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Abstract: Colorectal cancer (CRC) is the third-most common form of cancer among Americans. 

Like normal colon tissue, CRC cells are sustained by a subpopulation of “stem cells” that possess 

the ability to self-renew and differentiate into more specialized cancer cell types. In normal colon 

tissue, the enterocytes, goblet cells and other epithelial cells in the mucosa region have distinct 

morphologies that distinguish them from the other cells in the lamina propria, muscularis mucosa, 

and submucosa. However, in a tumor, the morphology of the cancer cells varies dramatically. 

Cancer cells that express genes specific to goblet cells significantly differ in shape and size 

compared to their normal counterparts. Even though a large number of hematoxylin and eosin 

(H&E)-stained sections and the corresponding RNA sequencing (RNASeq) data from CRC are 

available from The Cancer Genome Atlas (TCGA), prediction of gene expression patterns from 

tissue histological features has not been attempted yet. In this manuscript, we identified 

histological features that are strongly associated with MUC2 expression patterns in a tumor. 

Specifically, we show that large nuclear area is associated with MUC2-high tumors (p < 0.001). 

This discovery provides insight into cancer biology and tumor histology and demonstrates that it 

may be possible to predict certain gene expressions from histological features.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584292doi: bioRxiv preprint 

https://doi.org/10.1101/584292
http://creativecommons.org/licenses/by/4.0/


Introduction: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in 

the United States, in addition to being the third most common form of cancer.1,2 Approximately, 

140,250 colon cancer cases expected to occur in the United States in 2019, with a projected 

death rate of 50,630 deaths.1 At the cellular level, CRC is typically diagnosed using hematoxylin 

and eosin (H&E), which highlight different tissue structures such as cell nuclei and cytoplasm in 

a tissue section.3 A pathologist manually examines the H&E stains to determine the cancer 

diagnosis, which is the current gold standard. Immunohistochemical analysis on the tissue section 

is performed to examine protein expression patterns at a single cell resolution.4,5  In a normal 

tissue sample, expression patterns of cell-type-specific markers are usually correlated with 

distinct morphology because differentiated cells, such as enterocytes and goblets cells, have 

distinct shapes. A typical histopathological image of CRC tissue contains four tissue components: 

lumen, cytoplasm, epithelial cells, and stroma (connective tissue, blood vessels, nervous tissue, 

etc.). However, it is hard to distinguish the different cell types within the epithelium in a cancer 

tissue sample. The epithelial cells in CRC come in diverse shapes and sizes. A recent review of 

mucin expression in CRC demonstrates this diversity comprehensively.6 

Previous studies have observed that mucinous histology of CRC is strongly associated 

with overexpression of MUC2.7 Research on nuclear morphology and MUC2 expression has been 

limited. Cancer cells with signet-ring characteristics, such as clear cytoplasm and abundant 

intracytoplasmic mucins that compress the nuclei and cause them to be eccentrically located are 

characteristic of MUC2 overexpression. Knowledge of specific nuclear features may associated 

with MUC2 expression may help with devising ways to detect colon cancer in its early stages. 

Currently, we rely on simple nuclear segmentation techniques to identify nuclear morphology.8 By 

performing analysis on high-resolution images of H&E stained tissues and the corresponding RNA 

sequencing (RNASeq) data available from The Cancer Genome Atlas (TCGA)9, we sought to 

determine if there were specific nuclear features that are strongly associated with MUC2 

expression.
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Methods

Data Collection

Whole slide images (n = 897) and RNASeq data (n = 698) were downloaded from the 

TCGA website for colorectal cancer (COAD + READ). The RNASeq data was explored using a 

scatter plot between KRT20 and MUC2 TPM values (Fig. 1B). The expression values of KRT20 

and MUC2 were ordinally arranged from low to high, and a rising step function was computed to 

define a threshold by the StepMiner algorithm in the TCGA dataset10. Expression levels above 

the assigned threshold for a gene were classified as “high”, and expression levels below this 

assigned threshold were classified as “low”. We identified 61 high-quality tissue images from 45 

patients corresponding to 23 MUC2-low CRC, 28 MUC2-high CRC, 10 MUC2-high normal colon 

tissue. 61 TPM (transcripts per million) values corresponding to these 45 patients were obtained, 

including 23 MUC2-low CRC, 27 MUC2-high CRC, and 7 MUC2-high normal colon tissue. TPM 

values were not available for three normal colon tissues among the whole slide tissue images. 

However, since normal colon tissues are MUC2-high, we labeled these three tissues as MUC2-

high samples. The Cancer Digital Slide Archive web interface was also used to explore the tissue 

images,11 and a proprietary web interface was developed (code available from authors upon 

request) to annotate the cancer regions in the tissue images.

Image Annotation

Each colon cancer tissue image contained several regions of cancer cell clusters, as well 

as of stromal cells, fibroblasts, muscle tissue, and necrotic tissue. The cancer regions, which were 

the specific focus of the study, were cropped and isolated and verified independently by two 

experts in cancer stem cell biology (Dr. Michael Clarke, Stanford University; and Dr. Piero 

Dalerba, Columbia University), who were blinded to each other. Each of these isolated regions, 

which will henceforth be referred to as annotations, was saved as a separate image file and 

labeled as MUC2-high (+1) or MUC2-low (-1), depending on the image from which it was cropped 

(which was based on the corresponding patient ID). From a total set of 897 images, 61 were 
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randomly selected for the training set; these images were annotated and used for training and 

cross-validations. These images were manually annotated, and a total of 2336 annotations were 

created for image analysis.

Image Analysis

For each annotation, OpenCV12 (an open-source computer vision software package) was 

used to segment the nuclei. Traditional computer-vision-based approaches follow four main steps 

of nuclei segmentation process: image enhancement, thresholding, feature extraction and 

refinements. The Blue Ratio transformation was used to enhance the nuclear staining while 

attenuating the background staining.8 The Blue Ratio transformation is performed using the 

following formula: 100* B / (1 + R + G) * 256 / (1 + R + G + B). Standard Otsu thresholding was 

performed to transform the grayscale transformed image into a binary image. To remove the 

artifacts of thresholding, the holes were filled and binary opening and closing morphological 

operations were performed.13 Connected components were discovered to form islands, and the 

watershed algorithm14 was performed to separate these islands. The shapes of the islands were 

detected using the standard OpenCV contour-finding algorithm, and these contours were used 

as the segmented nuclei. 

Filtering Nuclei Segments

An aggressive filtering strategy was utilized to minimize any computer vision-based nuclei 

segmentation process errors including those from fragmented nuclei and joined nuclei. At this 

point, it was apparent that some of the nuclei were joined to form large segments and other nuclei 

were fragmented. To remove the fused-nuclei segments, the nuclei were sorted based on their 

area from small to large, and the sum of the areas was computed. All nuclei with areas larger than 

half of the sum were removed because they were likely fused nuclei.

Feature Analysis

 Each nucleus was modeled as an ellipse because the nuclei in CRC tissues appeared 

elliptical in shape, and a set of numerical features was obtained for each individual nucleus. These 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584292doi: bioRxiv preprint 

https://doi.org/10.1101/584292
http://creativecommons.org/licenses/by/4.0/


features included: area, moments (of which there were 24), aspect ratio, perimeter, major axis, 

minor axis, radius, equivalent diameter, extent, defect, compactness, and eccentricity. This 

procedure led to the creation of approximately 1.5 million data points, one for each nucleus. These 

feature values were compared to the MUC2 expression patterns from the RNASeq data to 

discover potential relationships. 

Very little correlation was observed between the nuclear features and the MUC2 TPM 

values. Thus, histograms were computed using the values for every individual feature between 

MUC2-high and MUC2-low tissue samples, and these histograms were compared with one 

another. The histograms showed that three specific features had predictive capabilities. For each 

of these three features, the fraction of the logarithmic values that were above a certain threshold 

specific to each feature were calculated for each image, and these fractions were statistically 

analyzed using the Welch Two Sample t-test. Finally, box plots were created to visualize the large 

value fractions for these features for MUC2-high and MUC2-low images across the entire data 

set. 

Statistical Analysis

All statistical analysis were performed in R, version 3.0.2 (2013-09-25) and in python 2.7, 

using scipy.stats.ttest_ind (SciPy v0.19.0). All tests were 2-sided at the P=0.05 level. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584292doi: bioRxiv preprint 

https://doi.org/10.1101/584292
http://creativecommons.org/licenses/by/4.0/


Results

Tissue histological features are compared with gene expression

Figure 1 depicts the process of annotating the images, segmenting the nuclei, and 

obtaining the numerical features for each nucleus. We collected tissue images from the TCGA 

website and manually annotated the cancer regions (Fig. 1A) and assembled TCGA RNASeq 

dataset to examine MUC2 gene expression patterns (Fig. 1B). Figure 1A shows a CRC tissue 

image that has high MUC2 gene expression levels, and the annotations of the cancer regions are 

depicted as blue rectangles. Figure 1C demonstrates the image transformations during individual 

steps of the nuclei segmentation. The final results of the nuclear segmentation, including the 

removal of the large fused nuclei, are shown in Figure 1D (cyan contours). Ten randomly selected 

nuclei were chosen to demonstrate the computational features (Fig. 1D, yellow ellipses). OpenCV 

was used to model the nuclei as ellipses and to obtain specific numerical features of each nucleus. 

Thirteen selected contour features out of 35 standard features are displayed in a table form to 

show the relationship between the feature values and the shape of the nuclei (Fig. 1E). These 

feature values were analyzed further to find relationships between the CRC tissue morphology 

and the expression levels of MUC2.

Feature area, equivalent diameter, and m12 are associated with MUC2 expression in 

selected samples

To check the relationship between nuclei features and the MUC2 TPM values from the 

RNASeq experiments, we selected three MUC2-high samples, including a normal tissue sample 

and two MUC2-low CRC samples (Fig. 2A, 2B). A normal colon tissue sample is always MUC2-

high because of the large number of goblet cells present, but it is not always clear from tissue 

images if a CRC sample is MUC2-high or low. A pooled nuclei data set was created from the 

three MUC2-high slide images (23993 nuclei) and two MUC2-low slide images (58195 nuclei), 

which led to a total of 82188 data points (Fig. 2C). No significant differences were observed 

between the average feature values between MUC2-high and MUC2-low groups. 
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With this pooled data set, a histogram was plotted for each feature generated by OpenCV 

to reveal any differences between MUC2-high and MUC2-low nuclei. No significant differences 

between MUC2-high and MUC2-low were observed in the distributions for any individual feature 

in a linear scale, so they were again plotted on a logarithmic scale. The following three features 

were found to have differences in the distributions between MUC2-high and MUC2-low (Fig. 2C): 

area, equivalent diameter, and m12 (m12 is one of the 24 image moments that were collected as 

individual features). The right tails of the histograms show that MUC2-high tissue has more nuclei 

that have higher values for all three features. Because the pooled data set had more MUC2-low 

nuclei than MUC2-high nuclei, it was surprising to find that more MUC2-high nuclei had higher 

values for these four features. Figure 2C right side shows a closer view of the right tails of each 

of the histograms shown in the left. 

The results shown in the histograms led to the hypothesis that MUC2-high tissue may 

have more nuclei with larger area, equivalent diameter, and m12 than MUC2-low tissue do. To 

test if this hypothesis holds for individual images instead of the sample dataset, one MUC2-high 

sample was compared with one MUC2-low sample (Fig. 2D-F). The comparison between TCGA-

A6-5665-01A-01-BS1 (MUC2-high) and TCGA-A6-6654-01A-01-BS1 (MUC2-low) revealed that 

only log(Area) and log(Equivalent Diameter) have a longer right tail in the MUC2-high case (Fig. 

2D). However, the comparison between TCGA-A6-6653-01A-01-BS1 (MUC2-high) and TCGA-

A6-5662-01A-01-BS1 (MUC2-low) reported similar results to those of the pooled dataset: area, 

equivalent diameter, and m12 shows longer right tail in MUC2-high sample (Fig. 2E). The normal 

tissue sample TCGA-A6-2684-11A-01-TS1 was compared with a MUC2-low CRC sample TCGA-

A6-5662-01A-01-BS1, and the long right tail was only observed for area and equivalent diameter 

(Fig. 2F). 

Feature area and equivalent diameter are significantly associated with MUC2 expression 

in TCGA dataset
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To test the hypothesis that area, equivalent diameter, and m12 may be associated with 

MUC2 expression patterns, analysis was performed on additional tissue samples from the TCGA 

dataset. 23 MUC2-low samples and 38 MUC2-high samples (28 CRC + 10 normal) from 45 

patients with high quality tissue images were assembled, along with three normal tissue samples 

were not profiled in the RNASeq data (these samples were considered MUC2-high). 61 RNASeq 

experiments (54 CRC + 7 normal) correspond to these 45 patients (Fig 3A, 23 blue MUC2-low, 

34 red MUC2-high, 2 cyan MUC2-low, 2 green, MUC2-low). Two patients were found whose 

tumor samples (Fig 3A, 2 cyan, 2 green) were on both side of the MUC2 threshold; these samples 

were treated as MUC2-low as they were boundary cases. The 61 tissue images (23 MUC2-low + 

38 MUC2-high) were analyzed and the nuclei identified and segmented. 

For area, equivalent diameter, and m12, the fraction of the logarithmic values that were 

above a certain threshold were calculated for each image, and these fractions were statistically 

analyzed using the Welch Two Sample t-test. The results of the t-test are illustrated in Figure 3 

as red circles with the center as the mean, the arrow length as 95% confidence interval on both 

sides, the test statistic value, and the p-value. The p-values shown in Figure 3B and 3C show that 

the results found for area and equivalent diameter were statistically significant, while those for 

m12 were not (Fig. 3D). 

Box plots were created to visualize the large value fractions for area, equivalent diameter, 

and m12 across all MUC2-high and MUC2-low images in the data set (Figure 3B-D). The box 

plots show that the median values of area and equivalent diameter are higher for MUC2-high cells 

than for MUC2-low cells. Because MUC2 is usually identified through tissue staining, the 

morphology of nuclei that are positive for MUC2 is not well known. These results suggest that 

tissue containing high volumes of large nuclei (or nuclei with large equivalent diameters) may be 

associated with high levels of MUC2. Moments are a quantitative measure of the spatial 

distribution of a set of points, and for these images, these moments are based on pixel intensity. 
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It is unknown how this information correlates with existing information about colon cancer nuclei, 

and thus further experimentation should be conducted to analyze this relationship.
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Discussion

The Cancer Genome Atlas (TCGA) has published thousands of whole slide images from 

CRC tissues, in addition to RNASeq and genomic data on the same tissues. Literature and the 

field of digital pathology have focused on analysis of the tissue images using novel computational 

tools.15 However, the relationship between image features and gene expression has not been 

pursued aggressively. In this study, we demonstrate a strong association between tissue image 

features and MUC2 expression patterns. We chose MUC2 as our gene of interest because it is 

expressed in goblet cells, which have a distinct morphology. It is easy to identify goblet cells in 

normal tissue; but it is difficult to do so in CRC tissue.

The Blue Ratio transform was found to be effective at segmenting nuclei, and recording 

the features of individual nuclei was expected to prevent loss of data. Histograms were created 

for each nuclear feature generated by OpenCV, for a small subset of the slide images that were 

obtained from TCGA. While most of the features were indistinguishable in MUC2-high and MUC2-

low tissue, three features in particular (area, equivalent diameter, and m12) were found to have 

a higher percentage of large values in MUC2-high tissue than in MUC2-low tissue. Discovery of 

such significant morphological difference between MUC2-high and MUC2-low nuclei is extremely 

relevant to the field of digital pathology. Connecting morphological features with gene expression 

will provide insight into the disease phenotype and their correlation with outcome. Although these 

results are surprising, further research must be conducted to investigate the correlation between 

MUC2 expression and nuclear size. The relative levels of gene expression in a tissue cross-

section are often identified by staining the tissue with an antibody specific to that gene, but such 

information is very difficult for humans to identify by eye in unstained brightfield images. The fact 

that a computer is able to relate a morphological feature in the tissue sample with relative gene 

expression is important step towards understanding CRC disease diversity.

Our study is limited by the consideration that only 61 slide images were analyzed, even 

though large volumes of data were produced from said images. Because the cells in cancer tissue 
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are extremely heterogeneous in shape, size, and other morphological features, it is necessary to 

have a high volume of data that is all encompassing of these morphological features. Thus, more 

images must be annotated and added to the data set, and any computed results will thus be more 

accurate. The other limitation of this study is that cells expressing MUC2 are difficult to identify by 

eye, and thus the segmentation algorithms have not been trained on cells that are specifically 

known to express MUC2. Thus, this study must be conducted on a training set that consists of 

tissues specifically stained for MUC2. 

Insight gained through this analysis is not only relevant to the field of cancer biology and 

tissue histology but also relevant to the field of bioinformatics, which provides tools for predicting 

gene expression directly from tissue H&E slides. Advanced nuclear segmentation techniques can 

be used in future to improve this analysis: CellProfiler,16,17 QuPath,18 Fiji19 and MANA.20 Deep 

learning approaches are ideally suited for this type of problems because of availability of large 

number of training and validation data. Doing so will enable the models to better identify features 

that are indicative of MUC2-high cells, and will thus make them more effective at predicting a 

tissue sample as MUC2-high or MUC2-low.

Image segmentation is an active area of research,21 and nuclear segmentation techniques 

have improved significantly.15 A search for “digital pathology” and “image analysis” on Pubmed 

revealed over 1500 articles just in the last decade,15 and an extensive collection of nuclear 

segmentation papers for histologic analysis have been published over the past 20 years.22 

Several machine learning/deep learning-based approaches have been proposed to perform 

better than computer vision-based approaches.21,23 Histopathology images are ideally suited for 

interrogation via deep learning approaches as they attempt to use deep architectures to learn 

complex features from data in an unsupervised manner.15 Much progress has been made in the 

segmentation of glandular structure in a tissue image.21,24-29 A nuclear segmentation algorithm 

consisting of color deconvolution, k‐means clustering, local adaptive thresholding, and cell 

separation was explored to extract cell nuclei features in a recent study,3 and previous studies 
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have used active contour models to segment nuclei.30-32 It is important to replicate our results in 

the context of other nuclei segmentation approaches to study the robustness of the association.

Data Access

TCGA
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