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Typically stochastic differential equations (SDEs) involve an additive or multiplicative

noise term. Here, we are interested in stochastic differential equations for which the white
noise is non-linearly integrated in the corresponding evolution term, typically termed as

random ordinary differential equations (RODEs). The classical averaging methods fail

to treat such RODEs. Therefore, we introduce a novel averaging method appropriate to
be applied on RODEs. To exemplify the importance of our method, we apply it in an

important biomedical problem, i.e. the assessment of intratumoral heterogeneity impact

on tumor dynamics. In particular, we model gliomas according to a well-known Go or
Grow (GoG) model and tumor heterogeneity is modelled as a stochastic process. It has

been shown that this GoG model exhibits an emerging Allee effect (bistability). We
analytically and computationally show that the introduction of white noise, as a model
of intratumoral heterogeneity, leads to a monostable tumor growth. This monostability

behaviour is also derived even when spatial cell diffusion is taking into account.
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glioblastoma multiforme
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1. Introduction

In the current section we demonstrate the key ideas of the novel averaging principle

is introduced in the present work. For that purpose let us consider the following

simple ordinary differential equation (ODE){
∂ρ
∂t = F (ρ, k), t ∈ (0, T ],

ρ(0) = ρ0,
(1.1)

where F : R × R → R is a globally Lipschitz function in both variables, ρ, k ∈ R.
Here the variable k represents a generic parameter of the model represented by the

system (1.1). Assume now that the parameter k is not constant but varies randomly
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in time, and thus some noise is introduced to system (1.1). One can assume that

the introduced noise resembles a Gaussian Process, or in more singular case, when

it varies very strongly and at very short time scale, that has the form of a white

noise. In the latter case and when the dependence on the parameter k = k(t) is

linear, namely

F (ρ, k) = µ(ρ) + σ(ρ)k,

where then system (1.1) is reduced to the following initial value problem of a stochas-

tic differential equation (SDE){
dρ
dt = µ(ρ) dt+ σ(ρ) dBt, t ∈ (0, T ],

ρ(0) = ρ0.

Next in the case the dependence on k(t) is non linear and k(t) is a real valued pro-

cess, hence not white noise, then system (1.1) is well defined and its mathematical

study can be delivered through a well established theory, see.12 Otherwise, if k(t)

is thought as a white noise, namely as a uniform distribution will be denoted by ξt
to make more clear the reference to a stochastic process, then we have to deal with

the following system {
dρ
dt = F (ρ, ξt), t ∈ (0, T ],

ρ(0) = ρ0,
(1.2)

which is meaningless in the context of stochastic differential equations (SDES),

since the drift of the ODE (1.2) is given by a non linear function of a distribution,

namely of the white noise

To tackle system (1.2), the idea is to work with an approximation of the white

noise ξt, which is defined in a complete probability space
(

Ω,F , (Ft)t∈[0,T ] ,P
)

with

filtration (Ft)t∈[0,T ]. We will call one of the possible approximations of ξt as ξNt .

Then considering ξNt , instead of ξt, we obtain the following well posed system,{
dρN

dt = F (ρN , ξNt (ω)) := Fω(t, ρ), t ∈ [0, T ], ω ∈ Ω.

ρ(0) = ρ0,
(1.3)

where the equation of (1.3) is a random ordinary differential equation (RODE),

that is a non-autonomous ODE for almost every realization ω ∈ Ω.

The challenge is to investigate whether system (1.3) has a limit as N →∞. To

do so we will focus on a specific case, in particular we assume that

lim
k→±∞

F (ρ, k) = β±(ρ) for each ρ ∈ R.

Intuitively speaking ξNt are independent centered Gaussian variables with variance

that tends to infinite. Our main aim is to figure out how the nonlinear term F be-

haves when it is perturbed by an approximation of the white noise. Let us think the

variable ρ being fixed, then the function F will be evaluated in extremely big posi-

tive values (on which F ≈ β+) or extremely big negative values (on which F ≈ β−).
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Thus one would expect that in the limit N →∞, F becomes a sort of Bernoullian

process, denoted by α. Namely on a probability space
(

Ω,F , (Ft)t∈[0,T ] ,P
)

, the

random variable α is defined by

α : [0, T ]× Ω→ R,

with

αt =

{
β+(ρ) p = 1

2 ,

β−(ρ) p = 1
2 .

Furthermore for each t1, t2 ∈ [0, T ], we expect (αt1 , αt2) are independent random

variables. Consequently, in the limit N → +∞ one would expect as a limit equation

of (1.3) a RODE with a drift term which maintains a random oscillation between

the two values β+(ρ) and β−(ρ). Surprisingly this is not the case and as we will see

in section 4 the limit equation is a deterministic ODE, whose drift is given by the

mean of the two extremes, i.e. β+(ρ)+β−(ρ)
2 .

The outline of the current manuscript is as follows. In section 2 for reader’s

convenience we present some preliminary material. Section 3 introduces some aux-

iliary results, related with the averaging approach. The previous is followed for the

demonstration and the proof of our main mathematical result, the novel averaging

principle presented in section 4. In section 5 an application of the introduced aver-

aging principle on the impact of intratumoral heterogeneity in glioma progression is

provided. It is actually observed that the introduction of randomness in the intra-

tumoral heterogeneity works towards the disappearance of the Allee effect. Finally

we close the paper with a discussion of our main results in section 6.

2. Preliminaries

In the current section some preliminaries are presented for reader’s convenience.

Throughout the manuscript we consider random approximations of a white noise

(ξt)t∈[0,T ]. White Noise can have different equivalent definitions, however we will

focus on a particular one: the one that allow us to figure out the white noise as

the “derivative” of Brownian motion. Before proceeding with the required def-

initions we just point out that we will work in the filtered probability space(
Ω,F , (Ft)t∈[0,T ] ,P

)
.

First, we recall the definition of Gaussian stochastic process generalized as can

be found in.7

Definition 2.1. Let us consider a generalized stochastic process Φ, namely

Φ : Ω→ D′(U),

where U is an open set in R and D′(U) is the space of distribution on U . We say

that Φ is a gaussian process if for each φ1, . . . , φk ∈ C∞c (U) the random vector

ΦB(φ1), . . . ,Φ(φk) is normally distributed.
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Notice that a Gaussian process is characterized by the following quantities: its

mean

mΦ(φ) := E [Φ(φ)] ,

and its covariance

cΦ(φ, ψ) := E [Φ(φ)−mΦ(φ)] [Φ(ψ)−mΦ(ψ)] .

for each φ, ψ ∈ C∞c (U).

Definition 2.2. Let (Bt)t∈R+ a Brownian motion on the probability space

(Ω,F ,P). Associated to B we can consider the generalized stochastic process,

B : Ω→ D′(U),

B(φ) :=

∫ T

0

φsBsds, for any φ ∈ C∞c ([0, T ]) .

Then we define the white noise as the generalized derivative B′ : Ω→ D′([0, T ]) of

the generalized Brownian motion B, that is

B′(φ) := −
∫ T

0

φ′sBsds, for any φ ∈ C∞c ([0, T ]) .

Henceforth we will denote B′ by ξ and thus

ξ(φ) =

∫ T

0

φsξsds := −
∫ T

0

φ′sBsds, for any φ ∈ C∞c ([0, T ]) . (2.1)

White noise is a generalized Gaussian Stochastic Process, since

ξ(φ) = −B(φ′)

and B is a Gaussian process. Recalling that cov(Bt, Bs) = min{t, s}, we can evaluate

the mean and covariance of the white noise as

mξ(φ) = −mB(φ′) = 0

and

cξ(φ, ψ) =

∫ T

0

∫ T

0

min{t, s}φ′sψ′tdsdt =

∫ T

0

∫ T

0

δ(t− s)φsψtdsdt.

So we can conclude that the white noise is a δ-correlated stationary, Gaussian

process with mean zero and covariance E [ξt ξs] = δ(t− s).
As it has been already mentioned at the beginning of the section our main

strategy is to work with an approximation of (ξt)t∈[0,T ], since only the associated

ODEs are well defined.

Let us now consider the stochastic process B∆, defined by the difference quotient

of Brownian motion, Bs+∆−Bs
∆ , namely

B∆(φ) :=

∫ T

0

Bs+∆ −Bs
∆

φs ds for any φ ∈ C∞c ([0, T ]) .
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We justify our choice with the following lemma.

Lemma 2.1. The process B∆ converges weakly to ξ, almost surely, that is

B∆(φ) −→
∆→0

ξ(φ) for every φ ∈ C∞c ([0, T ]), a.s. .

Proof. Due to the non-differentiability of Brownian motion we first prove the

lemma for a mollified approximation of Brownian motion Bεt = Bt ∗ ψε, where

ψε is a mollifier function, see,15 and then taking the limit as ε→ 0 we will deduce

the desired result. It is easily seen that for any fixed ε we derive∫ T

0

Bεs+∆ −Bεs
∆

φsds =

∫ T

0

Bεs+∆φs+∆ −Bεsφs
∆

ds

+

∫ T

0

Bεs+∆

φs − φs+∆

∆
ds. (2.2)

Taking now the limit of (2.1) as ∆→ 0 we derive

B∆,ε(φ) −→
∆→0

∫ T

0

(Bεsφs)
′ds︸ ︷︷ ︸

=0

−
∫ T

0

Bεsφ
′
sds = −

∫ T

0

Bεsφ
′
sds, (2.3)

since φ ∈ C∞c ([0, T ]).

Finally considering the limit of (2.3) as ε→ 0 we derive the desired result.

Now we consider a discrete sampling of the process Bs+∆−Bs
∆ with ∆ = ∆N =

1/N . Thus we divide the interval [0, T ] in small sub-intervals such that [0, T ] =⋃N
i=1A

N
i where ANi =

[
(i−1)
N T, iN T

]
with i = 1, . . . , N . Note that in the interval

ANi the sample is normally distributed

B i−1
N T+∆N

−B i−1
N T

∆N
∼ N

(
0,

1

∆N

)
.

Consequently, inspired by inspired by Lemma 2.1, we consider the following random

step function as an approximation of the white noise

ξNt =
N∑
i=1

αNi 1ANi (t) where αNi =
B i−1

N T+∆N
−B i−1

N T

∆N
∼ N (0, N) , (2.4)

see Fig. 1.

3. Some auxiliary results

Our mathematical approach to study system (1.2) is inspired by the averaging

theory. Indeed, this theory treats dynamical systems in which two variables (Xt, ξt)

coexist and interact, but in two different time scales. In particular, the time scaling
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0 TINi

Fig. 1: Plot of the approximation ξNt of white noise ξt.

of one of the two variables, ξ, is subjected to acceleration by a factor ε, which implies

that its actual time scale is t/ε and so it contributes to the dynamics of the system

in the form ξt/ε. Via averaging theory we can investigate what is the impact to the

system for small ε, namely when the acceleration is big, and we can conclude that

the contribution of the faster process ξt/ε is evaluated in its time average.

Throughout the current manuscript we will try to implement the mentioned

ideas into system (1.2). Since the latter system is not well defined when the random

perturbation is a white noise we will deal with the approximating system (1.3),

where the white noise is approximated by ξNt , defined by (2.4), and the parameter

of approximation N , can be reinterpreted as the new scaling time parameter4 . In

the current section we present some auxiliary results will be used for the proof of

our novel averaging principle demonstrated and proven in section 4.

We now present the main hypotheses regarding the drift F term. Please note

that C denotes a positive constant independent of t which might change its value

from line to line.

Hypothesis 3.1.

(1) F : R × R → R is Lipschitz with respect the first variable, uniformly on the

second, namely there holds

|F (ρ1, k)− F (ρ2, k)| ≤ C|ρ1 − ρ2|, (3.1)

for each k ∈ R, where the positive constant C, does not depends on k.

(2) F is also bounded, i.e.

‖F (ρ, k)‖∞ ≤ C < +∞. (3.2)

(3) F is quasimonote, i.e.

F (0, k) ≥ 0. (3.3)
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(4) Finally for each ρ ∈ R the asymptotic profile of the drift term is defined as

|F (ρ, k)− β±(ρ)| = O

(
1

|k|2

)
for k → ±∞. (3.4)

The way we interpret the solutions of RODE (1.3) as well as some of its features

are provided below:

Definition 3.1. By a solution of the RODE (1.3) we mean a stochastic process

such that for each ω ∈ Ω, ρN (ω) ∈ C([0, T ]) and satisfies:

ρNt (ω) = ρ0 +

∫ t

0

F (ρNs (ω), ξNs (ω))ds,

with a deterministic initial condition ρ0 ∈ R+.

Remark 3.1. Under the assumption that F locally Lipschitz in its first variable

then problem (1.3) has a unique pathwise solution ρN (t, ω) for every ω ∈ Ω, in

the finite interval [0, T ],.12 Moreover the assumption (3.3) guarantee the positivity

of the solutions of (1.3) initiated from positive intial condition ρ0 ≥ 0, see also

Theorem 2.4 in,12 which is a desired property in biological models like the one that

will be considered in section 5.

In the next section, see in particular Theorem 4.1, we prove that the limit

towards N → +∞ of problem (1.3) is the following deterministic problem{
dρ
dt = F̄ (ρ)

ρ(0) = ρ0,
(3.5)

where

F̄ (ρ) =
β+(ρ) + β−(ρ)

2
. (3.6)

Definition 3.2. By a solution of the ODE (3.5) we mean a function ρ ∈ C([0, T ])

satisfying:

ρt = ρ0 +

∫ t

0

F̄ (ρs)ds,

with a deterministic initial condition ρ0 ∈ R+.

Again if the drift term F̄ (ρs) is locally Lipschitz continuous and positive , then

problem (3.6) has a unique positive solution.

The rest of this section is devoted to the study of the average in time contri-

bution of the process ξNt on the drift F (asymptotically in N), more precisely see

Proposition 3.1. Before proceeding with the proof of this result we need a key tool,

i.e. a law of large numbers for random variables (r.v.) F (x, αiN ), i = 1, 2, . . . , N,

which is stated and proven in the following lines.
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Lemma 3.1. Assume that F satisfies Hypothesis 3.1. Fixed N ∈ N, we consider

αNi ∼ N (0, N) as independent random variables, then for each x ∈ R+ there holds

E

∣∣∣∣∣ 1

N

N∑
i=1

F (x, αNi )− F̄ (x)

∣∣∣∣∣
4

≤ C

Nα
, for some α >

1

4
, (3.7)

where F̄ (x) := β+(x)+β−(x)
2 and provided that N is sufficiently large.

Proof. Let us call SN (x) := 1
N

∑N
i=1 F (x, αNi ), then for µN (x) :=

E
[
F (x, αNi )

]
, i = 1, 2, . . . , N, we have

E|SN (x)− F̄ (x)|4 = E

∣∣∣∣∣ 1

N

N∑
i=1

F (x, αNi )− F̄ (x)

∣∣∣∣∣
4

= E

∣∣∣∣∣
(

1

N

N∑
i=1

(
F (x, αNi )− µN (x)

))
−
(
µN (x)− F̄ (x)

)∣∣∣∣∣
4

≤ 8 · E

∣∣∣∣∣ 1

N

N∑
i=1

(
F (x, αNi )− µN (x)

)∣∣∣∣∣
4

+ 8 ·
∣∣µN (x)− F̄ (x)

∣∣4
=

8

N4
· E

∣∣∣∣∣
N∑
i=1

(
F (x, αNi )− µN (x)

)∣∣∣∣∣
4

+ 8 ·
∣∣µN (x)− F̄ (x)

∣∣4 .(3.8)

Now, setting Xi :=
(
F (x, αNi )− µN (x)

)
then the first term in the r.h.s of (3.8) can

be expanded as

E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
4


= E

 N∑
i=1

X4
i +

∑
i 6=j

X3
iXj +

∑
i 6=j

X2
iX

2
j +

∑
i1 6=i2 6=i3

Xi1Xi2X
2
i3 +

∑
i1 6=i2 6=i3 6=i4

Xi1Xi2Xi3Xi4


=

N∑
i=1

E
[
X4
i

]
+
∑
i 6=j

E
[
X3
iXj

]
+
∑
i 6=j

E
[
X2
iX

2
j

]
+

∑
i1 6=i2 6=ı3

E
[
Xi1Xi2X

2
i3

]
+

∑
i1 6=i2 6=i3 6=i4

E [Xi1Xi2Xi3Xi4 ] .

Due to the independence of the involved r.v. we derive

E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
4
 =

N∑
i=1

E
[
X4
i

]
+
∑
i 6=j

E
[
X3
i

]
E [Xj ] +

∑
i 6=j

E
[
X2
i

]
E
[
X2
j

]
+

∑
i1 6=i2 6=i3

E [Xi1 ]E [Xi2 ]E
[
X2
i3

]
+

∑
i1 6=i2 6=i3 6=i4

E [Xi1 ]E [Xi2 ]E [Xi3 ]E [Xi4 ] .
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Since E [Xi] = 0, the second, the fourth sum and the last sum are equal to zero. So

the previous quantity is reduced to

E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
4
 =

N∑
i=1

E
[
X4
i

]
+
∑
i 6=j

E
[
X2
i

]
E
[
X2
j

]
.

Thanks to the previous computation and to the fact that the r.v. Xi are independent

and identically distributed (i.i.d.) and uniformly bounded with respect to N , we

obtain:

1

N4
E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
4

≤ 1

N4

N∑
i=1

E
[
X4
i

]
+

1

N4

∑
i 6=j

E
[
X2
i

]
E
[
X2
j

]
≤ N

N4
E
[
X4

1

]
+

3 ·N · (N − 1)

N4
E
[
X2

1

]2
≤ C

N3
+

C

N2
. (3.9)

Next we try to estimate the second term in the right hand side (r.h.s.) of (3.8). It

remains to prove that∣∣µN (x)− F̄ (x)
∣∣ ≤ 1

Nα
, for some α >

1

4
.

In the following it will be more convenient to rewrite αNi as
√
NZi, where Zi ∼

N (0, 1) for i = 1, 2, . . . , N. Then considering the sequence εN = N−β with β ∈
( 1

3 ,
3
8 ) we have∣∣µN (x)− F̄ (x)

∣∣ =
∣∣∣E [F (x,

√
NZi)

]
− F̄ (x)± β+(x)P[Zi > εN ]± β−(x)P[Zi > εN ]

∣∣∣
≤
∣∣∣E [F (x,

√
NZi)

]
− (β+(x) + β−(x))P[Zi > εN ]

∣∣∣︸ ︷︷ ︸
(I)

+
∣∣(β+(x) + β−(x))P[Zi > εN ]− F̄ (x)

∣∣︸ ︷︷ ︸
(II)

.

The first term (I) is estimated as follows∣∣∣E [F (x,
√
NZi)

]
− (β+(x) + β−(x))P[Zi > εN ]

∣∣∣ ≤
≤
∣∣∣E [F (x,

√
NZi)1Zi>εN

]
− β+(x)P[Zi > εN ]

∣∣∣︸ ︷︷ ︸
(I)1

+
∣∣∣E [F (x,

√
NZi)1|Zi|<εN

]∣∣∣︸ ︷︷ ︸
(I)2

+
∣∣∣E [F (x,

√
NZi)1Zi<−εN

]
− β−(x)P[Zi > εN ]

∣∣∣︸ ︷︷ ︸
(I)3

,
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where (I)1 can be expressed as∣∣∣E [F (x,
√
NZi)1Zi>εN

]
− β+(x)P[Zi > εN ]

∣∣∣ = E
[∣∣∣F (x,

√
NZ)− β+(x)

∣∣∣1Zi>εN ] .
Due to condition (3.4), there exists K+

0 > 0 such that for each
√
K > K+

0

|F (x,
√
K)− β+(x)| ≤ c

K
,

thus choosing N such that
√
NεN > K+

0 , we have

E
[∣∣∣F (x,

√
NZi)− β+(x)

∣∣∣1Zi>εN ] ≤ c

Nε2N
P[Zi > εN ] ≤ c

Nε2N
.

Recalling that εN = N−β we have that Nε2N = N−2β+1 and thus

(I)1 ≤
C

N−2β+1
. (3.10)

We proceed in a very similar way to estimate (I)3, which again can be written as∣∣∣E [F (x,
√
NZi)1Zi<−εN

]
− β−(x)P[Zi < −εN ]

∣∣∣ = E
[∣∣∣F (x,

√
NZ)− β−(x)

∣∣∣1Z<−εN ] .
Again condition (3.4) entails the existence of some K−0 < 0 such that for each

−
√
K < K−0 there holds

|F (x,−
√
K)− β−(x)| ≤ c

K
,

and thus by choosing N such that −
√
NεN < K−0 , we obtain

(I)3 = E
[∣∣∣F (x,

√
NZi)− β−(x)

∣∣∣1Zi<−εN ]
= E

[∣∣∣F (x,−
√
N |Zi|)− β−(x)

∣∣∣1Zi<−εN ]
≤ c

Nε2N
P[Zi < −εN ] ≤ c

N−2β+1
. (3.11)

Regarding the estimation of term (I)2, since εN = 1
Nβ
→ 0 as N →∞ and P[Zi =

0] = 0 then we can find N1 such that for N > N1

(I)2 =
∣∣E [F (x, Zi)1|Zi|<εN

]∣∣ ≤ ‖F‖∞P[|Zi| < εN ] ≤ C

Nβ
, (3.12)

taking also into account (3.2). Regarding the last estimation, about term (II):∣∣(β+(x) + β−(x))P[Zi > εN ]− F̄ (x)
∣∣ ≤ |(β+(x) + β−(x))|

∣∣∣∣P[Zi > εN ]− 1

2

∣∣∣∣
≤ |(β+(x) + β−(x))|

∣∣∣∣erf

(
εN√

2

)∣∣∣∣ . 1

Nβ
(3.13)

In summary, by virtue of (3.10), (3.11), (3.12), (3.13) and for N >

max{N1,K
+
0 ,−K

−
0 } we deduce

|µN (x)− F̄ (x)| ≤ C

Nα
,
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where α = min{β, 1− 2β} = 1− 2β > 1/4 for β ∈ ( 1
3 ,

3
8 ). Thus in conjunction with

(3.9) we finally obtain the desired relation (3.7).

Now we are ready to prove that the sequence of solutions ρN of system (1.3),

converges to the solution ρ of system (3.5) whose drift is given by Definition 3.2.

Proposition 3.1. Assume that F satisfies Hypothesis 3.1. Let ξNt be the approx-

imation of white noise, defined in (2.4) then for each t, T > 0 and x ∈ R there

holds

lim
N→∞

∫ t+T

t

F
(
x, ξNs

)
ds = TF̄ (x) a.s. (3.14)

with F̄ (x) := β+(x)−β−(x)
2 .

Proof. Note that by the definition (2.4) of the process ξNt we immediately have

1

T

∫ t+T

t

F
(
x, ξNs

)
ds =

1

T

∫ t+T

t

F

(
x,

N∑
i=1

αNi 1ANi (t)

)
ds

=
1

T

N∑
i=1

∫
ANi

F (x, αNi )ds =
1

N

N∑
i=1

F (x, αNi ).

Next we prove that the sum 1
N

∑N
i=1 F (x, αNi ) converges almost surely to F̄ (x) :=

β+(x)−β−(x)
2 . To this end we can not directly apply the classical result of law of

large numbers, since we are treating a triangular sequence of random variables;

namely notice that r.v. aNi depend on the double index (i,N). In the following, for

simplicity we will denote with S̃N the quantity, whose limit is under investigation,

S̃N (x) :=
1

N

N∑
i=1

F (x, αNi ).

In order prove that S̃N (x) converges almost surely to F̄ (x) we equivalently demon-

strate that there exists an infinitesimal sequence εN , such that

P
(

lim sup
N

AN

)
= 0, (3.15)

with AN := {|S̃N (x)− µ(x)| > εN}. To this end we will use Borel-Cantelli Lemma

and hence it is sufficient to show the convergence of the series
∑∞
N=1 P(AN ). Next

by virtue of Markov inequality we derive
∞∑
N=1

P(AN ) =
∞∑
N=1

P
({
|S̃N (x)− µ(x)| > εN

})
=
∞∑
N=1

P
({
|S̃N (x)− µ(x)|4 > ε4N

})

≤
∞∑
N=1

E
[
|S̃N (x)− µ(x)|4

]
ε4N

,
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and thus by Lemma 3.1 we obtain

∞∑
N=1

E
[
|S̃N (x)− µ(x)|4

]
ε4N

≤
∞∑
N=1

1

Nαε4N
<∞,

for some α > 1
4 . Then under the choice εN = 1

Nβ
and imposing 4β < α − 1 we

guarantee the convergence of the series. As a consequence we derive the validity of

(3.15) and thus the proof is complete.

4. A novel averaging principle

In the current section we present and prove our main mathematical result. Indeed,

using the auxiliary results provided in section 3, we demonstrate a novel averaging

principle can then be applied to the approximation (1.3) of system (1.2). As it has

been already explained in the introduction the investigation of the dynamics of

nonlinear system (1.2), under a white noise perturbation, passes through the study

of the dynamics of its approximation (1.3) where the white noise ξt is substitute

by the sequence ξNt defined by (2.4). Then this idea can be applied, see section 5,

to study the dynamics of some nonlinear models describing the tumor growth of a

brain tumor (glioblastoma).

Our main mathematical result is stated as follows.

Theorem 4.1. Let ξNt be the approximation of white noise, given by (2.4).Then the

solution trajectories ρNt of the RODE (1.3) converge uniformly in time and almost

surely to the solution trajectories of the ODE (3.5), i.e.

lim
N→∞

sup
t∈[0,T ]

|ρNt − ρt| = 0 a.s. . (4.1)

Proof. Let us take ω ∈ Ω. By the integral formulation of (1.3) and (3.5) we have

ρNt (ω)− ρt =

∫ t

0

[F (ρNs , ξ
N
s )(ω)− F̄ (ρs)]ds

=

∫ t

0

[F (ρNs , ξ
N
s )(ω)− F (ρs, ξ

N
s )(ω)]ds

+

∫ t

0

[F (ρs, ξ
N
s )(ω)− F̄ (ρs)]ds.

By considering the Lipschitz property (3.1) of the drift term F with respect to the

variable ρ we obtain∣∣ρNt (ω)− ρt
∣∣ ≤ C ∫ t

0

∣∣ρNs (ω)− ρs
∣∣ ds+

∫ t

0

∣∣F (ρs, ξ
N
s )(ω)− F̄ (ρs)

∣∣ ds.
Applying now Gronwall’s lemma, see,14 on the quantity m(t) = |ρNt − ρt|(ω) we

derive

|ρNt − ρt|(ω) ≤ exp(CT )

∣∣∣∣∫ t

0

[F (ρs, ξ
N
s )(ω)− F̄ (ρs)]ds

∣∣∣∣ ,
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and thus

sup
t∈[0,T ]

|ρNt − ρt|(ω) ≤ exp(CT )

∣∣∣∣∣
∫ T

0

[F (ρs, ξ
N
s )(ω)− F̄ (ρs)]ds

∣∣∣∣∣ .
Hence in order to prove (4.1) it is sufficient to show that

lim
N→∞

∣∣∣∣∣
∫ T

0

[F (ρs, ξ
N
s )(ω)− F̄ (ρs)]ds

∣∣∣∣∣ = 0 a.s. , (4.2)

or equivalently to demonstrate that for any fixed ω ∈ Ω and for each ε > 0 there

exists N̄(ω) > 0, such that for any N > N̄(ω) there holds∣∣∣∣∣
∫ T

0

[F (ρs, ξ
N
s )(ω)− F̄ (ρs)]ds

∣∣∣∣∣ ≤ ε. (4.3)

Now we fix ε and we discretize the interval [0, T ] in n subintervals of amplitude T
n ,

so we have

[0, T ] =
n−1⋃
k=0

[
kT

n
,

(k + 1)T

n

]
.

We underline the fact that the choice of n depends on ε, that is as small is ε then

as big we must choose n. Using now the introduced discretization we have

∫ T

0

∣∣F (ρs, ξ
N
s )(ω)− F̄ (ρs)

∣∣ ds =

n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F (ρs, ξ
N
s )(ω)− F̄ (ρs)

∣∣ ds
=

n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F (ρs, ξ
N
s )(ω)− F (ρkT/n, ξ

N
s )
∣∣ ds︸ ︷︷ ︸

(Σ1)

+
n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F̄ (ρkT/n)− F̄ (ρs)
∣∣ ds︸ ︷︷ ︸

(Σ2)

+
n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F (ρkT/n, ξ
N
s )− F̄ (ρkT/n)

∣∣ ds︸ ︷︷ ︸
(Σ3)

.(4.4)

We first deal with terms (Σ1) and (Σ2) into relation (4.4). Due to the Lipschitz
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property of F, F̄ and ρ we obtain

(Σ1) + (Σ2) =
n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F (ρs, ξ
N
s )(ω)− F (ρkT/n, ξ

N
s )
∣∣ ds

+
n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣F̄ (ρkT/n)− F̄ (ρs)
∣∣ ds

≤ 2C ·
n−1∑
k=0

∫ (k+1)T/n

kT/n

∣∣ρs − ρkT/n∣∣ ds
≤ 2C ·

n−1∑
k=0

∫ (k+1)T/n

kT/n

|s− kT/n| ds

≤ 2C ·
n−1∑
k=0

∫ (k+1)T/n

kT/n

T

n
ds

= 2C ·
n−1∑
k=0

T 2

n2

= 2C · T
2

n
≤ ε

2
, (4.5)

provided that n > 4CT 2

ε , where C is a positive constant associated with the Lipschitz

constants of F, F̄ and ρ.

Regarding now the estimation of term (Σ3), we plan to apply Proposition 3.1

on each ∫ kT/n+T/n

kT/n

∣∣F (ρkT/n, ξ
N
s )(ω)− F̄ (ρkT/n)

∣∣ ds,
for k = 0, . . . , n− 1.

We choose to work on a subspace of measure 1, indeed we consider Ω1 :=⋂∞
n=1 Ωn with Ωn =

⋂n
k=1 ΩkT/n,T/n,ρkT /n and where ΩkT/n,T/n,ρkT /n is the subset

of Ω on which the convergence result (3.14) holds for x = ρkT/n, t = kT/n and

T = T/n.

Now (3.14) entails that for any fixed ω ∈ Ω1 and for each N > N̄k(ω)∫ kT/n+T/n

kT/n

∣∣F (ρkT/n, ξ
N
s )(ω)− F̄ (ρkT/n)

∣∣ ds ≤ ε

2n
.

Consequently, by choosing N > maxk=1,...,n−1 N̄
k(ω) := N̄ ε(ω) we deduce

(Σ3) =
n−1∑
k=0

∫ (k+1)T/n

kT/n

[F (ρkT/n, ξ
N
s )(ω)− F̄ (ρkT/n)]ds ≤ ε

2
. (4.6)

In summary, combining (4.5) and (4.6) then for any fixed ω ∈ Ω1 and for each ε > 0

there exists N̄(ω) such that (4.3) holds for any N > N̄(ω)∫ T

0

∣∣F (ρs, ξ
N
s )(ω)− F̄ (ρs)

∣∣ ds ≤ ε,
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and thus the proof is complete.

Next we focus on the infinite dimensional case, i.e. we consider the following

partial differential equation (PDE) problem

∂ρN

∂t
= AρN + F (ρ, ξNt ), (x, t) ∈ DT , (4.7)

BρN (x, t) = 0, (x, t) ∈ ΓT , (4.8)

ρN (x, 0) = ρ0(x) ≥ 0, x ∈ D, (4.9)

where DT := D× (0, T ),ΓT := ∂D× (0, T ) is a bounded and smooth D ⊂ R`, ` ≥ 1

and T > 0 stands for the maximum existence time of solution ρN , which is positive

in DT as long as it exists. Here A represents a bounded operator who generates

a strongly continuous semigroup SA(t) whilst B is a bounded boundary operator.

Besides the nonlinearity FNω (ρ, t) := F (ρ, ξNt ) is assumed to be almost periodic with

respect to t uniformly for ρ in compact subsets in Banach space X.

Consider now the averaged (PDE) problem

∂ρ

∂t
= AρN + F̄ (ρ), (x, t) ∈ DT , (4.10)

Bρ(x, t) = 0, (x, t) ∈ ΓT , (4.11)

ρ(x, 0) = ρ0(x) ≥ 0, x ∈ D, (4.12)

where F̄ (ρ) is given by (3.6). By virtue of a semigroup approach we can easily obtain

a unique, positive solution for (4.10)-(4.12), see.14

Now by using Theorem 4.1 in conjunction with the semigroup approach intro-

duced in10 we deduce the following infinite dimensional averaging principle

Theorem 4.2. The solution trajectories ρNt of problem (4.7)-(4.9) converge uni-

formly in time and almost surely to the unique solution of problem (4.10)-(4.12).

A special version of Theorem 4.2 is proven, by using an compactness approach,

in section 5 see Theorem 5.1.

5. Application: impact of intratumoral heterogeneity in glioma

progression

In this section, the main purpose is to use the averaging principle, as introduced in

the previous section by Theorems 4.1 and 4.2, to address the problem of intrinsic

heterogeneity in glioma progression. Gliomas originate from glial cells in the brain

and constitute the most common type of malignant brain tumor in adults.9,23 The

WHO (World Health Organization) classifies gliomas into different classes, ranging

from low-grade to high-grade malignancies16 depending on their proliferative poten-

tial and invasiveness. In particular, high grade gliomas are commonly characterized

by diffusive infiltration into the brain tissue, behavior associated with poor prog-

nosis and limited treatment outcomes. Glioma treatments usually involve resection
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accompanied by radiotherapy and/or chemotherapy. Herein, we use a mathematical

model to understand the reasons of treatment failure and optimize the combination

of current treatment modalities.

Two of the most important reasons for glioma treatment failure is due to intra-

tumoral heterogeneity comprised by intrinsic heterogeneity and phenotypic plastic-

ity.17,18 The former describes the typically irreversible genetic or epigenetic diversity

of tumor cells (e.g. due to mutations or clonal selection), and the latter is related to

the reversible phenotypic responses towards microenvironmental cues. In gliomas,

the most predominant phenotypic plasticity phenomenon is related to the “Go or

Grow” (GoG) mechanism or migration/proliferation plasticity.13 This mechanism

implies a mutually exclusive switching between migratory and proliferative phe-

notypes. The key question is how this tumor cell decision-making mechanism is

regulated, and what is its impact on glioma growth and invasion. Concerning regu-

lation, it was discovered a dependence of this cell decision mechanism on the local

cell density without concluding on the exact functional form, by analysing images of

in vitro experiments.25 Analysing further the potential local cell density dependen-

cies, it was also found out low-grade tumor micro-ecology potentially exhibits an

emergent Allee effect, i.e. a critical tumor cell density implying both tumor growth

and control.2 The precise quantification of this critical tumor cell density could

be a relevant prognostic criterion for the tumor fate, since it can be measured in

biopsies samples. Moreover, it has been shown that this GoG mechanism explains

the fast tumor recurrence time of high-grade brain tumors after resection.13 Fi-

nally based on our theoretical understanding of the cellular mechanism, it has been

shown how personalized vasomodulatory cancer therapies can be optimized.6,11 In

particular, it has been revealed that one-size-fits-all vaso-modulatory interventions

should be expected to fail, because control of glioma invasion characteristics, such

as tumor front speed and infiltration width, can be very variable and may require

more personalized therapeutic interventions.8

All the aforementioned models assume that all glioma cells have an identical

GoG mechanism. However, in reality, each cell may have an idiosyncratic migra-

tion and proliferation regulation, following the GoG mechanism, due to intrinsic

heterogeneity. The question is how we can model and analyze the impact of intrin-

sic heterogeneity of a tumor cell population, when migration and proliferation are

regulated by a non-uniform GoG mechanism. In particular, we will focus on the

existence of the Allee effect in the presence of intratumoral heterogeneity.

5.1. The Go or Grow model of glioma

For the reader’s convenience, we briefly present the derivation of the Go or Grow

model, as introduced in.13 Due to the migration/proliferation dichotomy, we can

distinguish the total population of glioma cells ρ in two groups, ρp proliferating cells

and ρm migratory cells. For each type of population we can then write down an

equation describing the corresponding dynamics, so we have the following system,
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which is described as a GoG model,

∂ρm

∂t
= ∆ρm + rp→m(ρ)ρm − rm→p(ρ)ρm − rdρm, (5.1)

∂ρp

∂t
= rbρ

p(1− ρp) + rm→p(ρ)ρp − rp→m(ρ)ρp − rdρp, (5.2)

where rb is the birth rate, rd is the death rate, rp→m(ρ) is the switch rate from

proliferating to motile phenotype and rm→p(ρ) is the switch rate from motile to

proliferating phenotype of the tumor cells.

To obtain a unique equation for ρt = ρmt + ρpt , we refer to detailed balance

condition

ρprp→m(ρ) = ρmrm→p(ρ).

Through this condition we can rewrite the preceding system as a single PDE

∂ρ

∂t
= ∆(rp→m(ρ)ρ) + rbrm→p(ρ)ρ(1− ρ)− rdρ. (5.3)

The phenotypic switching is regulated by local microenvironmental cues lumped

into local density dependence. For the sake of simplicity, we will assume that both

rates depend monotonously on cell density, approximated by a sigmoidal function

with slope given by k. Intuitively, the slope can be viewed as the way that single

tumor cell interprets its microenvironment and decides over its phenotype. Follow-

ing,2 we consider that the two rates are complementary, namely if cell motility

increases with cell density then cell proliferation decreases with density and vice

versa: namely if k denotes the slope of the switch from motile type to proliferating

type, then −k denotes the slope of the switch from proliferating type to motile type.

A possible choice is given by the following, see Fig. 2:

rm→p(ρ) =
1

2
(1 + tanh(k(ρ− θ))) := rs(ρ), (5.4)

rp→m(ρ) = 1− rs(ρ), (5.5)

and thus (5.1) takes the form

∂ρ

∂t
= ∆((1− rs(ρ, k))ρ) + rbrs(ρ, k)ρ(1− ρ)− rdρ. (5.6)

For positive slope k > 0 the phenotypic switch presents an attractive behavior,

while for k < 0 a repulsive one (see Fig. 2).2 To the best of our knowledge the

GoG model (5.6) has been only investigated for the case when k is a constant, see,2

i.e. the tumor cell population decides in a homogeneous way over proliferation or

migration. Here we assume that tumor is heterogeneous in the way cells regulate

their migration/proliferation phenotype controlled by a stochastic k.
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ρ

rm→p k > 0

rp→m

high density
⇓

cell proliferation

low density
⇓

cell migration

Attractive
case

ρ

rp→m k < 0

rm→p

high density
⇓

cell migration

low density
⇓

cell proliferation

Repulsive
case

Fig. 2: Sketch of cellular mechanism for different kind of phenotypic plasticity. In the

left aggregative configuration is represented, while in the right figure, the repulsive

configuration is represented.

5.2. Intrinsic intratumoral heterogeneity of glioma cells as a white

noise

We recall that the sign of k indicates the regime where we are, it identifies if we

are in an attractive or repulsive regime, whilst the absolute value of k measures the

intensity of the phenotypic switching. In the following, we introduce the desirable

heterogeneous regulation of the switch by assuming that k follows a probability

distribution, i.e. we heuristically take

k 7→ k + Noise. (5.7)

It is anticipated that the introduced intrinsic heterogeneity facilitates the tu-

mor growth and persistence.17,18 Therefore it is plausible to consider the “worst”

case heterogeneity scenario, hence k is considered as a white noise. As first step

towards the investigation of the dynamics of the GoG model (5.6) under random

perturbation (5.7), we choose to neglect the contribution of the diffusion, and thus

we initially consider the following ODE

{
∂ρ
∂t = F (ρ, k) := rbrs(ρ, k)ρ(1− ρ)− rdρ,
0 ≤ ρ(0) = ρ0 ≤ 1,

(5.8)

where

rs(ρ, k) given by (5.4)

for rb > rd, θ ∈ [0, 1] and ρ0 ∈ R+.

If one wants to approximate k as a white noise, clearly relapses in the case

exposed in the introduction, since the occurring system
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{
∂ρξ

∂t = F (ρ, ξ),

0 ≤ ρ(0) = ρ0 ≤ 1,
(5.9)

is not well defined.

In order to tackle system (5.9) we appeal to the averaging principle demonstrated

by Theorem 4.1. To this end we just need to verify all the involved conditions of

Hypothesis 3.1. We first note that condition (3.1) is trivially verified, since the drift

term F (ρ, k) = rbrs(ρ, k)ρ(1 − ρ) − rdρ for ρ ∈ [0, 1] is differentiable. Besides F is

bounded on both variables (ρ, k), since k appears as an argument of the hyperbolic

tangent, and the variable ρ varies in a compact set. Thus condition (3.2) also holds.

Obviously we have F (0, k) = 0 and thus condition (3.3) is also fulfilled. It remains

to check the validity of condition (3.4). It can be easily seen that

lim
k→±∞

(rbrs(ρ, k)ρ(1− ρ)− rdρ) = rbβ±ρ(1− ρ)− rdρ,

with β+ = 1 and β− = 0 where the order of convergence is exponential, and

hence condition (3.4) is also fulfilled. Consequently we have the following result

which is a straightforward consequence of Theorem 4.1

Proposition 5.1. Let ξNt be the process described in (2.4).Then the solution tra-

jectories ρNt of {
∂ρN

∂t = rbrs(ρ
N , ξN )ρN (1− ρN )− rdρN ,

0 ≤ ρ(0) = ρ0 ≤ 1,

converge uniformly in time and almost surely to the solution ρ of the following ODE

problem {
∂ρ
∂t = 1

2rbρ(1− ρ)− rdρ
0 ≤ ρ(0) = ρ0 ≤ 1.

(5.10)

Namely,

lim
N→∞

sup
t∈[0,T ]

|ρNt − ρt| = 0 a.s. .

Thus in order to investigate the model (5.8), Proposition 5.1 provide us with the ap-

propriate approximating ODE (5.10) which will be analyzed with respect to tumor

steady states.

Let us here recall that in the absence of intrinsic heterogeneity, the trivial so-

lution ρnc = 0 is a stable point for a certain range of parameters, as shown in

Fig. 3 and.2 However, under the assumption of white noise intrinsic heterogeneity,

the stability analysis of (5.10) leads to a monostable configuration. Specifically, the

point ρc = 1− 2 rdrb is the only stable point, whilst ρnc = 0 is still a fixed point but
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Fig. 3: Allee effect in the deterministic system: The yellow area represents the area

where 0 is stable for the above system, whereas the blue one depicts the area where

0 becomes unstable.

unstable (see Fig. 4). In this case the parameters (k, θ) do not influence the model’s

steady states as in the deterministic one (see Fig. 3). The strength of the white

noise is so large, that annihilates the existence of multiple steady states. Finally,

the Allee effect that was observed in the deterministic case2 now disappears and

the only remaining effect is the survival of a steady cancerous population.

5.3. Impact of heterogeneity on a spatio-temporal GoG model

In the previous section, and as a first step towards the investigation of the GoG

model (5.6), spatial dependence was ignored and in consequence we investigated

an ODE model, where only the dynamics of resting and switching between the two

species were taken into account. Nonetheless, the main goal of the current section is

to investigate what is the impact, if any, of the diffusion component on the stability

analysis of the GoG model. Namely, in the current section we consider the full model

(5.6) where now a randomization parameter is introduced both in the diffusion and

the reaction terms. To do this, we follow again the averaging approach introduced

in section 4. To guarantee the well posedness of the system, we again consider the
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ρ = 0 Unstable

ρ = 1− 2 rbrd Stable

F̄ (ρ)

ρ

Fig. 4: Plot of the potential of equation (5.10), namely F̄ (ρ) := 1
2rbρ(1 − ρ) − rdρ

with rb = 0.1 and rd = 0.02.

functional approximation of the white noise introduced in (2.4).

Thus we focus on the investigation of the following

∂ρN

∂t
= ∆((1− rs(ρN , ξNt ))ρN ) + F (ρN , ξNt ), (x, t) ∈ DT , (5.11)

ρN (x, t) = 0, (x, t) ∈ ΓT , (5.12)

0 ≤ ρN (x, 0) = ρ0(x) ≤ 1, x ∈ D, (5.13)

for a bounded and smooth D ⊂ R3, where F (ρN , ξNt ) := rbrs(ρ
N , ξNt )ρN (1− ρN )−

rdρ
N . Here T > 0 again stands for the maximum existence time of solution ρN .

Note that the Dirichlet type boundary condition (5.12) means that there are no

cancerous cells on the boundary of the domain under investigation D, which is a

plausible assumption. Using [5, Theorem 9 in Chapter 7] we immediately obtain

existence, uniqueness and positivity of a global-in-time solution, since also the drift

term F (ρN , ξNt ) is bounded, for the random partial differential equation (RPDE)

problem (5.11)-(5.13).

By virtue of an energy approach or via the maximum principle, we derive the

positivity and boundeness of the solution of the limiting problem, while its unique-

ness is derived using Gronwall’s lemma, see also,21

∂ρ

∂t
= ∆ ((1− r̄s(ρ))ρ) + rbr̄s(ρ)ρ(1− ρ)− rdρ, (x, t) ∈ DT , (5.14)

ρ(x, t) = 0, (x, t) ∈ ΓT , (5.15)

0 ≤ ρ(x, 0) = ρ0(x) ≤ 1, x ∈ D, (5.16)

where r̄s(ρ) = 1
2 .
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Denote H = L2(D) andHT = C(0, T ;H) then making use of the novel averaging

principle developed in section 4 we can prove the following averaging result, which

is inspired by,3

Theorem 5.1. For every T > 0 the unique solution ρN of problem (5.11)-(5.13)

converges as N → ∞ into HT to the unique solution ρ of the average problem

(5.14)-(5.16).

Proof. First note that the term 1 − rs(ρN , ξNt ) is bounded due the definition of

rs(ρ
N , ξNt ) given by (5.4) and hence both the diffusion coefficient and the reaction

term in problem (5.11)-(5.12) are also bounded. Thus via parabolic regularity we

derive the a priori estimate

‖ρN‖HT ≤ CT < +∞ for any for any T > 0,

therefore we can find a subsequence denoted again by (ρN ) without any confusion

and a function ψ ∈ HT such that

‖ρN − ψ‖HT → 0 as N → +∞. (5.17)

Considering the weak formulation of (5.11)-(5.13) we have

〈ρN , φ〉 = 〈ρ0, φ〉+

〈∫ t

0

(1− rs(ρN , ξNσ ))ρNdσ,∆φ

〉
+

〈∫ t

0

rbrs(ρ
N , ξNσ )ρN (1− ρN )− rdρNdσ, φ

〉
, (5.18)

for any test function φ ∈ C∞0 (D), where 〈·, ·〉 stands for the inner product in H =

L2(D).

Using some algebraic manipulations then (5.18) infers

〈ρN , φ〉 = 〈ρ0, φ〉+

〈∫ t

0

(1− rs(ρN , ξNσ ))ρNdσ,∆φ

〉
+

〈∫ t

0

rbrs(ρ
N , ξNσ )ρN (1− ρN )− rdρNdσ, φ

〉
+

〈∫ t

0

(1− r̄s(ρN ))ρNdσ,∆φ

〉
−
〈∫ t

0

(1− r̄s(ρN ))ρNdσ,∆φ

〉
+

∫ t

0

〈rbr̄s(ρN )ρN (1− ρN )− rdρN , φ〉dσ

−
〈∫ t

0

rbr̄(ρ
N )ρN (1− ρN )− rdρNdσ, φ

〉
,

and after rearranging the preceding relation is reduced to

〈ρN , φ〉 = 〈ρ0, φ〉+

〈∫ t

0

(1− r̄s(ρN ))ρNdσ,∆φ

〉
+

〈∫ t

0

[
rbr̄s(ρ

N )ρN (1− ρN )− rdρN
]
dσ, φ

〉
+RN1 (t) +RN2 (t), (5.19)
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where

RN1 (t) : =

〈∫ t

0

[
(1− rs(ρN , ξNσ ))− (1− r̄s(ρN ))

]
ρNdσ,∆φ

〉
=

〈∫ t

0

[
r̄s(ρ

N )− rs(ρN , ξNσ )
]
ρNdσ,∆φ

〉
,

and

RN2 (t) :=

〈∫ t

0

rb(rs(ρ
N , ξNσ )− r̄(ρN ))ρN (1− ρN )dσ, φ

〉
.

Considering the term RN1 (t) we derive the following estimate:

RN1 (t) ≤ C̃T · ||∆φ||∞ δ1(N),

where C̃T = T · CT and

δ1(N) : = sup
||ρ||HT≤CT

sup
0≤t<T

∣∣∣∣∣∣∣∣1t
∫ t

0

(
rs(ρ, ξ

N
σ )− r̄s(ρ)

)
dσ

∣∣∣∣∣∣∣∣
∞
→ 0 as N → +∞,

for any T > 0 by virtue of Lemma 5.1. Therefore for given T > 0

RN1 (t)→ 0 as N → +∞ for any 0 < t < T . (5.20)

In a similar manner we have

RN2 (t) ≤ ĈT sup
||ρ||HT≤CT

sup
0≤t<T

∣∣∣∣∣∣∣∣1t
∫ t

0

(
rs(ρ, ξ

N
σ )− r̄s(ρ)

)
dσ

∣∣∣∣∣∣∣∣
∞
,

for any T > 0 where ĈT := rbTCT (1 + CT )||φ||∞ and using again Lemma 5.1 we

infer

RN2 (t)→ 0 as N → +∞ for any 0 < t < T . (5.21)

Letting now N → +∞ into (5.19) and using (5.17), (5.20) and (5.21) we derive

〈ψ, φ〉 = 〈ρ0, φ〉+

〈∫ t

0

(1− r̄s(ψ))ψdσ,∆φ

〉
+

〈∫ t

0

[rbr̄s(ψ)ψ(1− ψ)− rdψ] dσ, φ

〉
,

i.e. ψ is a weak solution of (5.14)-(5.16), and since this problem has a unique solution

we finally infer that ψ = ρ. This completes the proof of the Theorem 5.1.

By the linear stability of problem (5.14)-(5.16), since the diffusion coefficient is

small (c.f.19), we again obtain that ρc = 1− 2 rdrb is stable whilst the trivial steady-

state ρnc = 0 is unstable. Therefore, the diffusion has no effect on the stability of

the spatial homogeneous steady-sates and again the cancerous population survives.
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6. Discussion

In the current paper we have introduced a novel average method to deal with the

study of the dynamics of a class of RODEs and RPDEs since classical averaging

methods fail to treat this kind of problems. To elucidate the relevance of our the-

oretical results, we apply this method into an important biomedical problem, i.e.

the assessment of intratumoral heterogeneity impact on tumor dynamics. In par-

ticular, we consider the development of gliomas according to a well-known Go or

Grow (GoG) model, where intratumoral heterogeneity is modelled as a stochastic

process. The deterministic version of the considered GoG model has been shown

that there exhibits an emerging Allee effect (bistability). On the other hand, for

the novel stochastic version of GoG model we demonstrate that the introduction of

white noise, as a model of intratumoral heterogeneity, leads to a monostable tumor

growth. The latter entails the disappearance of the Allee effect, and thus we con-

clude that the extinction is impossible under parametric variations. Consequently,

our results suggest that the existence of heterogeneity worsens the prognosis of

tumor growth, which is actually in accordance with the clinical experience and

literature. However, the assumption of white noise is the worst possible scenario

related to tumor heterogeneity, and therefore other noise distributions should be

analyzed such as Gaussian noise. Moreover, there have been a plethora of studies

trying to quantify intratumoral heterogeneity, see,1,20,22,24 nevertheless our method

is able to include the existing literature and analyze the impact of data-driven het-

erogeneity distribution in more realistic tumor models. Furthermore, our method

can be also implemented to investigate the long-time dynamics of the full GoG

system (5.1)-(5.2), which will be the subject of a forthcoming work.
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