1 Transcriptomics supports that pleuropodia of insect embryos function in

2 degradation of the serosal cuticle to enable hatching

3

4 **Authors**

- 5 Barbora Konopová^{1,2,*}, Elisa Buchberger², Alastair Crisp³
- 6 ¹ Department of Zoology, University of Cambridge, United Kingdom
- 7 ² Department of Developmental Biology, University of Göttingen, Germany
- 8 ³ MRC Laboratory of Molecular Biology, Cambridge, United Kingdom

9

- 10 * author for correspondence: barbora.konopova@biologie.uni-goettingen.de
- 11
- 12 EB: elisa.buchberger@biologie.uni-goettingen.de
- 13 AC: acrisp@mrc-lmb.cam.ac.uk
- 14

15 Keywords

- 16 insect, Orthoptera, RNA-seq, pleuropodia, embryonic organ, gland, moulting fluid,
- 17 chitinase, immunity, ecdysone

18 ABSTRACT

19

20	Pleuropodia are limb-derived vesicular organs that transiently appear on the first
21	abdominal segment of embryos from the majority of insect "orders". They are
22	missing in the model Drosophila and little is known about them. Experiments
23	carried out on orthopteran insects eighty years ago indicated that the pleuropodia
24	secrete a "hatching enzyme" that at the end of embryogenesis digests the serosal
25	cuticle to enable the larva to hatch. This hypothesis contradicts the view that insect
26	cuticle is digested by enzymes produced by the tissue that deposited it. We studied
27	the development of the pleuropodia in embryos of the locust Schistocerca gregaria
28	(Orthoptera) using transmission electron microscopy. RNA-seq was applied to
29	generate a comprehensive embryonic reference transcriptome that was used to
30	study genome-wide gene expression of ten stages of pleuropodia development. We
31	show that the mature and secretion releasing pleuropodia are primarily enriched in
32	transcripts associated with transport functions. They express genes encoding
33	enzymes capable of digesting cuticular protein and chitin. These include the potent
34	cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. The
35	pleuropodia are also enriched in transcripts for immunity-related enzymes,
36	including the Toll signaling pathway, melanization cascade and lysozymes. These
37	data provide transcriptomic evidence that the pleuropodia of orthopterans produce
38	the "hatching enzyme", whose important component is the Chitinase 5. They also
39	indicate that the organs facilitate epithelial immunity and may function in

- 40 embryonic immune defense. Based on their gene expression the pleuropodia appear
- 41 to be an essential part of insect physiology.

42 INTRODUCTION

43

44	An integral part of insect embryogenesis is the transient appearance of enigmatic
45	glandular organs on the first abdominal segment (A1) that are called the
46	pleuropodia (Rathke, 1844; Wheeler, 1889) (Figure 1A-C). These are paired
47	structures that form external vesicles in some species while in others they sink
48	down into the body wall (reviewed in e.g., Wheeler, 1889; Hussey, 1926; Roonwall,
49	1937). The pleuropodia are peculiarly modified limbs (Machida, 1981; Bennett,
50	1999; Lewis, 2000) (Figure 1D,E): their buds emerge in a line with the buds for the
51	walking legs, but unlike the legs, the pleuropodia remain short, the majority of their
52	cells massively enlarge and develop into a transporting-like and secretory
53	epithelium (Bullière, 1970; Louvet, 1973; Louvet, 1975; Stay, 1977). The
54	pleuropodia degenerate before hatching and are absent in larvae. They have been
55	found in at least some species of nearly all insect "orders" (Figure 1F), but are
56	absent in others, like Diptera, Hymenoptera and advanced Lepidoptera such as
57	silkworms (e.g., Graber, 1889; Hussey, 1926; Hagan, 1931; Roonwall, 1937; Miller,
58	1940; Ando, 1962; Stanley and Grundmann, 1970; Ando and Haga, 1974; Bedford,
59	1978; Miyakawa, 1979; Machida, 1981; Norling 1982; Larink, 1983; Louvet, 1983;
60	Kamiya and Ando, 1985; Tanaka et al., 1985; Kobayashi and Ando, 1990; Heming,
61	1993; Kobayashi et al., 2003; Lambiase et al., 2003; Machida et al., 2004; Rost et al.,
62	2004; Uchifune and Machida, 2005; Tsutsumi and Machida, 2006; Mashimo et al.,
63	2013; Fraulob et al., 2015). Perhaps because the pleuropodia are missing in the
64	genetic model Drosophila, they have been neglected in recent decades. Their

65 function has remained unclear and the genes expressed during their active stages66 are unknown.

67

68 Eighty years ago Eleanor Slifer (Slifer, 1937; 1938) demonstrated that the 69 pleuropodia of grasshoppers (Orthoptera) are necessary for the digestion of the 70 serosal cuticle (SC) before hatching, to enable the larva to get out of the egg. The SC 71 is a chitin and protein-containing sheet structurally similar to the larval or adult 72 cuticles and is produced by the extraembryonic serosa in early embryogenesis 73 (Goltsev et al., 2009; Jacobs et al., 2015). Shortly before hatching the inner layer of 74 the SC (procuticle) disappears. Slifer (Slifer, 1937) showed that when the 75 pleuropodia are removed from the embryos, the SC remains thick and the larva 76 stays arrested in the egg. She proposed that the pleuropodia secrete the "hatching 77 enzyme", a substance likely similar to the cuticle degrading moulting fluid (MF) that 78 is released by the larval epidermis under the old cuticle when the insect is preparing 79 to moult (Reynolds and Samuels, 1996). The exact molecular composition of this 80 "hatching enzyme" is unknown.

81

The endocrinologists Novak and Zambre (Novak and Zambre, 1974) argued that this would be an unusual way to digest a cuticle. During larval moulting (Nijhout, 1994) the larval epidermal cells deposit a cuticle and subsequently it is the same epidermal cells, not a special gland that secretes the cuticle degrading MF. Therefore they proposed that the SC degrading enzymes would most probably be secreted by the serosa itself. They proposed that the pleuropodia instead secrete the moulting

88	hormone "ecdysone", which then stimulates the serosa to secrete the "hatching
89	enzyme". They also suggested that the pleuropodia reach the peak of their activity in
90	very young embryos during katatrepsis when the serosa is still present (Panfilio,
91	2008).
92	
93	In some insects, including locusts, ultrastructural studies (Bullière, 1970; Louvet,
94	1973; Louvet, 1975; Rost et al., 2004; Viscuso and Sottile, 2008) have indeed shown
95	that the pleuropodia secrete granules similar to the "ecdysial droplets" carrying the
96	MF (Locke and Krishnan, 1973). Some of the Slifer's experiments (Slifer, 1937) were
97	successfully repeated by others (Jones, 1956) and a substance capable of digesting
98	pieces of SC was even isolated from the pleuropodia (Shutts, 1952). But a proper
99	validation by the state-of-the-art genetic methods that the pleuropodia express
100	genes for enzymes capable to digest the SC is missing.
101	
102	Here, we identified the mRNAs expressed in the pleuropodia of the locust
103	Schistocerca gregaria (Orthoptera). We chose Schistocerca as an ideal model,
104	because it has large embryos (eggs over 7 mm) and external pleuropodia that can
105	easily be dissected out, and because the previous experiments testing the function of
106	pleuropodia were carried out in orthopterans. We studied the development of the
107	pleuropodia including using transmission electron microscopy (TEM), and by high-
108	throughput RNA sequencing (RNA-seq) generated transcriptomes from ten
109	morphologically defined stages. We performed differential gene expression analysis
110	between the pleuropodia and similarly aged hind legs. For mapping of reads we

111	assembled a transcriptome from whole embryos. The goal of this paper was to
112	investigate whether the observed gene expression profile of the pleuropodia is
113	consistent with the idea that these are organs for the secretion of the "hatching
114	enzyme". We show that during their high secretory activity the pleuropodia express
115	genes for cuticle degrading chitinase and proteases that were previously identified
116	in the MF. This supports the "hatching enzyme hypothesis" (Slifer, 1937; 1938).
117	
118	RESULTS
119	
120	Development of pleuropodia in the course of Schistocerca embryogenesis
121	
122	Before we could start exploring the genes expressed in the pleuropodia of
123	Schistocerca we needed to understand how these organs develop in the locust, when
124	they are fully differentiated and show activity. Cytological study of developing
125	pleuropodia in grasshopper embryos was previously carried out by Slifer (Slifer,
126	1938), but the light microscopy that she used does not provide sufficient resolution
127	to distinguish the fine ultrastructure of the cells. Ultrastructure of pleuropodia by
128	TEM has been described for several insects (Bullière, 1970; Louvet, 1973; Louvet,
129	1975; Stay, 1977; Louvet, 1983; Rost et al., 2004; Viscuso and Sottile, 2008), but a
130	chronological study is missing for <i>Schistocerca</i> or any other orthopteran.
131	
132	Under our conditions Schistocerca embryogenesis lasts 14.5 days (100%
133	developmental time, DT) (Figure 2A, S1). We followed the development of the

134	pleuropodia from the age of 4 days (27.6 % DT), when all appendages are similar
135	looking short buds, until just before hatching, day 14 (Figures 2B, S2-S3).
136	Simultaneously, we followed the development of the hind leg, which we used for
137	comparison (because pleuropodia are peculiarly modified legs).
138	
139	We traced cell divisions in the pleuropodia by using Phosphohistone- 3 as a marker
140	(Figure 2C). The glandular cells were labeled only in the days 4 and 5. From day 6
141	onwards no cell divisions were detected and the nuclei started to enlarge as the cells
142	became polyploid (Grellet, 1971). The pleuropodial stalk cells, haemocytes entering
143	the pluropodia and cells in the other embryonic tissues kept dividing.
144	
145	Although the pleuropodia get their final external mushroom-like shape just before
146	the embryos undergo katatrepsis (day 6; 41.4% DT) (Figure 2A,B), we found by TEM
147	(Figure 3) that the glandular cells fully differentiate only later, shortly before dorsal
148	closure (day 8; 55.2% DT) (compare the undifferentiated cells in Figure 3F-I, with
149	differentiated cells in Figure 3J-P). At that time these cells form a single-layered
150	transporting-like epithelium (Berridge and Oschman, 1972) and secretion granules
151	inside and outside the cells become visible (Figure 3A-E, J). The granules outside of
152	the cells first appear at the base and in between the long apical microvilli (brush-
153	border) (Figure 3E,J). The whole pleuropodium is covered with a thin embryonic
154	cuticle ("the first embryonic cuticle", EC1); the tips of the microvilli produce fibrous
155	material that is a part of this cuticle (Figure 3E) (compare with similar fibers above
156	the leg epidermis in Figure S4).

158	As development progresses the secretion granules (inside and outside the cells)
159	become more abundant and are present also above the microvilli (Figure 3K-P). On
160	day 12 the apical side of the glandular cells changes: clusters of microvilli (usually at
161	the borders between cells) elevate (Figure 3N). Later the cells show signs of
162	degeneration, the chromatin condenses and the cell content becomes disorganized
163	(Figure 30,P). Large secretion granules are still abundant and probably released
164	even on the last day before hatching, when the pleuropodia have shrunk and
165	collapsed (Figures 2B,3P).
166	
167	When the embryo moults (apolyses a cuticle and secretes a new one), first at about
168	8.5 days and again just before 12 days (Figures 2A, S4), ecdysial droplets are present
169	below the apolysed cuticle. These droplets are very similar at both moults (compare
170	Figures S4F and I). They are very similar, but not identical to the granules released
171	by the pleuropodia (Figure 4A,B). The glandular cells of the pleuropodia do not
172	moult and keep the first embryonic cuticle (EC1) their whole life-time.
173	
174	At hatching, the larva enclosed in the (now apolysed) second embryonic cuticle
175	(EC2) leaves the eggshell and digs through the substrate up to the surface (Bernays,
176	1971; Konopova and Zrzavy, 2005). Here the EC2 is shed and the degenerated
177	pleuropodia are removed with it (Roonwall, 1937; Figure 2A).
178	

179	Therefore our observations show that the timing of the high secretory activity
180	corresponds to the stages when Slifer (Slifer, 1937) demonstrated the presence of
181	the "hatching enzyme" (Figure 2A). Next we looked at what genes are expressed in
182	the pleuropodia at this time.
183	
184	Generation of a comparative RNA-seq dataset from developing pleuropodia
185	and legs of <i>Schistocerca</i>
186	
187	To find out what genes are upregulated in the pleuropodia of Schistocerca, we
188	applied a comparative genome wide expression analysis using RNA-seq. We
189	generated a comprehensive embryonic transcriptome (see details in Materials and
190	Methods) that served as reference for the analysis. This transcriptome consists of
191	20834 transcripts (Table S1). Its completeness was assessed using the open-source
192	software BUSCO (version 3) (Simão et al., 2015; Waterhouse et al., 2018). 95.6%,
193	96.3% and 94.6% of the Metazoa, Arthropoda and Insecta orthologs, respectively,
194	were found, a level comparable to published "complete" transcriptomes.
195	
196	To gain insights into the gene expression dynamics of pleuropodia development, we
197	dissected pleuropodia from ten embryonic stages and isolated their mRNAs. In
198	parallel, we dissected hind legs for the same ten stages to generate a comparative
199	transcriptomic dataset. In total we sequenced pairs of samples (pleuropodia and
200	legs) from ten developmental stages and performed a differential expression
201	analysis between legs and pleuropodia for each stage (Figure 2A, Table S2). A

202	principal component analysis (PCA) confirmed that legs and pleuropodia are not
203	only morphologically very similar at early stages, but share a common
204	transcriptomic landscape as well (Figure 5A). The number of differentially
205	expressed genes (DEGs) rises as development progresses (Figure 5B, Table S3).
206	
207	For several genes whose expression dynamics in the pleuropodia were already
208	known, such as <i>Ubx, abd-A, dll</i> and <i>dac</i> (e.g., Tear et al., 1990; Bennett et al., 1999;
209	Prpic et al., 2001; Hughes and Kaufman, 2002; Angelini et al., 2005; Zhang et al.,
210	2005), we confirmed that they were up- or downregulated in our RNA-seq data as
211	predicted (Table S4). To further validate the RNA-seq dataset, we carried out real-
212	time RT-PCR on 46 selected genes in several stages (in total in 176 cases) and got
213	results consistent with the sequencing data (Table S5). Therefore we are confident
214	that we can identify important factors that are relevant for pleuropodia function and
215	development.
216	
217	Identification of genes upregulated in the intensively secreting pleuropodia
218	
219	Since we wanted to focus specifically on the pleuropodia with high secretory activity
220	we pooled the data from the samples 10, 11 and 12 days together, separately for
221	pleuropodia and legs, and treated them as triplicates. These three samples cover the
222	stages from the embryos after the dorsal closure, when the pleuropodia intensively
223	release secretion granules, but are not in advanced state of degeneration (day 13)
224	(Figures 2A, 3L-N). We performed differential expression analysis and gene

225	ontology (GO) enrichment analysis with genes upregulated in legs and pleuropodia.
226	We identified 781 transcripts upregulated in the pleuropodia (compared to the legs)
227	and 1535 downregulated (Table S3). Table 1 shows the top ten percent of the most
228	highly abundant transcripts (measured in RPKM units, "reads per kilobase of
229	transcript per million reads mapped") that we found upregulated in the
230	pleuropodia.
231	
232	For the sake of clarity we summarized redundant GO terms in representative GO-

233 groups (Figure 6; the full set of enriched GO terms are presented in Tables S6, S7; 234 GOs enriched at each developmental stage separately are in Tables S8, S9). Our 235 results show that the genes downregulated in the pleuropodia (upregulated in the 236 legs) are enriched in GO terms associated with development and function of muscle 237 tissue, cell division and DNA synthesis. This is in agreement with our and previous 238 observations that the pleuropodia lack muscles, while at these stages the legs are 239 differentiating, developing muscles and their cells are still dividing (Figure 2C). The 240 pleuropodia downregulate genes for the development of mesoderm, which is 241 consistent with the morphological observation that they are formed by ectodermal 242 cells (Figure 3A).

243

The upregulated genes are primarily enriched in GO terms (Figure 6, Table S7)

associated with transport, thus genetically confirming the morphological

observations that the pleuropodia are transporting organs. These include genes for

transporters present in typical insect transporting epithelia (Chintapalli et al.,

248	2013), such as the energy providing V-ATPase and Na+, K+ ATPase (Table S10). We
249	found enriched GO terms linked with lysosome organization, consistent with the
250	observation that the pleuropodia contain numerous lysosomes (Figure 3, Louvet
251	1975). We also found a large cluster of GO terms associated with lipid metabolism,
252	consistent with the abundant smooth endoplasmic reticulum in the cells . Therefore,
253	the pool of genes expressed in the pleuropodia is in agreement with the morphology
254	of the organs. Among the novel findings are upregulation of genes associated with
255	immunity, as well as with carbohydrate derivative metabolism, aminoglycan
256	catabolic process and proteolysis: these might contain genes for degradation of the
257	SC. Next we looked at selected genes in a detail.
258	
259	Pleuropodia upregulate genes for cuticular chitin degrading enzymes
259 260	Pleuropodia upregulate genes for cuticular chitin degrading enzymes
	Pleuropodia upregulate genes for cuticular chitin degrading enzymes Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes
260	
260 261	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes
260 261 262	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a
260 261 262 263	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a two-enzyme system composed of a β -N-acetyl-hexosaminidase (NAG) and a
260 261 262 263 264	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a two-enzyme system composed of a β -N-acetyl-hexosaminidase (NAG) and a chitinase (CHT) (Zhu et al., 2016). Both types of enzymes, a NAG and a chitinase,
260 261 262 263 264 265	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a two-enzyme system composed of a β -N-acetyl-hexosaminidase (NAG) and a chitinase (CHT) (Zhu et al., 2016). Both types of enzymes, a NAG and a chitinase, have to be simultaneously present for efficient hydrolysis of chitin (Fukamizo and
260 261 262 263 264 265 266	Insect cuticle is digested by a cocktail of chitin and protein degrading enzymes (Reynolds and Samuels, 1996; Zhang et al., 2014). Cuticular chitin is hydrolyzed by a two-enzyme system composed of a β -N-acetyl-hexosaminidase (NAG) and a chitinase (CHT) (Zhu et al., 2016). Both types of enzymes, a NAG and a chitinase, have to be simultaneously present for efficient hydrolysis of chitin (Fukamizo and Kramer, 1985). Previous studies have shown that only particular NAGs and CHTs

270	Insect NAGs were classified into four major classes, of which chitinolytic activity was
271	demonstrated for group I and II (Table 2) (Hogenkamp et al., 2008; Rong et al.,
272	2013). Our transcriptome contains four NAG transcripts, each representing one
273	group (Table 2, Figures 7A-D, S5A, S6A). All were upregulated in the pleuropodia.
274	Among them the Sg-nag2 for the chitinolitic NAG group II had the highest expression
275	(among 46 most highly "expressed" genes, Table 1) and fold change between legs
276	and pleuropodia. The abundance of transcripts for the chitinolitic NAGs starts to rise
277	from day 6 (Figure 7A,B) when the glandular cells in the pleuropodia begin to
278	differentiate morphologically (Figures 1, 3). The expression profile of <i>Sg-nag2</i> , that
279	we have chosen for validation, was similar by RNA-seq and real-time RT-PCR
280	(compare Figure 7B and B').
281	

282 To see if the pleuropodia are the major source of the *Sg-nag2* transcript in the 283 embryo, we looked at its expression in various parts of the body (head, thorax, 284 abdomen with pleuropodia, abdomen from which pleuropodia were removed) using 285 real-time RT-PCR (Figure 8A.B). We performed this analysis in embryos on day 6. 286 when the pleuropodia are still immature, day 8, just at the onset of the secretory 287 activity, day 10 and day 12 during active secretion. During all of the stages the 288 abdomen with pleuropodia had the highest expression (A+ in Figure 8B), although 289 the expression was lower in the youngest sample (day 6) compared to the samples 290 from older embryos (day 8, 10 and 12). This shows that the pleuropodia are the 291 major source of mRNAs for this cuticle-degrading NAG.

292

293	The insect CHTs have been classified into several groups (Zhu et al., 2016; Noh et al.,
294	2018), of which the major role in the digestion of cuticular chitin is played by
295	Chitinase 5 and (perhaps with a secondary importance) by Chitinase 10 (Zhu et al.,
296	2008; Qu et al. 2014) (Table 2; the classification of CHTs into five major groups that
297	we use here is based on Zhu et al., 2008). Some chitinases, for example, are
298	expressed in the gut, trachea and fat body, where they are likely involved in
299	digestion of dietary chitin, turnover of peritrophic matrix and immunity, other
300	chitinases expressed by the epidermis organize assembly of the new cuticle (e.g.,
301	Yan et al., 2002; Shi and Paskewitz, 2004; Pesch et al., 2016; Noh et al., 2018).
302	
303	Our transcriptome contains 16 full or partial transcripts of CHTs representing all of
304	the major CHT groups (Table 2, Figure S5B, S6B). The pleuropodia specifically
305	upregulate both of the genes for Chitinase 5, homologs of <i>cht5-1</i> and <i>cht5-2</i> from the
306	locust Locusta migratoria (Li et al., 2015). One of the transcripts, Sg-cht5-1, was
307	among the top 15 most abundant transcripts upregulated in the highly secreting
308	pleuropodia (Table 1). The predicted amino acid sequence contains a conserved
309	catalytic domain and a signal peptide, and thus is likely to be active and secreted,
310	respectively (Figure S5B). The other upregulated CHTs were homologs of <i>cht2</i> and
311	<i>idgf</i> . By contrast, the <i>Schistocerca</i> homolog of <i>cht10</i> that also has a role in cuticular
312	chitin hydrolysis and required for larval moulting (Zhu et al., 2008; Pesch et al.,
313	2016) had low expression in both legs and pleuropodia.
314	

315	We next focused on the transcript of the major chitinase, <i>Sg-cht5-1</i> . Unlike the NAGs,
316	both RNA-seq and real-time RT-PCR have shown that the expression of this CHT is
317	low in the early secreting stages, rises only later around day 12 and reaches highest
318	levels when the pleuropodia are already degenerating (day 13 and 14) (Figure 7
319	F,G,F'). Also real-time RT-PCR on cut embryos has shown that the pleuropodia are a
320	major source of the <i>Sg-cht5-1</i> mRNA on day 12 but not before (the high expression
321	in the whole embryo on day 10 could be linked to the second embryonic moult and
322	was also observed with <i>Sg-cht7</i> , although not with <i>Sg-cht10</i> , Figure S8). These data
323	show that the pleuropodia before hatching express a cuticle-degrading chitinase.
324	
325	Pleuropodia upregulate transcripts for some proteases that could digest a
326	cuticle
327	
328	Our GO enrichment analysis has shown that the secreting pleuropodia are enriched
329	in transcripts for genes associated with proteolysis (Figure 6, Table S11).
329 330	in transcripts for genes associated with proteolysis (Figure 6, Table S11). Transcripts for proteases and their inhibitors are abundant among the top ten
330	Transcripts for proteases and their inhibitors are abundant among the top ten
330 331	Transcripts for proteases and their inhibitors are abundant among the top ten percent of the most highly "expressed" upregulated DEGs (Table 1). To see if the
330 331 332	Transcripts for proteases and their inhibitors are abundant among the top ten percent of the most highly "expressed" upregulated DEGs (Table 1). To see if the upregulated transcripts encode enzymes that are associated with digestion of insect
330331332333	Transcripts for proteases and their inhibitors are abundant among the top ten percent of the most highly "expressed" upregulated DEGs (Table 1). To see if the upregulated transcripts encode enzymes that are associated with digestion of insect cuticle, we compared our data with the enzymes identified in the complete
 330 331 332 333 334 	Transcripts for proteases and their inhibitors are abundant among the top ten percent of the most highly "expressed" upregulated DEGs (Table 1). To see if the upregulated transcripts encode enzymes that are associated with digestion of insect cuticle, we compared our data with the enzymes identified in the complete proteomic analysis of the MF from the lepidopteran <i>Bombyx mori</i> (Zhang et al.,

338	most highly expressed) and 15 downregulated (Tables 3, S12). The prominent MF
339	protease Carboxypeptidase A (Sui et al., 2009; Zhang et al., 2014) and the Trypsin-
340	like serine protease known to function in locust moulting (Wei et al., 2007) were not
341	upregulated in the pleuropodia. These data indicate that the pleuropodia upregulate
342	transcripts for proteolytic enzymes associated with the degradation of the cuticle
343	and would be able to contribute to the digestion the SC, although the enzymatic
344	cocktail produced by the pleuropodia may not be identical with the MF.
345	
346	Pleuropodia are enriched in transcripts for immunity-related proteins
347	
348	An observation that was not anticipated was the upregulation of genes for proteins
349	involved in immunity (Lemaitre and Hoffmann, 2007; Buchon et al., 2014) (Figures
350	6, 9, Table S13). This is especially interesting, because immunity related proteins
351	have been found in the MF (Zhang et al., 2014). This is in agreement with that the
352	cells in the pleuropodia are a type of barrier epithelium (Lemaitre and Hoffmann,
353	2007; Buchon et al., 2014; Bergman et al., 2017), which enables the contact between
354	the organism and its environment. Barrier epithelia (e.g., the gut, Malpighian tubules
355	or tracheae) constitutively express genes for immune defense.
356	
357	In total we found upregulated 99 transcripts (13 percent of the upregulated genes)
358	for immunity-related proteins. These include proteins at all three levels, the
359	pathogen recognition, signaling and response (Figure 9, Table S13). From the four
360	signaling pathways, Toll was upregulated, but not IMD or JAK/STAT, and from the

361	JNK signaling we found c-Jun. Genes for a range of immune responses	were
301	Just signaling we found c jun. denes for a range of minute responses	WUIU

- 362 upregulated, including production of reactive nitrogen species (RNS), melanization,
- 363 genes for lysozymes and one antimicrobial peptide (AMP) similar to Diptericin.
- 364
- 365 The transcripts for lysozymes were among the most highly expressed (Table 1) and
- 366 we chose to focus on them. Lysozymes are secreted proteins that kill bacteria by
- 367 breaking down their cell wall. Our *Schistocerca* transcriptome contains nine genes
- 368 for lysozymes, seven of which were upregulated (Table 4, Table S14). The second
- 369 most highly expressed DEG was a transcript for a C-type lysozyme (*Sg-LyzC-1*) that
- 370 was previously shown to have anti-bacterial properties in *Schistocerca* (Mohamed et
- al., 2016) (Table 1). We examined expression of five selected genes on cut embryos
- by real-time RT-PCR (Figure 9). Our data showed that the pleuropodia are the major
- 373 source of mRNAs for these genes.
- 374

375 **Pleuropodia do not upregulate the pathway for ecdysone biosynthesis**

376

377 Previous work has suggested that pleuropodia may be embryonic organs producing

the moulting hormone ecdysone (Novak and Zambre, 1974). During post-embryonic

- 379 stages, ecdysone is synthesized in the prothoracic glands and several other tissues
- by a common set of enzymes (reviewed in Niwa and Niwa 2014; Ou et al., 2016),
- 381 some which have been characterized in the locusts (Marchal et al., 2011, 2012;
- Lenaerts et al., 2016; Sugahara et al., 2017). As shown in *Drosophila*, these genes are
- 383 expressed in diverse cell types in embryos, and when the larval prothoracic glands

are formed their expression co-localizes there (Chávez et al., 2000; Warren et al.,

385 2002; Petryk et al., 2003; Niwa et al., 2004; Warren et al., 2004).

- 386
- 387 Out of the nine genes critical for ecdysone biosynthesis, only one (*dib*) was
- 388 upregulated in the highly secreting pleuropodia (Table 5, S15). One gene (*spo*) was
- downregulated. The pleuropodia are not enriched in the whole pathway at any time
- 390 of development, including around katatrepsis, in which experiments supporting the
- 391 synthesis of moulting hormone were carried out (Table S9, S16). Under the GO term
- 392 "hormone biosynthetic process" enriched in the highly secreting pleuropodia (Table
- 393 S7, S17) we found a gene *Npc2*a that encodes a transporter of sterols including
- 394 precursors of ecdysone. It is also required for ecdysone biosynthesis, but indirectly
- and in the cells it functions as a general regulator of sterol homeostasis (Huang et al.,
- 396 2007). We conclude that our transcriptomic data provide little evidence that the
- 397 pleuropodia are involved in ecdysone biosynthesis.
- 398

399 **DISCUSSION**

400

401 Pleuropodia of *Schistocerca* express genes for the "hatching enzyme"

402

403 The first demonstration of the physiological role of the pleuropodia comes from the

- 404 experiments carried out on a grasshopper *Melanoplus* (closely related to
- 405 *Schistocerca*), by Eleanor Slifer (Slifer, 1937). When she took embryos before
- 406 hatching (Figure 2) and separated anterior and posterior halves by ligation, the SC

407	was digested only in the part of the egg with the pleuropodia. Surgical removal of
408	the pleuropodia prevented SC digestion in the whole egg. Slifer's hypothesis that the
409	pleuropodia secrete the "hatching enzyme" was criticized by Novak and Zambre
410	(1974): if the deposition and digestion of the SC is similar to the cuticle turnover
411	during larval moulting, then the "hatching enzyme" is produced by the serosa. They
412	believed that the pleuropodia reach the peak of their activity in embryos during
413	katatrepsis (45% DT) and participate in digestion of the SC indirectly by secreting
414	ecdysone to stimulate the serosa.
415	
416	Our ultrastructural observations on staged pleuropodia of Schistocerca have shown

417 that the glandular cells only begin to differentiate just at the time of katatrepsis

418 (45% DT) and do not secrete at that time. This would explain why no digestive effect

419 on the SC was detected by Novak and Zambre (Novak and Zambre, 1974) using a

420 homogenate from *Schistocerca* pleuropodia isolated at this stage. The release of

421 granular secretion starts just before dorsal closure (55% DT) and intensifies before

422 hatching. This is in agreement with previous observations on some stages of the

423 pleuropodia in other orthopterans (Louvet, 1975; Viscuso and Sottile, 2008).

424

Our RNA-seq analysis revealed that the secreting pleuropodia highly express genes
encoding enzymes that are capable of digesting a typical chitin-protein insect
cuticle. These include genes for proteolytic enzymes similar to those present in the

428 MF and cuticular chitin-degrading NAGs and Chitinase 5. The pleuropodia also

429 express genes for Chitinase 2 and Idgf, which have low effect on cuticular chitin

430 digestion, but were shown to organize proteins and chitin fibres during cuticle

431 deposition (Pesch et al., 2016). These CHTs may organize the fibres in the cuticle

432 secreted by the pleuropodia (Figure 3).

433

434 In combination with RT-PCR we showed that, while the expression of the *Sg-nag1*

435 and *Sg-nag2* started to rise in parallel with the differentiation of the glandular cells,

- 436 the *Sg-cht5-1* and *Sg-cht5-2* transcripts raised shortly before hatching. Chitinase 5 is
- 437 a critical chitin-degrading chitinase in insects: it is highly abundant in the moulting
- 438 fluid and its silencing in diverse insects including locusts leads to failure in larval

439 moulting (Zhu et al., 2008; Zhang et al., 2014; Li et al., 2015; Xi et al., 2015; Pesch et

al., 2016). Our data indicate that the sudden rise in the expression of *Sg-cht5* in the

441 pleuropodia at the end of embryogenesis and presumably secretion of this CHT into

the extraembryonic space is the key component of the "hatching enzyme" effect

443 (Slifer 1937; 1938) in locusts and grasshoppers.

444

Pleuropodia in some other insects could secrete the "hatching enzyme" and their function may also vary among species

447

448 There is evidence to suggest that the process occurs similarly in some insect. As in

449 orthopterans, the pleuropodia of the rhagophthalmid beetle *Rhagophthalmus ohbai*

- 450 release secretion after katatrepsis and SC rapidly degrades just shortly before
- 451 hatching (Kobayashi et al., 2003). In the large water true bugs from the family
- 452 Belostomatidae, the male carries a batch of eggs on his back. It is believed that the

detachment of the eggs just before hatching is also caused by the secretion from thepleuropodia (Tanizawa et al., 2007).

455

- 456 The molecular mechanism of SC degradation may also vary between insects and as
- 457 previously hypothesized (Novak and Zambre, 1974) the serosa may also contribute
- 458 to the SC degradation. The serosa of the beetle *Tribolium*, expresses *cht10* and *cht7*
- 459 (Jacobs et al., 2015), of which the former CHT is important for cuticular chitin
- 460 digestion. Silencing of *cht10*, but not *cht5* prevented larvae from hatching (Zhu et al.,
- 461 2008). Transcripts for *cht10* were not upregulated in the pleuropodia of
- 462 Schistocerca. This suggests that the SC is degraded by enzymes produced by both,
- the serosa and the pleuropodia and that the indispensable roles in cuticle digestion
- 464 are played by different enzymes in different insects.
- 465

466 In some insects the pleuropodia may not be involved in hatching but have another

467 function. In the viviparous cockroach *Diploptera punctata* (Stay, 1977), the secretion

from the pleuropodia is very low and the large pleuropodia of the melolonthid

- 469 beetle *Rhizotrogus majalis* have not been observed to produce any secretion
- 470 granules at all (Louvet, 1983). In dragonflies, one of the more basal lineages of
- 471 insects, the secretion likely has a different function than in orthopterans, because
- their SC is not digested before hatching (Ando, 1962). The special epithelium in the
- 473 pleuropodia shares features with transporting epithelia (Louvet, 1973; Stay, 1977)
- that function in water transport and ion balance (Berridge and Oschman, 1972). Our
- 475 data do not exclude this function, but it is yet to be tested.

476

477 The pleuropodia of *Schistocerca* are enriched in transcripts for enzymes

478 functioning in immunity

479

480	We found that many of the genes expressed in the pleuropodia encode proteins
481	involved in immunity (Lemaitre and Hoffmann, 2007). This indicates that the
482	pleuropodia are also organs of epithelial immunity, similar to other barrier epithelia
483	in postembryonic stages (such as the gut) (Bergman et al., 2017), which are in a
484	constant contact with microorganisms. The pleuropodia differ from such tissues in
485	that they are not directly exposed to the environment, but enclosed in the eggshell,
486	seemingly limiting their contact with microorganisms. Proteins associated with
487	immune defense are also found in the MF (Zhang et al., 2014), where they prevent
488	invasion of pathogens through a "naked" epidermis after the separation of the old
489	cuticle from the epidermis in the process of apolysis. As found in the beetle
490	Tribolium, during the early embryonic stages the frontier epithelium providing the
491	egg with an immune defense is the extraembryonic serosa (Jacobs et al., 2014). The
492	serosa starts to degenerate after katatrepsis and disappears at dorsal closure
493	(Panfilio, 2008). The pleuropodia of <i>Schistocerca</i> differentiate just before dorsal
494	closure, suggesting that they take over this defense function in late embryogenesis.
495	It will be interesting to clarify in the upcoming research whether apart from their
496	role in hatching the pleuropodia are important organs for fighting against potential
497	pathogens that have gained access to the space between the embryo and the
498	eggshell.

499	4	9	9
-----	---	---	---

500 **Conclusions**

501

502	The pleuropodia of Se	<i>histocerca</i> have	e morphological	markers of high s	secretory
-----	-----------------------	------------------------	-----------------	-------------------	-----------

- 503 activity in the second half of embryogenesis after the definitive dorsal closure is
- 504 finished. Transcriptomic profiling indicate that the conclusions that Eleanor Slifer
- 505 drew from her experiments over eighty years ago that the pleuropodia secrete
- 506 cuticle degrading enzymes, were correct. The pleuropodia likely have other
- 507 functions, such as in immunity. The pleuropodia are specialized embryonic organs
- and apparently an important though neglected part of insect physiology.

509

- 510 MATERIALS AND METHODS
- 511
- 512 Insects
- 513

514 Schistocerca gregaria (gregarious phase) were obtained from a long-term, partly

- 515 inbred colony at the Department of Zoology, University of Cambridge. Eggs were
- 516 collected into aluminium pots filled with damp sand. The pots were picked up after
- 517 two (most samples) or four hours and incubated at 30°C.

518

519 **Description of embryonic stages**

521	Embryos and appendages were dissected in phosphate buffer saline (PBS). Whole
522	eggs were bleached in 50% household bleach to dissolve the chorion. All were
523	photographed in water or PBS using the Leica M125 stereomicroscope equipped
524	with DFC495 camera and associated software. Photos were processed using Adobe
525	Photoshop CC 2017.1.1. Photos of eggs and embryos that illustrate the stage (Figure
526	2A and S1) had the background cleaned using the software (removal of the tools
527	that hold the photographed objects in place).
528	
529	Immunohistochemistry on paraffin sections
530	
531	Embryos were dissected in PBS and pieces including posterior thorax and anterior
532	abdomen (older embryos) or mid thorax plus whole abdomen (young embryos)
533	were fixed in PEMFA (4% formaldehyde in PEM buffer: 100 mM PIPES, 2.0 mM
534	EGTA, 1.0 mM MgSO ₄) at room temperature (RT) for 15-30 minutes, then washed in
535	PBT (PBS with 0.1% Triton-X 100) and stored in ethanol at -20°C.
536	Samples were cleared in 3x10 minutes in Histosol (National Diagnostics) at RT,
537	infiltrated with paraffin at 60° C for 2-3 days, embedded in moulds and hardened at
538	RT. Sections 6-8 μm thick were prepared on a Leica RM2125RTF microtome. The
539	slides with sections were washed with Histosol, ethanol, then stepwise re-hydrated
540	to PBT. Incubations were carried out in a humidified chamber. Slides were blocked
541	with 10% sheep serum (Sigma-Aldrich) in PBT for 30 minutes at RT, incubated with
542	Phospho-Histone H3 antibody (Invitrogen) diluted with PBT 1:130 at 4°C overnight,
543	washed and incubated with Alexa Fluor 568 anti-rabbit secondary antibody

	544	(Invitrogen)	diluted	1:300 at	RT for 2	2 hours,	washed	and in	ncubated	with	DAI
--	-----	--------------	---------	----------	----------	----------	--------	--------	----------	------	-----

545 (Invitrogen) diluted 1:1000. Sections were imaged with a Leica TCS SP5 confocal

546 microscope and photos processed using Fiji (https://fiji.sc).

547

548 Electron microscopy

549

550 For TEM embryos were removed from the chorion in PBS and pieces of posterior

thorax to anterior abdomen were fixed in 2.5-3.0% glutaraldehyde in 0.1 M

phosphate buffer pH7.2 for a few hours at room temperature and then at 4°C for

several days. Each pleuropodium and leg were then separated and embedded into

554 2% agar. Small cubes of agar with the tissue were incubated in osmium ferrocyanide

solution (3% potassium ferricyanide in cacodylate buffer with 4 mM calcium

chloride) for 1-2 days at 4°C, then in thiocarbohydrazide solution (0.1 mg

thiocarbohydrazide from Sigma-Aldrich, and 10 ml deionized water dissolved at

558 60°C) and protected from light for 20-30 minutes at RT, then in 2% aqueous

osmium tetroxide 30-45 minutes at RT and in 1% uranyl acetate (maleate buffered

to pH 5.5) at 4°C overnight. Washing between each step was done with deionized

561 water. Samples were dehydrated in ethanol, washed with dry acetone, dry

acetonitrile, infiltrated with Quetol 651 resin (Agar Scientific) for 4-6 days and

hardened in moulds at 60°C for 2-3 days. Semithin sections were stained with

toluidine blue. Ultrathin sections were examined in the Tecnai G280 microscope.

565

566	For SEM whole embryos were dissected out of the chorion in PBS, fixed in 3%
567	glutaraldehyde in phosphate buffer similarly as above. They were post-fixed with
568	osmium tetroxide, dehydrated through the ethanol series, critical point dried, gold
569	coated, and observed in a FEI/Philips XL30 FEGSEM microscope. Photos from TEM
570	and SEM were processed using Adobe Photoshop CC 2017.1.1.
571	
572	Preparation of the reference transcriptome
573	
574	Whole embryo transcriptome: Eggs from each 1-day egg collection incubated for the
575	desired time were briefly treated with 50% bleach, washed in distilled water and
576	frozen in liquid nitrogen. Total RNA was isolated with TRIzol reagent (Invitrogen),
577	treated with TURBO DNase (Invitrogen) and purified on a column supplied with the
578	RNAeasy Kit (Quiagen). The purified RNA from each day (14 samples) was pooled
579	into 4 samples: day 1-4, 5-7, 8-10 and 11-14. Ten μg of RNA from each of the 4
580	samples was sent to BGI (Hong Kong). The total RNA was enriched in mRNA by
581	using the oligo(dT) magnetic beads and cDNA library was prepared. 100 bp paired-
582	end (PE) reads were sequenced on Illumina HiSeq 2000; numbers of the reads
583	obtained are in Table S2. Non-clean reads were filtered using filter_fq software
584	(removes reads with adaptors, reads with unknown nucleotides larger than 5% and
585	low quality reads). Transcripts from all samples were assembled separately using
586	the Trinity software (release 20130225) (Grabherr et al., 2011) with parameters:
587	seqType fqmin_contig_length 100;min_glue 4group_pairs_distance 250;
588	path_reinforcement_distance 95min_kmer_cov 4. Transcriptes from the 4

assemblies were then merged together to form a single set of non-redundant

590 transcripts using TGICL software (v2.1) (Pertea, 2003) with parameters: -1 40 -c 10 -

591 v 20.

592

593	Legs and	pleuropc	odia transcrit	otome (age	about 8.5-8.75	5 davs): T	he appendages
	- 0	F F -	r			, - ,	· · · · · · · · · · · · · · · · · · ·

594 were dissected in cold RNase-free PBS (treated with diethyl pyrocarbonate) and

total RNA was isolated and cleaned as described above. Ten μ g of RNA from each leg

sample and pleuropodium sample were transported to the Eastern Sequence and

597 Informatics Hub (EASIH), Cambridge (UK). cDNA libraries were prepared including

598 mRNA enrichment. 75 bp PE reads were sequenced on Illumina GAIIX; numbers of

the reads obtained are in Table S2. The reads were trimmed to the longest

600 contiguous read segment for which the quality score at each base is greater than a

601 Phred quality score of Q = 13 (or 0.05 probability of error) using the program

602 DynamicTrim (v. 1.7) from the package SolexQA (Cox et al., 2010;

603 http://solexaqa.sourceforge.net/). The trimmed reads were then filtered to remove

604 sequence adapter using the program cutadapt (v. 0.9;

605 http://code.google.com/p/cutadapt/). Sequences shorter than 40 bp were

606 discarded. Trimmed reads were used to de novo assemble the transcriptome using

607 Velvet (v. 1.1.07; Zerbino et al., 2008; http://www.ebi.ac.uk/~zerbino/velvet/)

608 (commands: -shortPaired –fastq; -short2 –fastq; -read_trkg yes) and Oases (v.

609 0.2.01; Schulz et al., 2012; http://www.ebi.ac.uk/~zerbino/oases/) (commands: -

610 ins_length 350). Velvet is primarily used for de-novo genome assembly; here, the

611 contigs that were output by Velvet were used by the complementary software

package Oases to build likely transcripts from the RNA-seq dataset. K-mer sizes of
21, 25 and 31 were attempted for the two separate samples as well as the combined
samples and optimal K-mer sizes of 21 were found for both samples.

615

616	Transcripts for the reference transcriptome were selected from the embryonic and
617	legs and pleuropodia transcriptomes. The transcripts were first merged with
618	evigene (version 2013.03.11) using default parameters. Because this selection of
619	transcripts eliminated some genes (gene represented by zero transcripts, although
620	the transcripts were present in the original transcriptomes), we repeated the step
621	with less strict parameters (cd-hit-est - version 4.6, with -c 0.80 -n 5). This second
622	selection contained several genes represented by more transcripts, therefore we
623	aligned selection 1 and 2 to each other to identify, which genes in selection 1 were
624	missing. Selection 1 was then completed with the help of selection 2 by adding the
625	missing transcripts. The quality and completeness of the resulting transcriptome
626	was assessed and edited in the following steps. First, we removed several redundant
627	transcripts manually: these were found by blasting diverse insect sequences
628	(queries) against the Schistocerca transcriptome using the local ViroBLAST interface
629	(Deng et al., 2007). Some transcripts were edited manually, such as when we found
630	that two transcripts were combined into one, resulting in an alignment against two
631	protein sequences (Schistocerca transcript blasted against NCBI GenBank database)
632	we split the respective transcripts. Second, we blasted the whole transcriptome
633	against itself and removed redundant sequences, if the alignment was spanning at
634	least 300 bp with a sequence identity of at least 98% (Blast+ suite, version 2.6.0).

635	The longer transcript was kept in all cases. Transcripts shorter than 200 bp were
636	discarded. All these steps were carried out in R (R Development Core Team, 2008;
637	http://www.R-project.org) and sequences were handled using the Biostrings
638	package (Pagès et al., 2017).
639	
640	Sequence analysis
641	
642	Basic transcript analysis was done by CLC Sequence Viewer7 (QIAGEN). Signal
643	peptide and transmembrane regions were predicted by Phobius (Käll et al., 2007;
644	http://phobius.binf.ku.dk/index.html). Conserved domains were identified using
645	SMART (http://smart.embl-heidelberg.de/). To annotate the newly assembled
646	transcriptome, the freely available annotation pipeline Trinotate (version 3.1.1) was
647	used (Haas et al., 2013). The longest candidate ORF of each sequence was identified
648	with the help of the inbuilt TransDecoder (Haas et al., 2013;
649	https://github.com/TransDecoder/TransDecoder/wiki) software.
650	
651	A blast was run against Uniprot sequences specific for Schistocerca gregaria, Locusta
652	migratoria, Apis melifera, Tribolium castaneum, Bombyx mori and Drosophila
653	melanogaster (blastx with default parameter and -max_target_seqs 1).
654	
655	RNA-seq expression analysis
656	

657	Pleuropodia and hind legs from embryos at the same age (day 4, 5, 6, 7, 8, 10, 11, 12
658	and 13) were dissected in cold RNase-free PBS and total RNA was isolated as
659	described for samples for the reference transcriptome, but cleaned with RNA Clean
660	& Concentrator (Zymo Research). One μg of RNA from each sample was sent to BGI
661	(Hong Kong). The mRNA enrichment and cDNAs preparation was as described
662	above. 50 bp single-end (SE) reads were sequenced on Illumina HiSeq 2000. Over 45
663	million reads were sequenced from each sample (Table S2).
664	
665	A pair of samples from mixed embryos 8-9 days that was used for the preparation of
666	the reference transcriptome (described above) was also included in the expression
667	analysis, but prior to mapping, the 75 bp PE reads were trimmed to 50 bp, using
668	Trimmomatic in the paired-end mode (version 0.36) using the CROP function
669	(CROP:50). A single pleuropodium or leg sample was sequenced from each stage.
670	
671	The quality of the sequenced reads was assessed using the FastQC software. All
672	samples consistently showed a Per base sequence quality of > 30. Reads were
673	mapped to the reference transcriptome with Bowtie2 (version 2.2.5) using default
674	parameter and the –local alignment mode (Langmead et al., 2009). The trimmed
675	pairs of reads were concatenated for each stage and treated as single reads. A PCA
676	plot was generated to assess if differences in sequencing type and processing (SE
677	samples and PE samples day 8-9) had an effect, which was not the case. This plot
678	was prepared by using the plotPCA() function in the DESeq2 R package (Love et al.,
679	2014); the count matrix was transformed with the rlog() function. The R package

680 HTSFilter (Rau et al., 2013) was used with default parameters to filter constantly
681 low expressed genes and 12988 transcripts were left.

682

683	The differential expression analysis was performed with the NOISeq R package
684	(2.22.1; Tarazona et al., 2011). Reads were first normalized using the RPKM method
685	(Mortazavi et al., 2008). We used NOISeq-sim to find the differentially expressed
686	genes between legs and pleuropodium for each stage with the following parameters:
687	k = NULL, norm ="n", pnr =0.2, nss =5, v = 0.02, lc=1, replicates ="no", following the
688	recommendations by the authors for simulation of "technical replicates" prior to
689	differential expression analysis without replicates. Additionally differentially
690	expressed genes between highly secreting pleuropodia and legs at the same stage
691	were assessed (treating samples from day 10, 11 and 12 as replicates) using the
692	NOISeq-real algorithm with the following parameters: k=0.5, norm="n",
693	factor="type", nss=0, lc=1, replicates = "technical". To define significantly
694	differentially expressed genes, the probability ("prob") threshold was set at 0.7 for
695	single stage comparisons and 0.8 for the triplicated comparison, RPKM > 10 and fold
696	change > 2 for both single stage and triplicated comparisons (based on the
697	expression of the genes whose expression dynamics in the pleuropodia were
698	already known, Table S4).

699

700 GO enrichment

701

702	The transcriptome was blasted against the whole UniProt/Swiss-Prot database to
703	assess the corresponding GO terms. Only blast hits with an e-value <= 1e-5 were
704	considered for the subsequent GO annotation. GO enrichment of differentially
705	expressed genes was performed using the R package GOSeq (version 1:30.0, Young
706	et al., 2010) implemented in the Trinotate pipeline (see above). Enriched GO terms
707	were summarized and visualized with REVIGO (Supek et al., 2011). Dot plots were
708	prepared from DEGs selected at thresholds: RPKM > 50, fold change > 3.
709	
710	Real-time RT-PCR
711	
712	Tissues were dissected, total RNA was isolated and DNase treated the same way as
713	for sequencing and cleaned with RNA Clean & Concentrator (Zymo Research). cDNA
714	was synthesized with oligo-dT primer (Invitrogen) and 0.5 μg (legs, pleuropodia) or
715	$1\mu g$ (pieces of embryos) of the RNA using ThermoScript RT-PCR System
716	(Invitrogen) at 55°C. The cDNA was diluted to concentration 40 ng/µl and 5 µl was
717	used in a reaction containing 10 μl of SYBR Green PCR Master Mix (Applied
718	Biosystems) and 5 μl of a 1:1 mix of forward and reverse primers (each 20 nM in
719	this mix). Reactions were run in the LightCycler480 (Roche)
720	and analyzed using the associated software (release 1.5.0 SP1) according to the
721	comparative Ct method and normalized to the <i>eEF1</i> α gene. Primers (Table S18)
722	were designed with Primer3PLUS program (Untergasser et al., 2007). To check for
723	the presence of a single PCR product, the melting curve was examined after each run

and for each pair of primers at least 2 finished runs were visualized on a 2% agarose

725 gel.

726

727 The program was: denaturation: 95°C for 10 minutes (1 cycle), amplification: 95°C

for 10 seconds, 60°C for 15 seconds, 72°C for 12 seconds (40 cycles) melting: 95°C

for 5 seconds, 60°C for 1 minute, 95°C.

730

731 LIST OF ABBREVIATIONS

732

A1: first abdominal segment; CHT: chitinase, DEG: differentially expressed gene; DT:

developmental time; EC1, EC2, EC3: the first, the second, the third embryonic cuticle,

735 respectively; GO: gene ontology; LEG: hind leg(s); MF: moulting fluid; NAG: β-N-

736 acetyl-hexosaminidase; PCA: principal component analysis; PLP: pleuropodium

737 (pleuropodia); RPKM: reads per kilobase of transcript per million reads mapped; SC:

serosal cuticle; SEM: scanning electron microscopy; T3: third thoracic segment;

739 TEM: transmission electron microscopy

740

741 **COMPETING INTERESTS**

742

The authors declare that they have no competing interests.

744

745 FUNDING

746

747	This work was supported by Human Frontier Science Program (Long-Term
748	postdoctoral fellowship LT000733/2009-L), Biotechnology and Biological Sciences
749	Research Council (grant number grant BB/ K009133/1), Isaac Newton Trust
750	(University of Cambridge) and Balfour-Browne Fund (University of Cambridge).
751	
752	AUTHOR'S CONTRIBUTIONS
753	
754	BK initiated the study, designed research, carried out all experimental work,
755	supervised the bioinformatics analysis, interpreted the data and wrote the paper;
756	EB performed majority of the bioinformatics analysis and edited the draft; AC
757	carried out the initial steps in the selections of transcripts for the reference
758	transcriptome and did a preliminary expression analysis. All authors read and
759	approved the manuscript.
760	
761	ACKNOWLEDGEMENTS
762	
763	Majority of the work was carried out in the lab of Michael Akam (University of
764	Cambridge) and the data analysis was finished in the lab of Gregor Bucher
765	(University of Göttingen); BK thanks to both for hosting and financial support.
766	Electron microscopy was done at the Cambridge Advanced Imaging Centre
767	(University of Cambridge). Immunolabeling was done in the lab and with help of
768	Andrew Gillis. Stereomicroscopic pictures were taken in the lab of Paul Brakefield.
769	We also thank for help and advice to Ken Siggens, Jenny Barna, Jeremy Skepper and

- 170 lab, Steven Van Belleghem, Barry Denholm, Jan Sobotnik, and Gareth Griffiths, for
- scripts to Erik Clark and Simon Martin. We thank to Michael Akam, Siegfried Roth,
- 572 Stuart Reynolds, Nico Posnien and Maurijn van der Zee for comments on the
- 773 manuscript.

774 **REFERENCES**

- 775
- Ando H. 1962. The comparative embryology of Odonata with special reference to a
- relic dragonfly Epiophlebia superstes Selys. Sugadaira Biological Laboratory of
- 778 Tokyo Kyoiku University.
- 779
- Ando H, Haga K. 1974. Studies on the Pleuropodia of Embioptera, Thysanoptera, and
- 781 Mecoptera. Tokyo U. Educ. Sugadaira Biol. Lab. Bull 6:1-8.
- 782
- 783 Angelini DR, Liu PZ, Hughes CL, Kaufman TC. 2005. Hox gene function and
- interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol
- 785 287:440-455.
- 786
- 787 Bedford GO. 1978. The development of the egg of Didymuria violescens
- 788 (Phasmatodea: Phasmatidae: Podacanthinae) embryology and determination of
- the stage at which first diapause occurs. Aust J Zool 18:155-169.
- 790
- 791 Bennett RL, Brown SJ, Denell RE. 1999. Molecular and genetic analysis of the
- 792 Tribolium Ultrabithorax ortholog, Ultrathorax. Dev Genes Evol 209:608-619.
- 793
- Bergman P, Seyedoleslami Esfahani S, Engström Y. 2017. Drosophila as a Model for
- Human Diseases-Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol
- 796 121:29-81.

797

- 798 Bernays EA. 1971. The vermiform larva of *Schistocerca gregaria* (Forskål): form and
- activity (Insecta, Orthoptera). Z Morph Tiere 70:183–200.

800

801 Berridge MJ, Oschman JL. 1972. Transporting epithelia. Academic Press, New York.

802

- 803 Buchon N, Silverman N, Cherry S. 2014. Immunity in Drosophila melanogaster –
- 804 from microbial recognition to whole-organism physiology. Nat Rev Immunol
- 805 14:796-810.

806

- 807 Bullière F. 1970. L'évolution des pleuropodes au cours du développement
- 808 embryonnaire de la Blabera craniifer (Insecte Dictyoptère). Arch Anat Microsc

809 59:201-220.

810

811 Chávez VM, Marqués G, Delbecque JP, Kobayashi K, Hollingsworth M, Burr J, Natzle

812 JE, O'Connor MB. 2000. The Drosophila disembodied gene controls late embryonic

813 morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic

814 ecdysone levels. Development 127:4115-4126.

815

816 Chintapalli VR, Wang J, Herzyk P, Davies SA, Dow JA. 2013. Data-mining the FlyAtlas

817 online resource to identify core functional motifs across transporting epithelia. BMC

818 Genomics 14:518.

819

820	Cox MP. Peterson DA	, Biggs PJ. 2010. Solexa	OA: At-a-glance c	uality assessment of
		,	· · · · · · · · · · · · · · · · · · ·	[

- 821 Illumina second-generation sequencing data. BMC Bioinformatics 11:485.
- 822
- 823 Deng W, Nickle DC, Learn GH, Maust B, Mullins JI. 2007. ViroBLAST: a stand-alone
- 824 BLAST web server for flexible queries of multiple databases and user's datasets.
- 825 Bioinformatics 23:2334-2336.

826

- 827 Fraulob M, Beutel RG, Machida R, Pohl H. 2015. The embryonic development of
- 828 Stylops ovinae (Strepsiptera, Stylopidae) with emphasis on external morphology.
- 829 Arthropod Struct Dev 44:42-68.

830

- Fukamizo T, Kramer KJ. 1985. Mechanism of chitin oligosaccharide hydrolysis by the
- binary enzyme chitinase system in insect moulting fluid. Insect Biochem 15:1-7.
- 833
- Goltsev Y, Rezende GL, Vranizan K, Lanzaro G, Valle D, Levine M. 2009.
- 835 Developmental and evolutionary basis for drought tolerance of the Anopheles
- 836 gambiae embryo. Dev Biol 330:462-470.
- 837
- 838 Graber V. 1889. Ueber den Bau und die phylogenetische Bedeutung der
- embryonalen Bauchänhange der Insekten. Biol Zent Bl 9:355-363.

- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
- Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma

843	F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length
844	transcriptome assembly from RNA-Seq data without a reference genome. Nat
845	Biotechnol 29:644-652.
846	
847	Grellet P. 1971. Variations du volume et teneur en AND des noyaux de Scapsipedus
848	marginatus Afz. et Br. (Orthoptère, Gryllidae) au cours de l'embryogenèse. Wilhelm
849	Roux Arch Entwickl Mech Mech Org, 167:243-265.
850	

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB,

852 Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N,

853 Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A.

854 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity

platform for reference generation and analysis. Nat Protoc 8:1494-1512.

856

Hagan HR. 1931. The embryogeny of the polyctenid, Hesperoctenes fumarius

858 Westwood, with the reference to viviparity in insects. J Morphol Physiol 51:3-115.

859

860 Heming BS. 1993. Origin and fate of pleuropodia in embryos of Neoheegeria

861 verbasci (Osborn) (Thysanoptera: Phlaeothripidae). In: Bhatti JS, editor. Advances in

862 Thysanopterology. New Delhi: Sciantia Publishing. Journal of Pure and Applied

863 Zoology 4. p 205-223.

864

- 865 Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW. 2008.
- 866 Characterisation and expression of β-N-acetylhexosaminidase gene family of
- Tribolium castaneum. Insect Biochem Mol Biol 38:478-489.
- 868
- 869 Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. 2007. Drosophila Niemann-
- 870 Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of
- human neurodegenerative disease. Development 134:3733-3742.
- 872
- 873 Hughes CL, Kaufman TC. 2002. Hox genes and the evolution of the arthropod body
- 874 plan. Evol Dev 4:459-99.
- 875

876 Hussey PB. 1926. Studies on the Pleuropodia of Belostoma Flumineum Say and

877 Ranatra Fusca Palisot de Beauvois, with a discussion of these organs in other insects.

- 878 Entomol Am 7:1-82.
- 879

B80 Jacobs CG, Spaink HP, van der Zee M. 2014. The extraembryonic serosa is a frontier

epithelium providing the insect egg with a full-range innate immune response. eLife

882 3:e04111.

883

Jacobs CGC, Braak N, Lamers GEM, van der Zee M. 2015. Elucidation of the serosal

- cuticle machinery in the beetle Tribolium by RNA sequencing and functional
- analysis of Knickkopf1, Retroactive and Laccase2. Insect Biochem Mol Biol 60:7-12.
- 887

- Jones B. 1956. Endocrine activity during insect embryogenesis. Control of events in
- development following the embryonic moult (Locusta migratoria and Locustana
- 890 pardalina, Orthoptera). J Exp Biol 33:685-696.
- 891
- 892 Käll L, Krogh A and Sonnhammer ELL. 2007. Advantages of combined
- transmembrane topology and signal peptide prediction-the Phobius web server.
- 894 Nucleic Acids Res 35:W429-432.
- 895
- 896 Kamiya A, Ando H. 1985. External morphogenesis of the embryo of Ascalaphus
- 897 ramburi (Neuroptera, Ascalaphidae). In: Recent Advances in Insect Embryology in

Japan. H Ando, K Miya, editors. (ISEBU Co. Ltd.), p 203-213.

899

- 900 Kjer KM, Simon C, Yavorskaya M, Beutel RG. 2016. Progress, pitfalls and parallel
- 901 universes: a history of insect phylogenetics. J R Soc Interface 13:20160363.

902

903 Kobayashi Y, Ando H. 1990. Early embryonic development and external features of

904 developing embryos of the caddisfly, Nemotaulius admorsus (Trichoptera:

- 905 Limnephilidae). J Morphol 203:69-85.
- 906
- 907 Kobayashi Y, Suzuki H, Ohba N. 2003. Development of the pleuropodia in the
- 908 embryo of the glowworm Rhagophthalmus ohbai (Rhagophthalmidae, Coleoptera,
- 909 Insecta), with comments on their probable function. Proc Arthropod Embryol Soc
- 910 Jpn 38:19-26.

911

- 912 Konopova B, Zrzavy J. 2005. Ultrastructure, development, and homology of insect
- 913 embryonic cuticles. J Morphol 264:339-362.
- 914
- 915 Lambiase S, Grigolo A, Morbini P. 2003. Ontogenesis of pleuropodia in defferent
- 916 species of Blattaria (Insecta): a comparative study. Ital J Zool 70:205-212.

917

- 918 Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient
- alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

920

- 921 Larink 0. 1983. Embryonic and postembryonic development of Machilidae and
- 922 Lepismatidae (Insecta: Archaeognatha). Entomol Gen 8:119-133.
- 923
- Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu
 Rev Immunol 25:697-743.

926

- 927 Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. 2016.
- 928 Ecdysteroid signalling components in metamorphosis and development of the
- 929 desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 75:10-23.

- 931 Lewis DL, DeCamillis M, Bennett RL. 2000. Distinct roles of the homeotic genes Ubx
- and abd-A in beetle embryonic abdominal appendage development. Proc Natl Acad
- 933 Sci USA 97:4504-4509.

934

- Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y, Li S, Zhu KY, Zhang J. 2015. Two chitinase 5
- 936 genes from Locusta migratoria: molecular characteristics and functional
- differentiation. Insect Biochem Mol Biol 58:46-54.
- 938
- Liu HW, Wang LL, Tang X, Dong ZM, Guo PC, Zhao DC, Xia QY, Zhao P. 2018.
- 940 Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J
- 941 Proteomics 173:115-125.
- 942
- 943 Locke M, Krishnan N. 1973. The formation of the ecdysial droplets and the ecdysial

944 membrane in an insect. Tissue Cell 5:441-450.

- 945
- 946 Louvet JP. 1973. L'ultrastructure du pleuropode et son ontogenèse, chez l'embryon
- 947 du phasme Carausius morosus Br. I. Étude du pleuropode de l'embryon agé. Ann
- 948 Sci Nat Zool 12:525-594.
- 949

950 Louvet JP. 1975. Premières observations sur l'ultrastructure du pleuropode chez le

- 951 Criquet migrateur. C R Acad Sci Paris D 280: 1301-1304.
- 952
- 953 Louvet JP. 1983. Ultrastrucutre du pleuropode chez l'embryon du hanneton
- 954 Rhizotrogus majalis Razoum (Coleoptera: Melolonthidae). Int J Insect Morphol
- 955 Embryol 12:97-117.
- 956

957	Love MI, I	Huber W.	Anders S. 2014	 Moderated 	estimation	of fold	change and

- dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
- 959
- 960 Machida R. 1981. External features of embryonic development of a jumping
- 961 bristletail, Pedetontus unimaculatus Machida (Insecta, Thysanura, Machilidae). J
- 962 Morphol 168:339-355.
- 963
- 964 Machida R, Tojo K, Tsutsumi T, Uchifune T, Klass K-D, Picker MD, Pretorius L. 2004.
- 965 Embryonic development of heel-walkers: reference to some prerevolutionary stages

966 (Insecta: Mantophasmatodea). Proc Arthropod Embryol Soc Jpn 39:31-39.

967

968 Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P,

969 Vanden Broeck J. 2011. Role of the Halloween genes, Spook and Phantom in

- 970 ecdysteroidogenesis in the desert locust, Schistocerca gregaria. J Insect Physiol
- 971 57:1240-1248.
- 972
- 973 Marchal E, Verlinden H, Badisco L, Van Wielendaele P, Vanden Broeck J. 2012. RNAi-

974 mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the

975 desert locust, Schistocerca gregaria. J Insect Physiol 58:890-896.

976

- 977 Mashimo Y, Beutel RG, Dallai R, Lee CY, Machida R. 2013. Embryonic development of
- 978 Zoraptera with special reference to external morphology, and its phylogenetic
- 979 implications (Insecta). J Morphol 275:295-312.

981	Miller A. 1940. Embryonic membranes, yolk cells, and morphogenesis of the stonefly
982	Pteronarcys proteus Newman (Plecoptera: Pteronarcidae). Ann Entomol Soc Amer
983	33:437-477.
984	
985	Mohamed AA, Zhang L, Dorrah MA, Elmogy M, Yousef HA, Bassal TT, Duvic B. 2016.
986	Molecular characterization of a c-type lysozyme from the desert locust, Schistocerca
987	gregaria (Orthoptera: Acrididae). Dev Comp Immunol 61:60-69.
988	
989	Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and
990	quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 :621–628.
991	
992	Miyakawa K. 1979. Embryology of the dobsonfly, Protohermes grandis Thunberg
993	(Megaloptera: Corydalidae), I. Changes in External form of the embryo during
994	development. Kontyû 47: 367-375.
995	
996	Nijhout HF. 1994. Insect hormones. Princeton: Princeton University Press.
997	
998	Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, Kataoka H. 2004.
999	CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in
1000	the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279:35942-35949.
1001	

1002	Niwa R,	Niwa	YS. 2	014.	Enzy	mes t	for ec	dvste	roid	bios	vnth	esis:	their	biol	ogical
										~	,				

- 1003 functions in insects and beyond. Biosci Biotechnol Biochem 78:1283-1292.
- 1004
- 1005 Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. 2018. A chitinase with two
- 1006 catalytic domains is required for organization of the cuticular extracellular matrix
- 1007 of a beetle. PLoS Genet 14:e1007307.

1008

- 1009 Norling U. 1982. Structure and ontogeny of the lateral abdominal gills and the
- 1010 caudal gills in Euphaenidae (Odonata: Zygoptera) larvae. Zool Jb Anat 107:343-389.

1011

- 1012 Novak VJA, Zambre SK. 1974. To the problem of structure and function of
- 1013 pleuropodia in Schistocerca gregaria FORSKÅL embryos. Zool Jb Physiol 78:344-
- 1014 355.
- 1015
- 1016 Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. 2016. The
- 1017 Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and
- 1018 Regulation. Cell Rep 16:247-262.
- 1019
- 1020 Pagès H, Aboyoun P, Gentleman R and DebRoy S. 2017. Biostrings: Efficient
- 1021 manipulation of biological strings. R package version 2.46.0.

1022

- 1023 Panfilio KA. 2008. Extraembryonic development in insects and the acrobatics of
- 1024 blastokinesis. Dev Biol 313:471-491.

1026	Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J,
1027	Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR Gene Indices clustering tools
1028	(TGICL): a software system for fast clustering of large EST datasets. Bioinformatics
1029	19:651-652.
1030	
1031	Petryk A, Warren JT, Marqués G, Jarcho MP, Gilbert LI, Kahler J, Parvy JP, Li Y,
1032	Dauphin-Villemant C, O'Connor MB. 2003. Shade is the Drosophila P450 enzyme
1033	that mediates the hydroxylation of ecdysone to the steroid insect molting hormone
1034	20-hydroxyecdysone. Proc Natl Acad Sci USA 100:13773-13778.
1035	
1036	Pesch YY, Riedel D, Patil KR, Loch G, Behr M. 2016. Chitinases and Imaginal disc
1037	growth factors organize the extracellular matrix formation at barrier tissues in
1038	insects. Sci Rep 6:18340.
1039	
1040	Prpic NM, Wigand B, Damen WG, Klingler M. 2001. Expression of dachshund in wild-
1041	type and Distal-less mutant Tribolium corroborates serial homologies in insect
1042	appendages. Dev Genes Evol 211:467-477.
1043	
1044	Qu M, Ma L, Chen P, Yang Q. 2014. Proteomic analysis of insect molting fluid with a
1045	focus on enzymes involved in chitin degradation. J Proteome Res 13:2931-2940.

1047	R Development Core	e Team. 2008. R: A language and environment for	statistical
------	--------------------	---	-------------

- 1048 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
- 1049 07-0.
- 1050
- 1051 Rau A, Gallopin M, Celeux G, Jaffrezic F. 2013. Data-based filtering for replicated
- 1052 high-throughput transcriptome sequencing experiments. Bioinformatics 29:2146-
- 1053 2152.
- 1054
- 1055 Rathke H. 1844. Zur Entwickelungsgeschichte der Maulwurfsgrille (Gryllotalpa

1056 vulgaris). Arch Anat Physiol wiss Med 27-37.

1057

1058 Reynolds SE, Samuels R. 1996. Physiology and biochemistry of insect moulting fluid.

- 1059 Adv In Insect Phys 26:157-232.
- 1060
- 1061 Rong S, Li DQ, Zhang XY, Li S, Zhu KY, Guo YP, Ma EB, Zhang JZ. 2013. RNA
- 1062 interference to reveal roles of β -N-acetylglucosaminidase gene during molting
- 1063 process in Locusta migratoria. Insect Sci 20:109-119.
- 1064
- 1065 Roonwall ML. 1937. Studies on the embryology of the African migratory locust,
- 1066 Locusta migratoria migratorioides Reiche and Frm. (Orthoptera, Acrididae). II.
- 1067 Organogeny. Philos Trans R Soc Lond B Biol Sci 227: 175-244.
- 1068

1069	Rost MM, Poprawa I, Klag J. 2004. Ultrastructure of the	pleuropodium in 8-d-old

- 1070 embryos of Thermobia domestica (Packard) (Insecta, Zygentoma). Ann Entomol Soc
- 1071 Amer 97:541-547.
- 1072
- 1073 Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq
- 1074 assembly across the dynamic range of expression levels. Bioinformatics 28:1086-
- 1075 1092.
- 1076
- 1077 Shi L, Paskewitz SM. 2004. Identification and molecular characterization of two
- 1078 immune- responsive chitinase-like proteins from Anopheles gambiae. Insect Mol
- 1079 Biol 13:387–398.
- 1080

1081 Shutts JH. 1952. Some characteristics of the hatching enzyme in the eggs of

1082 Melanoplus differentialis (Thomas). Proc S Dak Acad Sci 31:158-163.

1083

- 1084 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO:
- 1085 assessing genome assembly and annotation completeness with single-copy
- 1086 orthologs. Bioinformatics. 31:3210-3212.
- 1087

1088 Slifer EH. 1937. The origin and fate of the membranes surrounding the grasshopper

- 1089 egg; together with some experiments on the source of the hatching enzyme. Q J Micr
- 1090 Sci 79:493-506.
- 1091

- 1092 Slifer EH. 1938. A cytological study of the pleuropodia of Melanoplus differentialis
- 1093 (Orthoptera, Acrididae) which furnishes new evidence that they produce the
- 1094 hatching enzyme. J Morphol 63:181-206.
- 1095
- 1096 Stanley MSM, Grundmann AW. 1970. The embryonic development of Tribolium
- 1097 confusum. Ann Entomol Soc Amer 63:1248-1256.
- 1098
- 1099 Stay B. 1977. Fine structure of two types of pleuropodia in Diploptera punctata
- 1100 (Dictyoptera: Blaberiadae) with observations on their permeability. Int J Insect
- 1101 Morphol Embryol 6:67-95.
- 1102
- 1103 Sugahara R, Tanaka S and Shiotsuki T. 2017. RNAi-mediated knockdown of SPOOK
- 1104 reduces ecdysteroid titers and causes precocious metamorphosis in the desert
- 1105 locust Schistocerca gregaria. Dev Biol 429:71-80.
- 1106
- 1107 Sui Y-P, Liu X-B, Chai L-Q, Wang J-X, Zhao X-F. 2009. Characterization and influences
- 1108 of classical insect hormones on the expression profiles of a molting
- 1109 carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). Insect Mol
- 1110 Biol 18:353-363.

1111

- 1112 Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO Summarizes and Visualizes
- 1113 Long Lists of Gene Ontology Terms. PLoS ONE 6: e21800.
- 1114

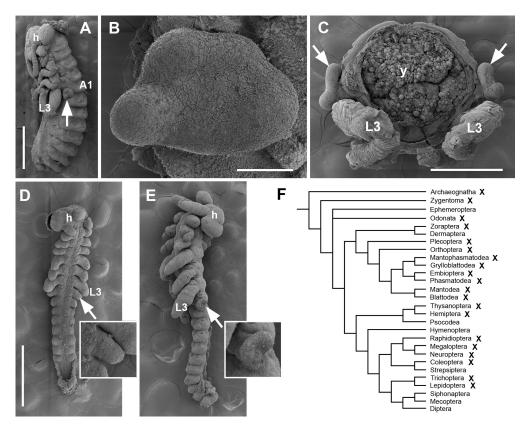
1115	Tanaka M, Kobayashi Y, Ando H. 1985. Embryonic development of the nervous
1116	system and other ectodermal derivatives in the primitive moth, Endoclita sinensis
1117	(Lepidoptera, Hepialidae). In: Ando H, Miya K, editors. Recent Advances in Insect
1118	Embryology in Japan. Tsukuba: Isebu Co. Ltd. p 215-229.
1119	
1120	Tanizawa T, Ando H, Tojo K. 2007. Notes on the pleuropodia in the giant water bug
1121	Appasus japonicus (Heteroptera, Belostomatidae). Proc Arthropod Embryol Soc Jpn
1122	42:9-11.
1123	
1124	Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential
1125	expression in RNA-seq: a matter of depth. Genome Res 21:2213-2223.
1126	
1127	Tear G, Akam M, Martinez-Arias A. 1990. Isolation of an abdominal-A gene from the
1128	locust Schistocerca gregaria and its expression during early embryogenesis.
1129	Development 110:915-925.
1130	
1131	Tsutsumi K, Machida R. 2006. Embryonic development of a snakefly, Inocellia
1132	japonica Okamoto: an outline (Insecta: Neuroptera, Raphidiodea). Proc Arthropod
1133	Embryol Soc Jpn 41: 37-45.
1134	
1135	Uchifune T, Machida R. 2005. Embryonic development of Galloisiana yuasai Asahina,
1136	with special reference to external morphology (insecta: Grylloblattodea). J Morphol
1137	266:182-207.

1139	Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, and Leunissen JMA. 2007.
1140	Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35:
1141	W71-W74.
1142	
1143	Viscuso R, Sottile L. 2008. Fine structure of pleuropodia in three species of Insecta
1144	Orthoptera during embryonic development. Ital J Zool (Modena) 75: 11-19.
1145	
1146	Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX. 2015. Chitinase-like gene family in the
1147	brown planthopper, Nilaparvata lugens. Insect Mol Biol 24:29-40.
1148	
1149	Warren JT, Petryk A, Marques G, Jarcho M, Parvy JP, Dauphin-Villemant C, O'Connor
1150	MB, Gilbert LI. 2002. Molecular and biochemical characterization of two P450
1151	enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl
1152	Acad Sci USA 99:11043-11048.
1153	
1154	Warren JT, Petryk A, Marqués G, Parvy JP, Shinoda T, Itoyama K, Kobayashi J, Jarcho
1154 1155	Warren JT, Petryk A, Marqués G, Parvy JP, Shinoda T, Itoyama K, Kobayashi J, Jarcho M, Li Y, O'Connor MB, Dauphin-Villemant C, Gilbert LI. 2004. Phantom encodes the
1155	M, Li Y, O'Connor MB, Dauphin-Villemant C, Gilbert LI. 2004. Phantom encodes the

- 1159 Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G,
- 1160 Kriventseva EV, Zdobnov EM. 2018. BUSCO applications from quality assessments to
- 1161 gene prediction and phylogenomics. Mol Biol Evol 35:543-548.
- 1162
- 1163 Wei Z, Yin Y, Zhang B, Wang Z, Peng G, Cao Y, Xia Y. 2007. Cloning of a novel protease
- 1164 required for the molting of Locusta migratoria manilensis. Dev Growth Differ
- 1165
 49:611-621.
- 1166
- 1167 Wheeler WMM. 1889. On the appendages of the first abdominal segment of embryo

insects. Trans Wis Acad Sci Arts Lett 8:87-140, pls 1-3.

1169


- 1170 Yan J, Cheng Q, Narashimhan S, Li CB, Aksoy S. 2002. Cloning and functional
- 1171 expression of a fat body-specific chitinase cDNA from the tsetse fly, Glossina
- 1172 morsitans morsitans. Insect Biochem Mol Biol 32:979–989.
- 1173
- 1174 Young MD, Wakefield MJ, Smyth GK and Oshlack A. 2010. Gene ontology analysis for
- 1175 RNA-seq: accounting for selection bias. Genome Biol 11:R14.
- 1176
- 1177 Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly
- using de Bruijn graphs. Genome Res 18:821-829.

1180	Zhang I. Lu A. Kong L	Zhang O. Ling	E. 2014. Functional anal	vsis of insect molting
	,,,			

- 1181 fluid proteins on the protection and regulation of ecdysis. J Biol Chem 289:35891-
- 1182 35906.
- 1183
- 1184 Zhang H, Shinmyo Y, Mito T, Miyawaki K, Sarashina I, Ohuchi H, Noji S. 2005.
- 1185 Expression patterns of the homeotic genes Scr, Antp, Ubx, and abd-A during
- 1186 embryogenesis of the cricket Gryllus bimaculatus. Gene Expr Patterns 5:491-502.
- 1187
- 1188 Zhu Q, Arakane Y, Beeman RW, Kramer, KJ, Muthukrishnan S. 2008. Functional
- 1189 specialization among insect chitinase family genes revealed by RNA interference.
- 1190 Proc Natl Acad Sci USA 105:6650-6655.
- 1191
- 1192 Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. 2016. Biosynthesis,
- 1193 Turnover, and Functions of Chitin in Insects. Annu Rev Entomol 61:177-196.

1194 **FIGURE 1**

1195

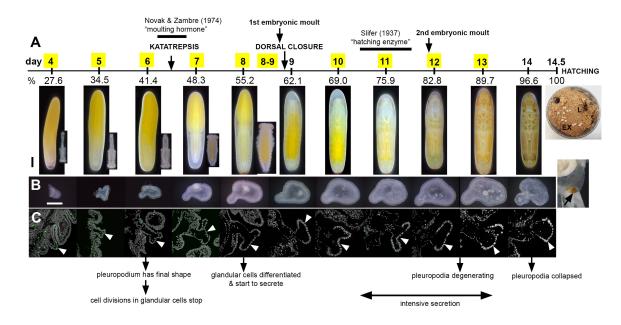
1196 **Figure 1. Pleuropodia are limb-derived organs on A1 of insect embryos.** (A)-

1197 (C): External morphology of fully developed pleuropodia of *Schistocerca gregaria*.

1198 (A) Embryo before dorsal closure (yolk was removed). (B) Enlarged left

1199 pleuropodium. (C) Cross section through A1. (D) and (E): Pleuropodia originate by a

1200 modification of a limb bud. (D) Early embryo: all appendages are similarly looking

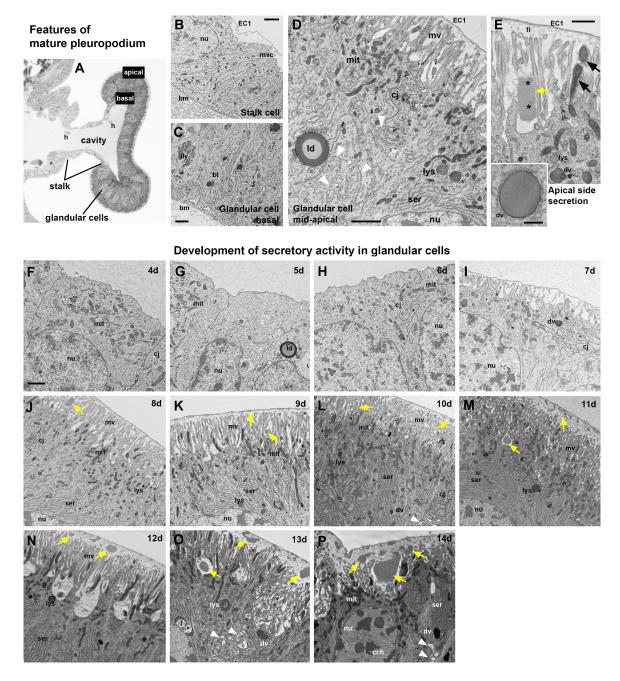

1201 buds. (E) Older embryo: future legs elongate and the buds on A1 start to take shape

1202 of pleuropodia. (F) Insect phylogenetic tree showing the presence of pleuropodia

- 1203 among "orders". The cross marks "orders" where at least some species develop
- 1204 pleuropodia. Phylogeny from Kjer et al., 2016, other references in the text. (A)-(E)
- 1205 are scanning electron microscopy (SEM) micrographs. Pleuropodium is marked with

- 1206 an arrow. A1, the first abdominal segment; h, head; L3, hind (third) leg; y, yolk. Scale
- 1207 bars: in (A), 1 mm; in (B), 100 μm; in (C); 500 μm; in (D), for (D) and (E), 500 μm.

1208 FIGURE 2



1210 Figure 2. Summary of the development of pleuropodia in Schistocerca

1211 embryos. (A) Scheme of *Schistocerca* embryogenesis marking key developmental 1212 events in the embryos and timing of the two experiments on pleuropodia. Numbers 1213 above the scale are days from egg-laying, numbers below the scale are percent of 1214 embryonic developmental time. Yellow boxes indicate the stages that were sampled 1215 for RNA-seq. Eggs with the developing embryos at each stage are shown below the 1216 scale, insets for the 4-8 day stages show the embryo dissected out from the egg. (B) 1217 External features of the developing pleuropodia; after hatching part of the stretched 1218 exuvia is shown; the degenerated pleuropodium is marked with an arrow. (C) 1219 Paraffin sections through the pleuropodium and surrounding tissue. Pleuropodia 1220 are marked with arrowheads. PH3 (green) detects cell divisions in the immature 1221 glandular cells (tip of appendage bud) on day 4 and 5, not in later stages. The 1222 pleuropodial stalk cells, haemocytes entering the pleuropodia and cells in other

- 1223 tissues were labeled. Nuclei (grey) enlarge from day 6. The text below the pictures
- 1224 refers to the main events in the glandular cells. EX, exuvia; L, larva. Scale bars: in (A)
- 1225 (eggs), 1 mm; in (B), 0.2 mm. Background was cleaned in photos in A (see Materials
- 1226 and Methods).

1227 **FIGURE 3**

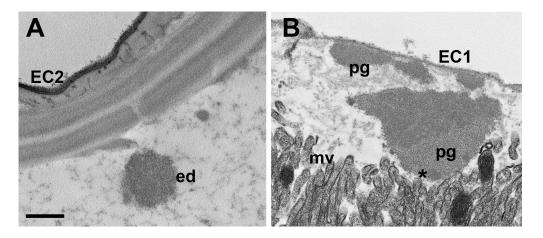

1228

Figure 3. Ultrastructure of the *Schistocerca* pleuropodia. (A)-(E) Main features
of the cells in the fully formed pleuropodia. Pleuropodia just before dorsal closure
are shown. (A) Cross section through the pleuropodium. (B) Stalk cell. The short
microvilli at the apical side are associated with the deposition of fibres in the

1233	embryonic cuticle ("the first embryonic cuticle", EC1). (C)-(E) Glandular cells. In (D)
1234	the white arrowheads mark the spaces between neighboring cells. In (E) the black
1235	arrows mark mitochondria inside the microvilli and the asterisks mark spots of
1236	different electron-density in the secreted granule. Note that the secretion granule is
1237	located at the base of the microvilli (brush-border); the tips of the microvilli
1238	produce fibrous material that is a part of the embryonic cuticle EC1. (F)-(P)
1239	Ontogenesis of the glandular cells. Note the development of the microvilli (brush
1240	border) and the onset of secretion (appearance of secretion granules within and
1241	above the microvilli). On day 8 (J) the glandular cells are differentiated, on day 12
1242	(N) patches of the apical side elevate, on day 13 (O) the organelles are disorganized,
1243	on day 14 (P) cytoplasm is electron dense (cells shrink), chromatin condensed, but
1244	large secretion granules are still present at the base of microvilli and above them.
1245	(A) is a toluidine blue stained semithin section, (B)-(P) TEM micrographs. Secretion
1246	granules are marked with yellow arrows. bm, basement membrane; bl, basal
1247	labyrinth (infolding of the basal plasma membrane); cj, cell junction; dv, dense
1248	vesicle; EC1, the first embryonic cuticle; gly, glycogene; ld, lipid droplet; mit,
1249	mitochondria; mv, microvilli; nu, nucleus; ser, smooth endoplasmic reticulum. Scale
1250	bars: in (B), (C), (D), (E) and (F) for (F)-(P), 2 μm; inset in (E), 500 nm.

1251 **FIGURE 4**

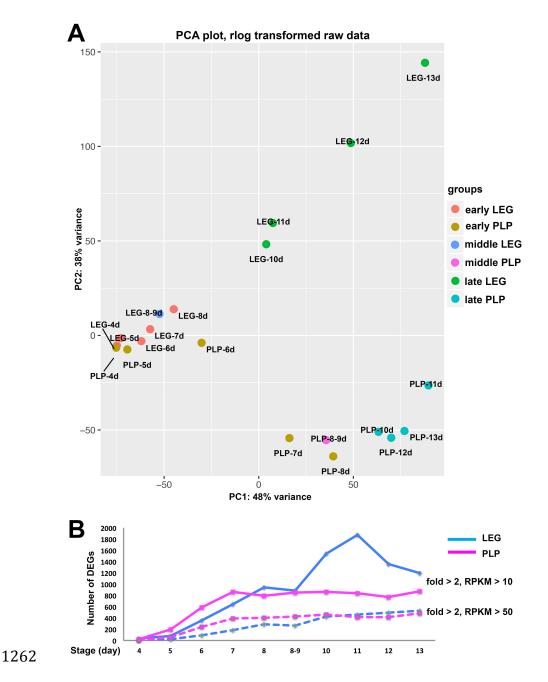
1252

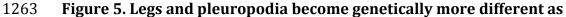
1253 **Figure 4. Granules secreted from the pleuropodia resemble ecdysial droplets.**

1254 (A) Ecdysial droplet secreted during the second embryonic moult by hind leg

1255 epidermis. (B) Granules secreted from pleuropodia at the same developmental

1256 stage. The pleuropodial granules are typically larger, less compact and with non-

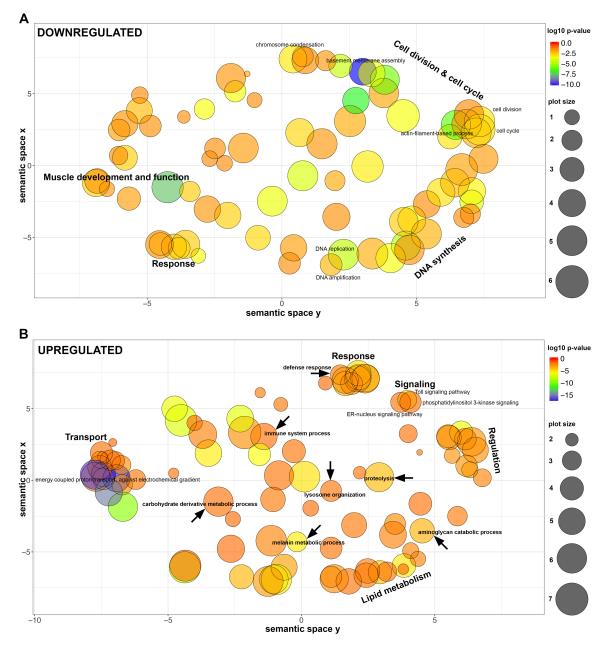

1257 homogeneous electrondensity. The "spot" of a different electron-density in the

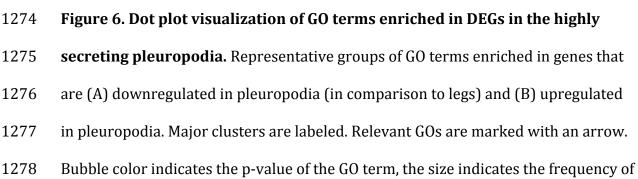

1258 pleuropodial granules is marked with an asterisk. EC1, EC2, the first and second

1259 embryonic cuticles; ed, ecdysial droplets; mv, microvilli; pg, granules secreted from

1260 the pleuropodia. Scale bar: for (A) and (B), 500 nm.

1261 **FIGURE 5**

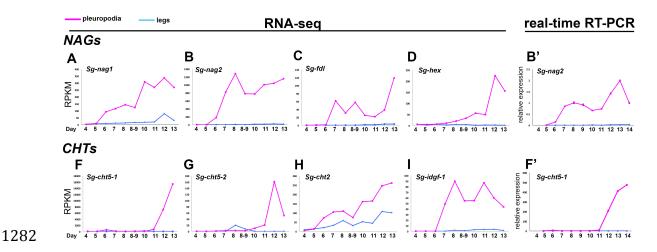



development progresses. (A) PCA on genes expressed in legs and pleuropodia at
ten embryonic stages (rlog transformed read counts). Samples from young embryos

1266 are genetically more similar and cluster together, while samples from advanced

- 1267 stages are genetically more distant and also separated on the plot. (B) Number of
- 1268 DEGs at two levels of stringency (RPKM > 10 and fold change > 2 was considered as
- 1269 a threshold for a gene to be differentially expressed). LEG, DEGs downregulated in
- 1270 pleuropodia and upregulated in legs, PLP, DEGs upregulated in pleuropodia and
- 1271 downregulated in legs.

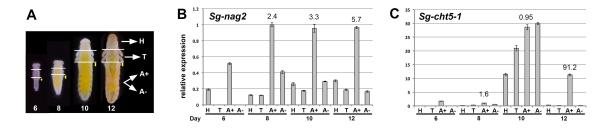
FIGURE 6



1279 the GO term in the underlying Gene Ontology Annotation (GOA) database (bubbles

1280 of more general terms are larger).

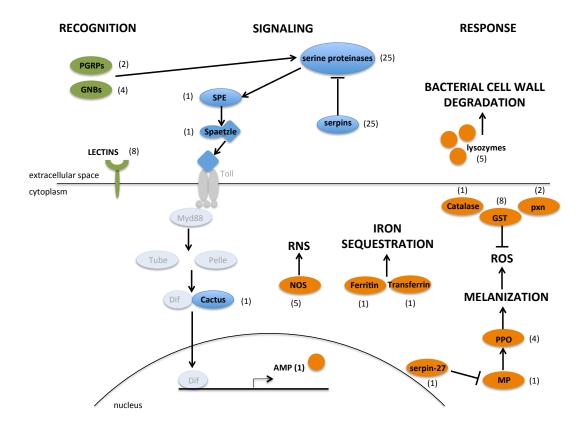
1281 **FIGURE 7**



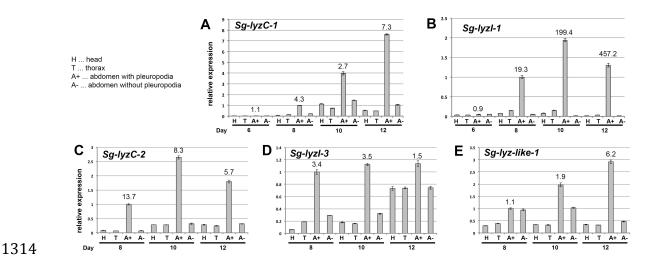
1283 Figure 7. Expression profiles of NAGs and CHTs upregulated in the

1284 **pleuropodia of** *Schistocerca* across development. Top row: NAGs, bottom row:

- 1285 CHTs. (A-D) and (F)-(I): RNA-seq, Expression in single-sample sequencing is shown.
- 1286 (B') and (F'): real-time RT-PCR. (B') is the same gene as in (B) and (F') is the same
- 1287 gene as in (F). Analysis of 3-4 technical replicates is shown. Expression in day 8 was
- 1288 set as 1.


1289 **FIGURE 8**

1291 Figure 8. Real-time RT-PCR expression analysis of Sg-nag2 and Sg-cht5-1 on 1292 cDNA from parts of *Schistocerca* embryos. (A) cDNA was prepared from mRNAs 1293 isolated from parts of embryos at the age of 6, 8, 10 and 12 days: H, head; T, thorax; 1294 A+, abdomen with pleuropodia; A-, abdomen without pleuropodia. For each age the 1295 same number of body parts was used (5-10) and RNA was resuspended in the same 1296 volume of water. The size of the pleuropodium is indicated by the vellow dot. (B) 1297 and (C): expression of Sq-nag2 and Sq-cht5-1, respectively. Analysis of 3-4 technical 1298 replicates is shown. Expression in A+8 (abdomen with pleuropodia at stage when 1299 the organs first become differentiated) was set as 1. Numbers above A+ expression 1300 is fold change from A- of the same age.


1301 **FIGURE 9**

1302

1303 Figure 9. Schematic representation of key immunity-related genes expressed 1304 in the highly secreting pleuropodia of *Schistocerca*. Proteins whose transcripts 1305 were found in the pleuropodia are in black, number in the brackets is the number of 1306 upregulated transcripts. Proteins whose transcripts were not upregulated are in 1307 grey. Out of the total 25 serine proteases and 25 serpins, 14 and 15 are known to 1308 function in Toll signaling, respectively. AMP, antimicrobial peptide; GNBP, gram-1309 negative bacteria-binding protein; GST, glutathione S-transferase; MP, melanization 1310 protease; NOS, nitric oxide synthase; PGRP, peptidoglycan recognition protein; PPO, 1311 pro-phenoloxidase; pxn, peroxiredoxin; RNS, reactive nitrogen species; ROS, 1312 reactive oxygen species; SPE, Spaetzle-processing enzyme.

1313 FIGURE 10

1315 **Figure 10. Real-time RT-PCR expression analysis of genes for lysozymes on**

cDNA from parts of *Schistocerca* embryos. cDNA was prepared from mRNAs
isolated from parts of embryos at the age of 6, 8, 10 and 12 days. For each age the
same number of body parts was used (5-10) and RNA was resuspended in the same
volume of water. Analysis of 3-4 technical replicates is shown. Expression in A+8
(abdomen with pleuropodia at stage when the organs first become differentiated)
was set as 1. Numbers above A+ expression is fold change from A- of the same age.

1322 **Table 1. Top ten percent of the most abundant transcripts upregulated in the**

1323 highly secreting pleuropodia of *Schistocerca*.

				Cuticle		RPKM	
Franscript ID	Protein	Characteristics	Immunity ^a	digestion ^b	legs	pleuropodia	chang
SgreTa0017702	x				23.07	15186.05	658.3
SgreTa0007897	C-type lysozyme	anti-bacterial protein	х		42.93	14452.15	336.6
SgreTa0002988	Uncharacterized, contains DUF4773 domain	r			15.16	9112.05	601.1
SgreTa0005052	x				13.37	7950.98	594.4
SgreTa0001636	Serine protease	proteolysis	х	х	49.38	7578.31	153.4
greTa0008851	Chitin binding Peritrophin-A	perotrophic matrix protein			9.12	6836.42	749.8
SgreTa0017707 SgreTa0007042	I-type lysozyme x	anti-bacterial protein	х		12.20 7.04	6712.31 6650.18	550.2 944.2
SgreTa0004599	Alpha-tocopherol transfer protein	intermembrane lipid transfer			8.99	5848.12	650.7
SgreTa0009217	x	dunster			5.03	5384.56	1070.3
SgreTa0003175	Collagen				32.25	5220.96	161.8
		aanhahudnata aatahaliam			3.85		
SgreTa0007886	Alpha-N-acetylgalactosaminidase	carbohydrate catabolism				4372.63	1134.
greTa0002109	X				2.20	3016.31	1372.
GreTa0017715	Serine protease, Snake-like	proteolysis, Toll signaling	х	х	70.55	2947.46	41.7
SgreTa0017664	Chitinase 5	cuticular chitin degradation		х	79.32	2620.11	33.03
SgreTa0002467	Neutral endopeptidase 24.11	proteolysis		х	62.26	2282.01	36.6
greTa0004397	X				11.21	2266.30	202.2
greTa0002828	x				1.77	2188.14	1234.
greTa0006539	Serpin, 88E-like	serine protease inhibitor	x		32.42	2152.14	66.3
greTa0001321	Glycosyl hydrolase, Myrosinase 1- like	carbohydrate catabolism	A		3.93	2070.40	527.1
greTb0011177	nke x				1.38	1884.79	1369.
greTa0008335	x x				54.24	1812.38	33.4
greTa0003635	Alpha-tocopherol transfer	intermembrane lipid			2.23	1800.68	806.9
	protein	transfer			77 40	1707 41	22.2
greTb0003860	Serine protease, H2-like	proteolysis	х	х	77.42	1727.41	22.3
greTa0013418	X				0.87	1484.98	1710.
greTa0014009	Angiotensin-converting enzyme	proteolysis		х	65.76	1457.47	22.1
greTa0006966	Pro-phenol oxidase subunit 2	immunity, melanization	х		144.78	1347.43	9.3
greTa0000425	6-phosphofructo-2-kinase	glycolysis			93.52	1346.50	14.4
greTa0003661	Serine protease, Easter-like	proteolysis	х	х	29.50	1332.79	45.1
greTa0006960	Glutamate dehydrogenase mitochondrial	nitrogen and glutamate metabolism			172.56	1327.45	7.69
GreTa0017670	Xaa-Pro aminopeptidase	proteolysis		х	2.89	1322.01	457.9
greTb0000759	Cathepsin L	proteolysis, lysosomal enzyme		х	105.63	1308.36	12.3
GreTa0014684	х	enzyme			1.30	1294.87	994.8
greTa0007025	Insect pheromone-binding	chemoreception			1.77	1224.20	692.9
greTa0006282	protein A10/OS-D Cytochrome P450 CYP4G102	synthesis of hydrocarbons, anti-			2.91	1196.27	410.9
SgreTa0009515	Sensory neuron membrane	dehydration chemoreception			3.33	1188.81	357.5
greTa0008528	protein, 1-like C-type lysozyme	anti-bacterial protein	Y		8.61		134.7
greTa0008528	Catalase	redox homeostasis	x x		355.15	1159.55 1158.27	3.20
greTb0039135	x	redux nomeostasis	х		355.15	1158.27	3.20
greTa0001486	x Lipopolysaccharide-induced tumor necrosis factor-alpha	lysosomal degradation			45.83	1119.22	24.2
Th 0.02004 C	factor homolog				14.20	10(0.00	
greTb0039012 greTa0009747	x Serpin (27-like)	serine protease	х		14.29 14.49	1060.82 1054.67	74.2 72.8
		inhibitor, melanization					
greTa0013400	Peroxiredoxin, 5-llke	redox homeostasis	х		101.10	1034.15	10.2
greTa0017395	х				5.08	1004.86	197.0
greTa0017712	х				15.59	990.41	63.5
greTa0005600	Beta-N-acetylglucosaminidase NAG2	cuticular chitin degradation		х	15.10	939.60	62.2
greTa0000783	Serine protease, Snake-like	proteolysis	х	х	4.30	917.47	213.5
greTa0006651	Uncharacterized, contains Transcription activator MBF2	procession			1.62	907.98	561.4
	domain						
greTa0017657	Putative serine protease, K12H4.7-like / Serine	proteolysis		х	2.31	904.26	391.0
	carboxypeptidase						
					F 0/	07454	163.2
greTa0017700 greTa0002600	Peroxidase Uncharacterized, contains DUF3421 domain	redox homeostasis	х		5.36 0.97	874.51 870.73	894.3

		transcription corepressor					
SgreTa0017854	х				0.85	838.89	981.74
SgreTa0007774	Lysosomal-associated membrane	lysosomal membrane			185.20	822.81	4.44
-0	protein	protein					
SgreTa0015156	X	r			27.45	804.82	29.32
SgreTa0007809	Tetraspanin	scaffolding protein in			63.04	799.76	12.69
-0	· · · · · · · · · · · · · · · · · · ·	cell membrane					
SgreTa0004471	Leucine rich repeat	membrane glycoprotein			74.88	797.35	10.65
SgreTa0004278	Fatty acyl-CoA reductase.	lipid metabolism			1.75	733.39	417.99
-8	waterproof-like						
SgreTa0014626	V-type proton ATPase proteolipid	proton transporting			190.76	708.56	3.71
-0	subunit	ATPase					
SgreTa0016256	Bax inhibitor 1	negative regulation of			237.58	692.52	2.91
-0		apoptosis and autophagy					
SgreTa0001469	Sodium/potassium-transporting	sodium:potassium			119.60	685.51	5.73
-0	ATPase subunit alpha	exchanging ATPase					
SgreTa0007426	Serine protease, Easter-like	proteolysis	х	х	0.66	673.43	1023.60
SgreTa0007081	Vigilin	RNA binding, sterol			247.46	655.61	2.65
-0		metabolism					
SgreTa0013328	Ferritin	iron ion transport, iron	x		238.10	651.31	2.74
		sequestration					
SgreTa0002155	Uncharacterized serine protease inhibitor	serine protease inhibitor	x		33.83	646.73	19.12
SgreTa0014303	x				176.21	645.78	3.66
SgreTa0017577	Aquaporin	water channel			0.39	635.34	1638.96
SgreTa0013377	Phosphoenolpyruvate	gluconeogenesis			13.56	628.95	46.37
5gre1a0015577	carboxykinase [GTP]	giuconeogenesis			15.50	020.75	40.57
SgreTa0005752	Alpha-tocopherol transfer	intermembrane lipid			12.98	594.56	45.79
5510140005752	protein	transfer			12.70	571.50	15.7 5
SgreTa0014098	Phospholipase B-like	lipid degradation			206.76	577.99	2.80
SgreTa0000856	Transposase-like	npiù degladation			25.93	576.67	22.24
SgreTa0008861	x				0.37	541.63	1456.67
SgreTa0017826	Sodium:neurotransmitter	solute:sodium symport			0.49	540.53	1104.10
5g10140017020	symporter	solute.soulum symport			0.47	540.55	1104.10
SgreTb0019287	x				3.11	528.47	169.79
SgreTa0015520	Protein yellow	melanization	x		2.75	520.09	189.08
SgreTb0006243	I-type lysozyme	anti-bacterial protein	x		16.96	519.35	30.62
SgreTa0009559	Gram-negative bacteria binding	pathogen recognition	x		15.40	510.04	33.13
56101000000000	protein 3	pathogen recognition	А		13.40	510.04	55.15

- 1326 ^a proteins related to immune response
- ^b proteins that participate in larval moulting; some of them are known, other
- 1328 anticipated to digest cuticular chitin and protein (e.g., present in the MF)

1329 Table 2. RNA-seq differential gene expression of cuticular chitin degrading

- 1330 enzymes in the highly secreting pleuropodia of *Schistocerca*.
- 1331
- 1332 (see below)
- 1333
- 1334 ^a upregulated (UP)/ downregulated (DOWN)
- ^b the DEGs (781 upregulated) were ranked according to their RPKM in descending
- 1336 order, the number describes the position of the DEG in the ranked table; transcripts
- in bold were among the top 25% most abundant
- 1338 ^c not applicable (expression low to undetectable in both samples, transcript filtered
- 1339 out)
- 1340 ^d not significant

Family	Group	Protein	<i>Schistocerca</i> gene	UP/DOWN ^a	Fold change	Expression ^b
β-N-acetylhexosaminidase	Π	NAG1	Sg-nag1	UP	7.85	124 (15.88%)
	II	NAG2	Sg-nag2	UP	62.21	46 (5.89%)
	III	Fused lobes	Sg-fdl	UP	14.18	592 (75.8%)
	IV	Hex	Sg-hex	UP	47.37	306 (39.18%)
chitinase	I-Major "moulting" chitinases	Chitinase 5	Sg-cht5-1	UP	33.03	15 (1.92%)
			Sg-cht5-2	UP	234.78	400 (51.21%)
	II-"Moulting" chitinases	Chitinase 10	Sg-cht10-1	nac		
			Sg-cht10-2	ns ^d		
	III-Cuticle assembly chitinases	Chitinase 7	Sg-cht7-1	ns		
			Sg-cht7-2	ns		
			Sg-cht7-3	ns		
	IV-Gut, fat body and other chitinases	Chitinase 8	Sg-cht8-1	na		
			Sg-cht8-2	na		
			Sg-cht8-3	na		
		Chitinase 6	Sg-cht6-1	ns		
			Sg-cht6-2	ns		
		Chitinase 2	Sg-cht2	UP	2.81	188 (24.07%)
	V-Imaginal disc growth factors	IDGF	Sg-idgf-1	UP	20.97	391 (50.06%)
			Sg-idgf-2	ns		
			Sg-idgf-3	ns		

1343 Table 3. MF proteases that were upregulated in the highly secreting

1344 pluropodia of Schistocerca.

		Schistocerca			
MF protein ^a	Blast query ^b	transcript ID ^c	homolog/similar ^d	RPKM PLP	Fold change UP
Putative peptidase	D2KMR2	SgreTa0000627	similar	131.75	3.14
Aminopeptidase N-12	I3VR83	SgreTb0018983	similar	35.86	4.35
Neutral endopeptidase	Q9BLH1	SgreTa0002467	similar	2282.01	36.66
24.11					
	Q9BLH1	SgreTa0017692	similar	133.30	240.28
	Q9BLH1	SgreTb0039123	similar	219.35	186.96
Ecdysteroid-inducible	Q9NDS8	SgreTa0014009	similar	1457.47	22.16
angiotensin-converting					
enzyme					
	Q9NDS8	SgreTa0017728	similar	62.71	57.08
Carboxypeptidase E-like	H9IST0	SgreTa0000925	homolog	139.81	10.95
Angiotensin-converting	H9IZ41	SgreTa0003298	homolog	23.64	5.65
enzyme-like					
Aminopeptidase N-like	H9JEW9	SgreTa0017219	homolog	391.03	437.93
Digestive cysteine	H9JHZ1	SgreTa0000627	homolog	131.75	3.14
protease 1, cathepsin L					
Serine carboxypeptidase	H9J242	SgreTa0017657	homolog	904.26	391.60
Serine protease HP21	H9JJA9	SgreTa0017649	similar	179.69	24.45
precursor					
Trypsin-like serine	H9JPA8	SgreTa0001636	homolog	7578.31	153.48
protease - fibroin heavy					
chain					
Serine protease, Easter-	Q2VG86	SgreTa0003188	homolog	485.97	837.45
like					
	Q2VG86	SgreTa0003661	homolog	1332.79	45.18
	Q2VG86	SgreTa0006780	homolog	103.37	14.76

	Q2VG86	SgreTa0007424	homolog	29.62	79.13
	Q2VG86	SgreTa0007425	homolog	123.69	72.31
	Q2VG86	SgreTb0037249	homolog	21.76	249.74
	Q2VG86	SgreTb0039879	homolog	305.63	544.04
	H9JLZ4	SgreTa0010219	similar	46.12	20.75
	H9JLZ4	SgreTb0039024	similar	11.71	22.11
Serine protease 1	Н9ЈХҮ6	SgreTb0003860	homolog	1727.41	22.31
Serine protease, Snake-	H9IWW2	SgreTa0000783	similar	917.47	213.59
like					

- 1346
- ^a proteomic sequencing of MF of the lepidopteran *Bombyx mori* (Zhang et al., 2014;
- 1348 Liu et al., 2018)
- 1349 ^b Uniprot ID for blast on *Schistocerca* transcriptome
- 1350 ^c transcripts in bold were among the top ten percent most highly "expressed"
- 1351 upregulated DEGs (Table 1)
- 1352 ^d considered as homologous, if reciprocal blast retrieved the query sequence

1354 Table 4. RNA-seq differential gene expression of Schistocerca lysozymes in the

1355 highly secreting pleuropodia.

1356

Lysozyme type	Gene	UP/DOWN ^a	Fold change	Expression ^b
C-type lysozyme	Sg-LyzC-1	UP	336.64	2 (0.26%)
	Sg-LyzC-2	UP	134.71	37 (4.74%)
I-type lysozyme	Sg-LyzI-1	UP	550.26	7 (0.90%)
	Sg-LyzI-2	ns ^c		
	Sg-LyzI-3	UP	30.62	76 (9.73%)
	Sg-LyzI-4	DOWN	-34.41	1251 (81.50%)
	Sg-LyzI-5	ns		
Lysozyme-like	Sg-Lyz-like-1	UP	192.68	150 (19.21%)
	Sg-Lyz-like-2	ns		

1357

1358 ^a upregulated (UP)/ downregulated (DOWN)

1359 ^b the DEGs (781 upregulated) were ranked according to their RPKM in descending

- 1360 order, the number (percentage) describes the position of the DEG in the ranked
- table; transcripts in bold were among the top 25% most abundant
- 1362 ^c not significant

1363 Table 5. RNA-seq differential gene expression of Schistocerca ecdysone

1364 **biosynthesis enzymes in the highly secreting pleuropodia**.

1365

Gene	UP/DOWN ^a	Fold change	Expression ^b
shade (shd), Cyp314A1	ns ^c		
shadow (sad), Cyp315A1	ns		
disembodied (dib), Cyp302A1	UP	5.71	431 (55%)
phantom (phm), Cyp306A1	ns		
shroud (sro)	ns		
spook (spo), Cyp307A1	DOWN	-12.32	1368 (89%)
spook-like	ns		
neverland (nvd)	ns		
Cyp6t3	not found		
Сурби1	na ^d		
Сур303а1	ns		

1366

1367 ^a upregulated (UP)/ downregulated (DOWN)

1368 ^b the DEGs (781 upregulated and 1535 downregulated) were ranked according to

their RPKM in descending order, the number (percentage) describes the position of

1370 the DEG in the ranked table

1371 ^c not significant

1372 ^d not applicable (expression low to undetectable in both samples, transcript filtered

1373 out)