories: Terrestrial (soil), Terrestrial (other) and Host-

associated (plants). We manually curated these datasets to remove obviously non-soil habitats 

(e.g., wastewater treatment reactors) to retain 24,334 viral sequences from 668 “soil-curated” 
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samples. All viral sequences are annotated according to the DOE-JGI microbial genome 

annotation pipeline49. In addition, we have used pfams04451 and pfam16093 (hallmark protein 

families of major capsids of NCLDV viruses) and specific virophage major capsid protein 

models (Paez-Espino et al., in prep) to identify 1,676 giant virus sequences (42 > 5kb) and 538 

virophage sequences (26 > 5kb), respectively, which are viral entities hardly identified with 

general discovery pipelines. 

  

Sequence-based host assignment for soil viruses. We used the host taxonomic information 

derived from IMG/VR version 1.0 where two computational approaches were used: (1) host 

assignment based on virus clusters that included isolate virus genomes with known hosts and (2) 

CRISPR-spacer sequence matches (only tolerating 1 SNP over the whole spacer length as 

cutoffs). To further complement the host assignment from IMG/VR version 1.0, we used a 

classification of the viral protein families (used in the virus identification pipeline) to determine 

the domain (Eukaryotic, Bacterial, or Archaeal) of the host predicted for 85.6% of the viral 

sequences described in Paez-Espino et al.40 (Supplementary Table 3). Briefly, the viral protein 

families were benchmarked against the viral RefSeq genomes and the viral genomes with 

predicted host from the prokaryotic virus of orthologous groups database50 obtaining a subset of 

them used as host-type marker genes.  

 

Pfam assignment. Structural and functional annotation of all sequences, including pfam 

assignment, is provided by the DOE Joint Genome Institute’s annotation pipelines29 where 

protein sequences are searched against Pfam database using HMMER 3.022 using the gathering 

threshold (--cut_ga) inside the pfam_scan.pl script49. That script also helps resolving potential 
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overlaps between hits generating the final outcome.  Sequences often contained multiple pfams, 

and we attributed each assigned pfam as occurring once per sequence. 

  

Read mapping of sequences against viral contigs. As described in Paez Espino et al.20 and 

applied in Paez Espino et al.3, we predicted the presence of any of the 24,334 soil viral sequences 

in low abundance across any of the 668 soil samples. We obtained all the assembled contigs and 

unassembled reads available from each of the soil samples and used the BLASTn program from 

the Blast+51 package to find hits (covering at least 10% of the virus length) to any of the 

predicted soil viral sequences with an e-value cutoff of 1e-5, a >=95% identity, and a >= 95% of 

the read/contig. 

 

Viral Abundance Quantification. Sequencing technology, depths, and sample numbers varied 

dramatically among studies. To account for these differences, we estimated viral loads by 

comparing the number of base pairs of sequence from raw reads that were attributed to viruses 

versus all base pairs in that metagenome. We evaluated the extent to which deeper sequencing 

would increase discoveries of viruses using linear regression of viral bp to bacterial bp. Fitting 

quadratic models to the relationship between bacterial and viral bp did not improve fit relative to 

linear models. Over- and under-representation of viral loads in each biome were using one-

sample Student’s t-tests of residuals from linear models. We calculated average viral loads by 

multiplying the ratio of mean viral bp to mean microbial bp (unitless) by an estimate of average 

microbial bp per cell (bp/cell) and by the estimated average number of microbial cells per gram 

of soil (cell/g), yielding the number of viral bp per g of soil. We then divided by the average size 

bp per virus (bp/virus) in our dataset to derive the number of number of viruses per gram of soil. 
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For comparison, we calculated viral loads in marine and human systems using the same 

procedure viral and microbial bp in raw metagenomic sequencing reads reported in Paez-Espino 

et al.3.  

 

Auxiliary Metabolic Gene Identification. Classifying AMGs is challenging due to the difficulty 

of defining genes that are external to viral replication and also allow viruses to manipulate host 

metabolism16. Recent work in soils has taken a targeted approach to exploring viral AMGs37,52. 

We started with viral-associated pfams as a basis for identifying AMGs. We filtered this list to 

remove known viral-specific pfams (Supplementary Table 9). We also searched for pfams whose 

annotations contained the following terms and removed all that were obviously viral: ‘phage’, 

‘holin’, ‘capsid’, ‘tail’, ‘virus’, ‘viral’, ‘coat’, ‘lysis’, and ‘lytic’. Because GH genes are central 

in decomposition processes and common in soil bacteria37,52, we focused much of exploration on 

pfams containing genes in GH families. In total, we identified 3,761 unique AMGs present 

653,536 times.  

 

Eco-Evolutionary Patterns. To assess distance-decay relationships in soil viromes, we first 

constructed viral protein clusters based on sequence similarity by using LAST to conduct an all-

verses-all alignment of open reading frames from metagenomic viral contigs53. Alignment output 

was staged using ‘pandas’54. Then, a weighted undirected graph was populated using 

‘networkx’55, with predicted viral genes represented as nodes, sequence alignments represented 

as edges and alignment bitscores represented as edge weights. Connected components were 

extracted and derived viral protein clusters as the sequences of within a single connected 

component.  
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The largest connected component contained a high proportion number of short alignments 

relative to other connected components. These short alignments appear to represent putative 

recombination events, convergence and coincidental alignments, so this large connected 

component was excluded from subsequent analysis. For each viral protein cluster, a multiple 

sequence alignment was performed using ‘Clustal Omega’56, and approximate maximum 

likelihood phylogenies were inferred using ‘fasttree’57. The geographic and phylogenetic 

distances were calculated using ‘SuchTree’57 and ‘Cartopy’58, and their correlation was estimated 

using the rank-order correlation coefficient and Kendall's τ59. P-values were corrected for 

multiple testing using the Simes-Hochberg step-up procedure60. 

 

Bacterial and Archaeal 16S  rRNA gene characterization. We used the high quality 16S rRNA 

identification and microbial prediction pipeline from the JGI61 (that uses a combination of 

Hidden Markov Models (HMMs) and sequence similarity-based approaches) based on 

complete/near complete gene sequence to obtain a grand total of 6,254 and 401,422 archaeal and 

bacterial 16 rRNA genes respectively across all the soil samples. Taxonomic information of this 

marker gene predicted lineages at different levels based on homology to the reference databases 

from domain to species as indicated.  

         We processed bacterial and archaeal sequences into operational taxonomic units (OTUs) 

as follows. Bacterial and archaeal sequences were assigned unique identifiers, followed by prefix 

dereplication using vsearch62. OTUs were clustered at 97% similarity, and reads were filtered out 

if they appeared only once or were flagged as chimeric by uchime de novo62. Reads were 

mapped to the filtered OTUs to construct an OTU table. BLAST+51 was used to align OTUs to 

Silva v12863 database and taxonomy is assigned using the CREST LCA method64. 
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Co-Occurrence Networks. Because many microorganisms lack a CRISPR-Cas system65, we used 

co-occurrence networks to evaluate possible linkages between soil viruses and microorganisms 

(e.g., 12,66-69). We constructed two types of networks as described below – one correlating viral 

sequence abundance to microbial OTU abundance and one correlating pfams located on viral 

sequences to microbial OTU abundance. The purpose of the first network was to identify specific 

viral particles that were statistically co-located with specific microorganisms, while the second 

network revealed how viral traits (e.g., cap and tail physiology, modes of infection, AMGs, etc.) 

tended to be associated with certain microbial clades.  

Sequencing depth and number of samples differed dramatically among samples (SI 

Table), so it was necessary to condense and rarefy data prior to network analysis. Each of three 

data types—viral sequences, viral pfams, and microbial OTUs—were processed independently 

of each other using the same workflow. To provide sufficient number of viral sequences to allow 

for rarefaction, we grouped all samples from the same location into a single data point by 

combining samples collected within 0.5o latitude and 0.5o longitude of each other. This increased 

sample sizes enough use abundance-based statistical approaches while allowing us to maintain 

habitat-specific differences in viromes and microbiomes. To generate robust rarefied datasets, we 

rarefied each data type 1000x and averaged counts across all tables to yield a final rarefied table. 

To choose the appropriate rarefaction level for each data type, we generated rarefaction curves 

for each data type and assessed reads per location at 10% intervals across the full read-per-

location distribution. We also used histograms to visualize the number of reads per location and 

evaluate the number of locations that would be retained at each possible rarefaction level. 

Rarefaction levels for each data type were chosen to maximize both the number of sequences 
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retained per location and the number locations retained. Our rarefaction process yielded 16 

locations with 434 viral sequences, 25 locations with 715 viral pfams, and 14 locations with 

1164 sequences microbial OTUs.  

Co-occurrence networks were constructed using Spearman’s rank correlation coefficient 

as edges and both microbial OTUs and either viral sequences or pfams as nodes. Spearman 

correlations were calculated for all possible relationships, and only those with rho > 0.60 and an 

FDR-corrected p-value < 0.01 were included in networks. Correlations between two microbial 

OTUs or two viruses were not included in networks, such that only virus-microorganisms 

relationships are depicted. We also removed relationships between viral sequences or pfams with 

OTUs that were not co-located at least 3 times to prevent spurious correlations. Networks were 

visualized using Cytoscape version 3.6.170. Modules were determined in Cytoscape using the 

FAG-EC61 algorithm in ClusterViz71 with selections set to ‘strong modules’ and a 

‘ComplexSize’ threshold of 2. Differences in microbial OTUs across modules were evaluated 

with Bray-Curtis dissimilarity in the ‘vegan’ package in R. 

  

Viral chitosanase investigation. Sixty-nine well-curated seeds in the chitosanase pfam21 database 

(pfam07335) were divided into bacterial and fungal subsets based on the sequence dissimilarities 

and the taxonomy assignments obtained from NCBI taxonomy database72. We aligned the subset 

seeds and built bacterial and fungal HMMs separately with two iterations to obtain more robust 

models using HMMER v3.2.122. The viral chitosanase domains were annotated by the HMM 

giving a higher bit score and retrieved from the alignments. A chitosanase reference tree was 

constructed using the 69 seed sequences via ‘FastTree’73. The viral chitosanase sequences were 

mapped to the reference tree based on the alignments to the HMM modeled positions without 
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changing the tree topology using ‘pplacer’74. The fixed reference tree with the inserted branches 

of viral chitosanase sequences was visualized in iTOL v375. Visualization of the gene content 

and gene location of the soil virus contigs containing viral chitosanases (using the gene 

neighborhood function from the IMG/M system) was used to verify their presence within the 

viral sequence (Extended Data Fig. 2). 
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Figures. 
    

 
 
Figure 1. Soil metagenome locations and virome biogeography. Metagenomic sequences 
were obtained from 668 soil samples spanning 75 global locations. (A) Locations are denoted in 
red. Normalized abundances of sequences attributed to viruses and giant viruses are presented in 
(B) and (C) respectively. Normalized abundances were calculated at the ratio of viral sequence 
bp to total metagenomic bp, which showed log-linear relationships for (D) marine, (E) human, 
and (F) soil ecosystems. Colors in (F) represent the source biome of each sample. Deviations of 
each soil type from the expected viral load are presented in (G). 
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Figure 2. New viral protein clusters and distance-decay in sequence similarity. Example of 
distance-decay in protein clusters. Cluster 150 of 105,730 is shown for demonstration. (A) 
Network diagram of protein cluster 150 in which nodes represent predicted viral genes and edges 
denote sequence alignments. Edge colors correspond to bitscores, ranging from 48.3 (yellow) to 
627.0 (blue). (B) Pairwise geographic distance of protein cluster 150 versus within-family 
phylogenetic distance. (C) Viral protein clusters whose phylogenies have a low phylogenetically 
weighted diversity (tree aspect ratio) tend to exhibit a more structured biogeography (β=-0.3, 
R2=0.2). P-values in (B) and (C) are derived from two-sided Wald tests. 
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Figure 3. Soil virome host assignment through co-occurrence networks and sequence-based 
methods. Co-occurrence network with nodes representing viral or microbial OTUs and edges 
representing the co-occurrence relationships between them (rho > 0.6) is shown in Figure 2. 
Stacked bars indicate the relative percentages of microbial OTUs present in the adjacent clusters 
at the phylum level. Any grouping that had less than 10% representation in all clusters was rolled 
up to the “Other” category. Coloring of nodes indicates the relative abundance of that OTU in 
the cultivated prairie soil, with red indicating highest and blue indicating lowest abundance. (A) 
shows co-occurrences between viral sequences (ovals) and microbial OTUs (rectangles); (B) 
shows co-occurrences between viral pfams (ovals) and microbial OTUs (rectangles). The inset in 
(A) depicts a subnetwork with viral sequences (ovals) and microbial OTUs (rectangles), with the 
sequence-derived virus host relationships depicted with green dotted lines. The inset in (B) 
shows the cluster that contains a viral protein family containing a fungal chitosanase gene, which 
is discussed in detail below. Viral protein families are shown as diamonds in the inset and 
microbial OTUs are rectangles. (C) demonstrates the disparity in microbe-virus associations 
detected using co-occurrence networks versus sequence homology. Points denote the number of 
organisms in a given microbial class that were associated with viruses via each method. 
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Table 1. Pfams associated with native vs. cultivated soils. 
 

 

Native  Cultivated 
Samples 13 8
Pfam occurrences 4311 2847
Pfam Richness 1647 572
Average pfam abundance 2.617486 4.977273
No. of pfams unique to land use 1017 78
Occurrences of unique pfams 2524 355
No. of glycoside hydrolase pfams 8 4
Occurrences of glycoside hydrolase pfams 22 23
No. of fungi-associated pfams 3 0
Occurrences of fungi-associated pfams 8 0
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1

 
  

 
Fig. 4. Alignment of soil viral chitosanase genes (pfam 07335) to existing chitosanase genes in bacterial and fungal databases. 
(A) Phylogenetic tree with chitosanase genes from the soil virome (orange) compared to genes found in bacterial  (green) and fungal 
(purple) reference sequences. (B) Gene content of four representative bacteriophage contigs containing pfam07335. All contigs with 
pfam07335 are shown in Extended Data Fig. 2. Blue text: scaffold names of the virus contigs according to IMG/M and associated 
habitats. Predicted gene function is based on Clusters of Orthologous Genes (COG) categories. Chitosanase genes are shown in red. 
Symbols denote common sequences across panels (A) and (B)

A
Colored ranges

Fungal chitosanase

Viral chitosanase

Bacterial chitosanase

0.
4

0.8

1 .
2

1.
6

2

2.
4

2 .
8

3.
2

3.
6

4

4 .
4

0.
2

0 .
6

1

1.
4

1.
8

2 .
2

2.
6

3

3.
4

3 .
8

4.
2

4.
6

K
1W

YG
9_

M
A

RB
U

/8
4-

25
8

19|G
a0126369_1000033230;2/2

E9E
TI8_M

ETRA/69
-22

9

Q
7S

H
J5

_ N
E

U
C

R
/8

6-
27

2

G0S7C3_CHATD/84-2
57

K
2R

X
07

_M
A

CP
H

/7
0-

22
6

F2PIF9_T
R

IE
C

/6-167

G2QLS9_MYCTT/81-2
53

T0L
1I

7_
COLGC/84

-2
52

S7
Z82

3_
PE

NO1/
78

-2
33

21
|G

a0
12

63
69

_1
00

04
63

26
;1

/1

09|G
a0 068863_10000094713_2/2

C
4JQ

D
4_U

N
C

R
E/54-215

B
0JN

R
3_M

IC
A

N
/44-198

G
0R

R
M

2_
H

Y
PJ

Q
/8

2-
25

1

C9SD62
_V

ERA1/81
-24

9

J5JP13_BEAB2/81-253

34|GPIPI_01821560;1/1

27|G
a 012 63 7 9_ 10 00 03 47 20 ;1 /1

G3JUH4_CORMM/70-231

03|Ga0065705_1000179627_1/1

35|IN
Pgai i200_100348311;1/1

G
2R

0 37_T
H

IT
E

/77-249

31|Ga0137358_1000003719;1/1

Q
0U

2B
1_PH

A
N

O
/20-188

23|Ga0126373_1000028149;2/2

N4T
W

V0_
FU

SC
1/7

1-
22

6

38
|IN

Ph
ise

qg
ai

iF
eb

D
R

A
FT

_1
01

85
49

20
14

;1
/2

02|Ga0065704_1007023376_1/1
32

|G
a 0

1 3
7 3

8 7
_1

00
00

02
0 3

5 ;
1/

2

36|INPhiseqgaiiFebDRAFT_1008595051_1/2

T5A8H3_OPHSC/83-255

33|G
a0137387_1000002035;2/2

04|Ga0065707_1008173948_1/1

J3K
346_C

O
C

IM
/83-244

F9XMH2_ZYMTI/75-235

G9N
FN5_

HYPA
I/7

1-2
29

Q0CTV3_ASPTN/1-145

C7Z919_NECH7/82-254

C
SN

_A
SP

O
R

/7
9-

24
1

S7ZY88_PENO1/99-243
G0R

WI2_HYPJQ
/71-2

32

18|Ga0126369_1000033230;1/2

A1CN44_ASPCL/85-250

G
7X

7V
8_

A
SP

K
W

/8
3-

24
0

B8NK64_ASPFN/100-244

01|Ga0075425_10000020166_

N4VH39_COLOR/83-254

B
2U

M
Z

7 _A
K

K
M

8/25 5- 450

G
1X

F65 _A
R

T
O

A
/7 7-233

16|Ga0081455_1000070333;1/1

40|JGI25405J52794_1000004120;1/1

Q4WZ15_ASPFU/101-245

M2WLD5_DOTSN/86-256

J4W3W5_BEAB2/7
0-230

Q3B485_CHLL7/64-254

V
5G

0R0_BY
SSN

/550-708

C8V6K6_EM
EN

I/132-293

G
9N

TT
1_

H
Y

PA
I/7

1-
23

1

J3
PG

U1_
GAGT3/8

6-
27

6

28|Ga0126379_1000039017;1/1

13|Ga0081455_1000018328;1/1

G5EB46_EMENI/88-232

E9E346_METAQ/91-263

B
2A

9F
2_

P
O

D
A

N
/1

03
-2

78

G9NV22_HYPAI/81-253

B
0JM

Y
7_M

IC
A

N
/87-280 F7

V
L

H
3_

SO
R

M
K

/8
6-

26
8

G4N
32

4_
M

AGO
7/

84
-2

63

00
|G

a0
07

54
25

_1
00

00
02

01
66

_

41|SwRhRL2b_0989.00002840;1/1

U
4L

L
J1_PY

R
O

M
/77-237

39|IN
Phiseqgaii FebD

R
A

FT
_10185492014;2/2

Q
2H

C
H

0_
C

H
A

G
B

/3
41

-5
21

17|Ga0105249_1000037052;1/1

B
8N

C
47

_A
SP

FN
/7

8-
23

7

22 |G
a0126373_1000 028149;1/2

B8M2R4_TALSN/294-458

05
|G

a0
06

63
95

_1
00

00
70

91
4_

1/
1

F2PU
84_TR

IEC
/82-242

26|Ga0126377_1000041311_1/1

11
|G

a0
07

54
35

_1
00

00
00

75
17

;1
/2

L8F
YL8_P

SED2/8
2-2

56

30|G
a0126380_1000012531_1/1

E3QWY0_COLGM/28-198

14|G
a0081455_1000068750;1/2

37|INPhiseqgaiiFebDRAFT_1008595051_2/2

10|G
a0068868_1000000399;1/1

G
9M

X
Y

4_
H

Y
PV

G
/7

1-
23

0

F9F554_FUSOF/81-253

07|Ga0068862_10000045565_1/1

24|Ga0126377_1000008242;1/2

12|Ga0075435_10000007517_2/2

G7XWA7_ASPKW
/99-243

29|G
a0126380_1000000637;1/1

06|Ga0066676_100002032_1/1

S8
A

Q
50

_D
A

C
H

A
/7

6-
23

2

M1W070_CLAP2/83-255

08|G
a0 0 68 86 3_ 10 0 00 09 47 1 3_ 1/ 2

15|Ga0081455_1000068750_2/2

L
8G

9U
2_

PS
E

D
2/

77
-2

38

Q4W904_ASPFU/86-251

G
2Q

IJ
9_

M
Y

C
TT

/2
73

-4
63

25|G
a0126377_1000008242;2/2

C7
YSF

2_
NEC

H
7/

80
-2

56

B2J617_N
OSP7/100-284

S8
B

8I
7_

PE
N

O
1/

78
-2

38

K9GGY7_PEND2/101-245

CSN
_A

SP
FU

/79
-2

39

20|Ga0126369_100003995;1/1

G
2R

C
U

0_
T

H
IT

E
/8

4-
27

0

*�

�

�

�

�

Fungal chitosanase

tail

tail capsidbaseplatebaseplate

baseplate phage P2

capsid terminase

1                              3000                      6000                       9000                       12000                    15000                    18000                    21000                     24000                   27000

3300005186.a:Ga0066676_10000203; Grassland

3300009553.a:Ga0105249_10000370; Rhizosphere

3300012582.a:Ga0137358_10000037; Vadose

3300012971.a:Ga0126369_10000399; Forest

Fungal chitosanase methylase acyltransferase

1                              3000                      6000                       9000                       12000                    15000                    18000

ATPase Fungal chitosanase
1                              3000                      6000                       9000                       12000                    15000                    18000                    21000                     24000                   27000

terminasecapsid

30000                     33000                   36000                     39000                       41000                    44000  

Fungal chitosanasetail lysin
1                              3000                      6000                       9000                       12000                    15000                    18000                    21000                     24000                   27000

30000                     33000                   36000                     39000                       41000                             

integrase

1                              3000                      6000                       9000                       12000                    15000                    18000                    21000                     24000                   27000

Fungal chitosanase

ATPase

3300012971.a:Ga0126369_10000332;Forest

B
*

�

�

�

A

�

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted A
pril 26, 2019. 

; 
https://doi.org/10.1101/583997

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/583997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

1

 
References. 
 
1 Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? 

Trends in microbiology 13, 278-284 (2005). 
2 Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. 

Nature Reviews Microbiology 15, 161 (2017). 
3 Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425 (2016). 
4 Williamson, K. E. in Biocommunication in soil microorganisms     113-136 (Springer, 

2011). 
5 Srinivasiah, S. et al. Dynamics of autochthonous soil viral communities parallels 

dynamics of host communities under nutrient stimulation. FEMS microbiology ecology 
91 (2015). 

6 Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil Viral Communities 
Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle 
Counting and a Modified Community Fingerprinting Approach (fRAPD). Frontiers in 
microbiology 8, 1975 (2017). 

7 Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends in ecology & evolution 17, 
177-183 (2002). 

8 Tilman, D. & Kareiva, P. Spatial ecology: the role of space in population dynamics and 
interspecific interactions (MPB-30). Vol. 30 (Princeton University Press, 2018). 

9 Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical 
roles in the structure and function of aquatic food webs. Bioscience 49, 781-788 (1999). 

10 Sullivan, M. B. Viromes, not gene markers, for studying double-stranded DNA virus 
communities. Journal of virology 89, 2459-2461 (2015). 

11 Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environmental 
microbiology reports 9, 33-35 (2017). 

12 Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. 
Nature microbiology 3, 870 (2018). 

13 Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic 
diversity of bacteria, archaea, fungi, and viruses in soil. Applied and environmental 
microbiology 73, 7059-7066 (2007). 

14 Reavy, B. et al. Distinct circular ssDNA viruses exist in different soil types. Applied and 
environmental microbiology, AEM. 03878-03814 (2015). 

15 Schulze, E.-D. & Mooney, H. A. Biodiversity and ecosystem function.  (Springer Science 
& Business Media, 2012). 

16 Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. 
mSystems 3, e00076-00018 (2018). 

17 Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 
3, 853-859 (1995). 

18 Schulz, F. et al. Hidden diversity of soil giant viruses. Nature communications 9, 4881 
(2018). 

19 Chen, I.-M. A. et al. IMG/M v. 5.0: an integrated data management and comparative 
analysis system for microbial genomes and microbiomes. Nucleic acids research 47, 
D666-D677 (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/583997doi: bioRxiv preprint 

https://doi.org/10.1101/583997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

2

20 Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted 
virus sequence discovery pipeline and virus clustering for metagenomic data. nature 
protocols 12, 1673 (2017). 

21 Finn, R. D. et al. Pfam: the protein families database. Nucleic acids research 42, D222-
D230 (2013). 

22 Eddy, S. & Wheeler, T. HMMER-biosequence analysis using profile hidden Markov 
models. URL http://hmmer.janelia.org (2007). 

23 Mukherjee, S. et al. Genomes OnLine Database (GOLD) v. 6: data updates and feature 
enhancements. Nucleic acids research, gkw992 (2016). 

24 Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable 
complement of genes infects marine zooplankton. Proceedings of the National Academy 
of Sciences, 201007615 (2010). 

25 Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic 
DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. 
Virology journal 6, 223 (2009). 

26 Yoosuf, N. et al. Draft genome sequences of Terra1 and Terra2 viruses, new members of 
the family Mimiviridae isolated from soil. Virology 452, 125-132 (2014). 

27 Boughalmi, M. et al. High�throughput isolation of giant viruses of the Mimiviridae and 
Marseilleviridae families in the Tunisian environment. Environmental microbiology 15, 
2000-2007 (2013). 

28 Green, J. & Bohannan, B. J. Spatial scaling of microbial biodiversity. Trends in ecology 
& evolution 21, 501-507 (2006). 

29 Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: 
pattern, process, scale, and synthesis. Annual review of ecology, evolution, and 
systematics 34, 273-309 (2003). 

30 Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and 
ecology. Journal of Biogeography 26, 867-878 (1999). 

31 Gaston, K. J. Global patterns in biodiversity. Nature 405, 220 (2000). 
32 Paez-Espino, D. et al. IMG/VR: a database of cultured and uncultured DNA Viruses and 

retroviruses. Nucleic acids research, gkw1030 (2016). 
33 Suttle, C. A. Environmental microbiology: Viral diversity on the global stage. Nature 

microbiology 1, 16205 (2016). 
34 Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 

399, 541 (1999). 
35 Srinivasiah, S. et al. Direct assessment of viral diversity in soils using RAPD-PCR. 

Applied and environmental microbiology, AEM. 00268-00213 (2013). 
36 Chen, L. et al. Effect of different long-term fertilization regimes on the viral community 

in an agricultural soil of Southern China. European journal of soil biology 62, 121-126 
(2014). 

37 Mackelprang, R. et al. Response of the soil microbiome to cultivation in native tallgrass 
prairie soils of the Midwestern United States. Frontiers in microbiology 9, 1775 (2018). 

38 Somashekar, D. & Joseph, R. Chitosanases—properties and applications: a review. 
Bioresource technology 55, 35-45 (1996). 

39 Gooday, G. W. in Advances in microbial ecology     387-430 (Springer, 1990). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/583997doi: bioRxiv preprint 

https://doi.org/10.1101/583997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

3

40 Paez-Espino, D. et al. IMG/VR v. 2.0: an integrated data management and analysis 
system for cultivated and environmental viral genomes. Nucleic acids research 47, D678-
D686 (2018). 

41 Warmink, J., Nazir, R., Corten, B. & Van Elsas, J. Hitchhikers on the fungal highway: 
the helper effect for bacterial migration via fungal hyphae. Soil Biology and Biochemistry 
43, 760-765 (2011). 

42 Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate 
data analyses. R package version 1 (2016). 

43 Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. & Charrad, M. M. Package 
‘NbClust’. Journal of Statistical Software 61, 1-36 (2014). 

44 Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data 
manipulation. R package version 0.4 3 (2015). 

45 Wickham, H. ggplot2: elegant graphics for data analysis.  (Springer, 2016). 
46 Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). 
47 Warnes, G. R. et al. gplots: Various R programming tools for plotting data. R package 

version 2, 1 (2009). 
48 Markowitz, V. M. et al. IMG/M: a data management and analysis system for 

metagenomes. Nucleic acids research 36, D534-D538 (2007). 
49 Huntemann, M. et al. The standard operating procedure of the DOE-JGI microbial 

genome annotation pipeline (MGAP v. 4). Standards in genomic sciences 10, 86 (2015). 
50 Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous 

groups (pVOGs): a resource for comparative genomics and protein family annotation. 
Nucleic acids research, gkw975 (2016). 

51 Camacho, C. et al. BLAST+: architecture and applications. BMC bioinformatics 10, 421 
(2009). 

52 Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. 
Nature 560, 49 (2018). 

53 Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. Adaptive seeds tame genomic 
sequence comparison. Genome research, gr. 113985.113110 (2011). 

54 McKinney, W. in Proceedings of the 9th Python in Science Conference.  51-56 (Austin, 
TX). 

55 Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics, and 
function using NetworkX. (Los Alamos National Lab.(LANL), Los Alamos, NM (United 
States), 2008). 

56 Sievers, F. et al. Fast, scalable generation of high�quality protein multiple sequence 
alignments using Clustal Omega. Molecular systems biology 7, 539 (2011). 

57 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood 
trees for large alignments. PloS one 5, e9490 (2010). 

58 Elson, P. et al. SciTools/cartopy: v0.16.0, 
<https://zenodo.org/record/1182736#.W5MBIRhlDMg> (2018). 

59 Kendall, M. G. A new measure of rank correlation. Biometrika 30, 81-93 (1938). 
60 Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. 

Biometrika 75, 800-802 (1988). 
61 Li, M., Wang, J. & Chen, J. e. in BioMedical Engineering and Informatics, 2008. BMEI 

2008. International Conference on.  3-7 (IEEE). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/583997doi: bioRxiv preprint 

https://doi.org/10.1101/583997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

4

62 Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open 
source tool for metagenomics. PeerJ 4, e2584 (2016). 

63 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data 
processing and web-based tools. Nucleic acids research 41, D590-D596 (2012). 

64 Lanzén, A. et al. CREST–classification resources for environmental sequence tags. PloS 
one 7, e49334 (2012). 

65 Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. 
Science 327, 167-170 (2010). 

66 Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of 
host–phage interactions. Proceedings of the National Academy of Sciences 108, E288-
E297 (2011). 

67 Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. 
Nature 532, 465 (2016). 

68 Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological 
drivers in marine viral communities using comparative metagenomics and network 
analyses. Proceedings of the National Academy of Sciences 111, 10714-10719 (2014). 

69 Weitz, J. S. et al. Phage–bacteria infection networks. Trends in microbiology 21, 82-91 
(2013). 

70 Shannon, P. et al. Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome research 13, 2498-2504 (2003). 

71 Wang, J. et al. ClusterViz: a cytoscape APP for cluster analysis of biological network. 
IEEE/ACM transactions on computational biology and bioinformatics 12, 815-822 
(2015). 

72 Federhen, S. The NCBI taxonomy database. Nucleic acids research 40, D136-D143 
(2011). 

73 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution 
trees with profiles instead of a distance matrix. Molecular biology and evolution 26, 
1641-1650 (2009). 

74 Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood 
and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC 
bioinformatics 11, 538 (2010). 

75 Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and 
annotation of phylogenetic and other trees. Nucleic acids research 44, W242-W245 
(2016). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/583997doi: bioRxiv preprint 

https://doi.org/10.1101/583997
http://creativecommons.org/licenses/by-nc-nd/4.0/

