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Abstract  4	

Lineage regulates the synaptic connections between neurons in some regions of the invertebrate 5	

nervous system. In mammals recent experiments suggest that cell lineage determines the 6	

connectivity of pyramidal neurons in the neocortex, but the functional relevance of this 7	

phenomenon and whether it occurs in other neuronal types remains controversial. We investigated 8	

whether lineage plays a role in the connectivity of mitral and tufted cells, the projection neurons 9	

in the mouse olfactory bulb. We used transgenic mice to label neuronal progenitors sparsely and 10	

observed that clonally related neurons receive synaptic input from olfactory sensory neurons 11	

expressing different olfactory receptors. These results indicate that lineage does not determine the 12	

connectivity between olfactory sensory neurons and olfactory bulb projection neurons.  13	
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2	
	

Introduction  19	

The relationship between cell lineage and neuronal connectivity in the brain is not well understood. 20	

Lineage regulates the synaptic connections between neurons in some regions of the invertebrate 21	

nervous system. For example, in the Drosophila olfactory system, projection neurons are specified 22	

by cell lineage to receive synaptic input from the axons of specific types of olfactory sensory 23	

neurons (OSNs) (Jefferis et al., 2001; Li et al., 2018). In mammals it has been reported that clonally 24	

related pyramidal neurons are preferentially connected to each other in the neocortex (Yu et al., 25	

2009; 2012; He et al., 2015). Furthermore, it has been proposed that sister neurons in the visual 26	

cortex have a strong correlation to the stimuli to which they respond (Li et al., 2012), while other 27	

works suggest that this correlation is much weaker (Ohtsuki et al., 2012). To further investigate 28	

the role played by lineage in the assembly of brain circuits we focused on the mammalian olfactory 29	

bulb, a brain region with an anatomical organization particularly advantageous to study this 30	

question. 31	

The mammalian olfactory system can be divided into three regions: olfactory epithelium, olfactory 32	

bulb (OB) and olfactory cortex. The olfactory epithelium harbors the OSNs. Each OSN expresses 33	

just one of more than one thousand odorant receptors (Buck and Axel, 1991; Chess et al., 1994). 34	

OSN axons expressing the same odorant receptor converge into one or two discrete neuropil 35	

structures in each OB called glomeruli, forming a stereotypic map on the OB surface (Ressler et 36	

al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; Wang et al., 1998). The projection neurons 37	

in the OB are called mitral and tufted cells (M/T cells). In mammals the majority (>90%) of M/T 38	

cells have a single apical dendrite that branches into a single glomerulus (Mori, 1987; Shepherd 39	

and Shepherd, 1990; Malun and Brunjes, 1996) where they receive sensory input from OSNs 40	

expressing a particular odor receptor (Figure 1A) (Ressler et al., 1994; Vassar et al., 1994). Thus, 41	

the anatomical organization of the glomerulus in the OB is an ideal system to investigate the 42	

possible relationship between lineage and connectivity because the apical dendrite of the M/T cells 43	

provides a direct readout of their synaptic input. To address this question we sparsely labeled M/T 44	

cells progenitors and investigated the sensory input that their progeny receives from OSNs. Our 45	

results show that sister M/T cells receive synaptic input from different glomeruli, indicating that 46	

lineage does not determine the neuronal connectivity of the OB projections neurons, and suggest 47	

that the assembly of the OB mostly depends on non-genetic mechanisms.  48	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584805doi: bioRxiv preprint 

https://doi.org/10.1101/584805
http://creativecommons.org/licenses/by/4.0/


3	
	

Results and discussion  49	

Labeling of progenitors of OB projection neurons  50	

The projection neurons in the OB are called mitral and tufted cells (M/T cells). M/T cells originate 51	

from progenitors located in the OB primordium, which is derived from the anterior part of the 52	

dorsal telencephalon (Hinds, 1968a, 1968b). To investigate the lineage of M/T cells, we crossed 53	

two transgenic mouse, Nestin-CreERT2 (Kuo et al., 2006), which can be used to label neuronal 54	

progenitors in a sparse manner, with the Confetti line (Snippert et al., 2010), which can label 55	

individual cells with one out four possible fluorescent proteins upon Cre-mediated recombination 56	

(Figure 1B, C and Figure 1-figure supplement 1).  57	

In order to optimize the conditions to label just a handful of progenitors, ideally a single progenitor 58	

per OB, we performed some preliminary experiments. First, we confirmed that our transgenic mice 59	

Nestin-CreERT2::Confetti did not label any neurons in the brain without tamoxifen (TMX) 60	

administration (n=3; data not shown). Second, we found that with an injection of 1 mg of TMX 61	

per 40 grams of body weight into a 10-day pregnant female (E10.5) we observed a handful of 62	

pyramidal neuron clones in the neocortex, and around 20 M/T cells labeled in the OB when the 63	

brains were examined at postnatal day 21 (P21) (Figure 1B and and Figure 1-figure supplement 64	

1). Third, we confirmed that this TMX concentration labeled a few progenitors per brain when 65	

animals were analyzed two days after TMX administration (E12.5). With these conditions, we 66	

observed between none to a single progenitor labeled per fluorescent protein in the OB (n=6) 67	

(Figure 2). Although we observed a very low number of progenitors labeled, we cannot determine 68	

whether a group of cells labeled at P21 with the same fluorescent protein in the OB originated 69	

from a single progenitor, or from two independent progenitors. However, here we will work under 70	

the assumption that any group of M/T cells labeled with the same fluorescent protein in the OB 71	

are part of a single clone.  72	

To study the lineage of the M/T cells we induced Cre activity at E10.5, the peak time for mitral 73	

cell generation (Hinds, 1968a, 1968b; Blanchart et al., 2006; Kim et al., 2011; Imamura et al., 74	

2011). Brains were analyzed at P21, once M/T completed the refinement of their dendrites and 75	

they have a mature morphology with a single apical dendrite projecting into a single glomerulus 76	

(Figure 1A) (Malun and Brunjes, 1996; Lin et al., 2000; Matsutani and Yamamoto, 2000; 77	

Blanchart et al., 2006). Confetti mice can produce four different fluorescent proteins with distinct 78	
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subcellular locations (cytosolic (cRFP and cYFP), membrane (mCFP), and nuclear (nGFP)) 79	

(Figure 1C, Figure 1-figure supplement 1 and Figure 2-figure supplement 1) (Snippert et al., 2010). 80	

Consistent with previous works, we observed that the majority of clones in the OB were labeled 81	

by RFP (n=9), whereas YFP (n=4) and CFP (n=1) clones appeared less frequently (Reeves et al., 82	

2018). However, we did not analyze any of the nGFP+ cells for two reasons. First, the most reliable 83	

way to unambiguously identify M/T cells is by their distinctive morphology. However, if a cell is 84	

only labeled in the nucleus (as in nGFP+ cells), we cannot tell apart M/T cells from other OB cell 85	

types (e.g., short axon cells, granule cells, juxtaperiglomerular). Second, to identify the 86	

connectivity between M/T cells and glomeruli, it is necessary to follow the projection of their 87	

apical dendrites (Figure 1-figure supplement 1), and we cannot observe any dendrites in the nGFP+ 88	

cells.  89	

In total, we analyzed 29 OBs, and 13 of them did not have any labeled cells. Out of the 16 OBs 90	

with labeled cells, 14 OBs had both M and T cells, and 2 OBs had only M cells labeled (with 3 91	

and 4 M cells labeled per OB). We do not know the reason why these two OBs showed only M 92	

cells, and several reasons may account for this observation, including progenitors committed to 93	

produced only M cells, or labelling of intermediate progenitor that underwent few cell divisions. 94	

We did not find any OB with only T cells.  95	

Size of clones and distribution of neurons in the OB and neocortex 96	

We measured the putative clone size in the OB and compared them with neocortex clones. We 97	

found that putative clones in the OB contained 22.14 ± 6.61 M/T cells (average ± standard 98	

deviation, n= 310), while neocortex clones contained 92.67 ± 23.18 pyramidal neurons (n=556), 99	

consistent with previous results (Franco et al., 2012; Gao et al., 2014) (Figure 3A). These 100	

observations suggest that the clone size in the neocortex is four times larger than a clone in the 101	

OB, consistent with the reported different modes of neurogenesis in each of these two brain regions 102	

(Cárdenas et al., 2018).  103	

We analyzed the distribution of cell bodies of 9 OB clones (n=178 neurons) and 6 neocortex clones 104	

(n=556 neurons) by performing 3D reconstructions using the Neurolucida software (Figure 3B-D 105	

and Figure 3-figure supplement 1). The 3D reconstructions revealed that sister M/T cells were 106	

distributed in a broader area than the tight columns of sister pyramidal neurons. To analyze the 107	
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distribution of cells from each clone, we calculated the nearest neighbor distance (NND) based in 108	

our 3D reconstructions using Neurolucida Explorer (Figure 3E and Figure 3-figure supplement 2). 109	

We found that sister M/T cells were more separated from each other (283.96 µm ± 70.28; average 110	

± standard deviation) than sister pyramidal neurons (65.45 µm ± 19.4) (Figure 3E). The 111	

distribution of sister M/T cells that we observed is consistent with the tangential migration of 112	

immature M/T cells reported in the embryonic OB (Blanchart et al., 2006; Imamura et al., 2011).  113	

To investigate whether the distribution of sister M/T cells observed was random, we compared the 114	

NNDs of the labeled M/T cells observed (n=178) with a simulated random dataset. The same 115	

strategy was followed for neocortex clones. We found that the NNDs between clonally related 116	

neurons were shorter than the simulated random datasets both for the OB and neocortex (Figure 117	

3E). Similar results were reported for pyramidal neurons in the neocortex (Gao et al., 2014). This 118	

indicates that although sister M/T cells are not clustered as pyramidal neurons, their distribution 119	

in the OB is not random. Interestingly, a previous work have observed that the tangential migration 120	

of immature M/T cells in the embryonic OB may be regulated by gradients of secreted molecules, 121	

limiting their distribution to specific regions within the OB (Inokuchi et al., 2017).   122	

Connectivity of sister M/T cells      123	

It has been proposed that the anatomical organization of the OB may be analogous to the neocortex 124	

columnar organization. In the neocortex it is thought that the pyramidal neurons forming part of a 125	

column perform a similar task (Mountcastle, 1997). Similarly, M/T cells receiving synaptic input 126	

from the same glomerulus may also perform a similar task (Kauer and Cinelli, 1993; Mori et al., 127	

1999; Bozza et al., 2002). Our results indicate that sister M/T cells are widely distributed 128	

throughout the OB (Figure 3). Based on this observation, it seems unlikely that sister M/T cells 129	

would have apical dendrites projecting into the same glomerulus. Although improbable, this could 130	

still be possible because the soma of M/T cells innervating the same glomerulus may be separated 131	

from each out up to 450 µm (for M cells) and 350 µm (for T cells) (Liu et al., 2016). To investigate 132	

whether sister M/T cells receive synaptic input from the same glomerulus, we tracked their apical 133	

dendrites (Figure 4). Among all the labeled M/T cells that we detected (n=310, from 14 putative 134	

M/T clones) we never observed two neurons innervating the same glomerulus, even when their 135	

cell bodies were near each other (Figure 4B-E). Nevertheless, it is still possible that, although we 136	

did not observe them, there may exist clones of M/T cells genetically pre-determined to project to 137	
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the same glomerulus. This scenario could be expected for putative glomeruli responsive to relevant 138	

odors for survival, such as those responsive to predators or poisons, which require an innate and 139	

hardwired response of avoidance (Sosulski et al., 2011). Future experiments analyzing a much 140	

larger number of clones than those detected here may reveal the existence of these putative 141	

“hardwired” M/T clones. 142	

In summary, our results indicate that lineage does not determinate the input connectivity of the 143	

projection neurons in the mammalian OB. This is in contrast to what has been described for 144	

projection neurons in the Drosophila antennal lobe (Jefferis et al., 2001) and suggested for 145	

pyramidal neurons in the rodent visual cortex (Li et al., 2012). Our results suggest that the sensory 146	

input received by M/T cells is regulated by non-genetic factors, consistent with the observations 147	

from recent works. For example, it has been shown that sensory odor experience starting in utero 148	

recruits the apical dendrites of M/T cells to the activated glomeruli (Liu et al., 2016).  149	

Is there any biological advantage to the dispersion of sister projection neurons in the OB? 150	

Interestingly, it has been proposed that the M/T cells receiving input from the same glomerulus 151	

exhibit a wide diversity in their biophysical properties, and this diversity may be important for 152	

neural coding (Padmanabhan and Urban, 2010). In addition, neurons in the piriform cortex receive 153	

synaptic input from M/T cells innervating different glomeruli (Miyamichi et al., 2011), whereas 154	

M/T cells connected to the same glomerulus project their axons into many different areas of the 155	

olfactory cortex (Ghosh et al., 2011; Sosulski et al., 2011). However, the connectivity between 156	

M/T cells and the amygdala appears to be more stereotypical than between the M/T cells and other 157	

targets in the olfactory cortex (anterior olfactory nucleus, piriform cortex, tenia tecta, olfactory 158	

tubercle, cortical amygdala and entorhinal cortex) (Haberly, 2001; Sosulski et al., 2011). Based on 159	

these observations, one can speculate that the connectivity between the OB and its targets in the 160	

olfactory cortex may occur by two different mechanisms. Genetic factors, including lineage, may 161	

contribute to the connectivity between M/T cells and the amygdala, as this brain area is involved 162	

in innate behavior responses that may require hardwired connections (Sosulski et al., 2011). In 163	

contrast, the connectivity between M/T cells and areas of the olfactory cortex involved in the 164	

perception of odors that do not elicit innate behaviors are more plastic and may be regulated by 165	

non-genetic mechanisms, such as activity-dependent wiring, among others (Caron et al., 2013; 166	

Schaffer et al., 2018).  167	
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7	
	

Our results indicating that lineage does not determine the synaptic input of M/T cells raise further 168	

questions about the assembly of the olfactory circuits, including which are the mechanisms that 169	

regulate the connectivity between M/T cells and OSNs, the role that experience may play sculpting 170	

the odor representations in the piriform cortex, and whether lineage regulates the connections with 171	

the amygdala to trigger innate behaviors.172	
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Materials and Methods 173	
Animals 174	

Nestin-CreERT2 and Confetti mice were obtained from Jackson Laboratory. The Nestin-CreERT2 175	

mice can be used to induce the activity of Cre recombinase in neuronal progenitors by the 176	

administration of tamoxifen (TMX) into animals (Kuo et al., 2006). The Confetti mouse is a Cre-177	

dependent reporter that produces four different fluorescent proteins (Snippert et al., 2010). We 178	

crossed the Nestin-CreERT2 mouse with the Confetti mice, and the resulting transgenic Nestin-179	

CreERT2::Confetti mouse was used for the experiments. For the timed pregnancy, the plug date 180	

was designated as E0.5 and the day of birth as P0. In all experiments, mice were handled according 181	

to the protocols approved by the Caltech Institutional Animal Care and Use Committee (IACUC). 182	

Mice colonies were maintained at the animal facility of the California Institute of Technology 183	

(Caltech). 184	

 

Tamoxifen induction. 185	

Tamoxifen (TMX, Sigma T-5648) was dissolved in 37ºC pre-warmed corn oil (Sigma C8267) at 186	

a concentration of 10 mg/ml. NestinCreERT2::Confetti embryos were induced at E10.5 (embryonic 187	

day 10.5) by a single intraperitoneal injection of 1 mg TMX into pregnant females (~ 40 grams). 188	

Animals were euthanized at embryonic day 12 (E12.5) or postnatal day 21 (P21).  189	

Tissue processing, immunohistochemistry, and imaging 190	

Mouse embryos (E12.5) were fixed by immersion in 4% paraformaldehyde (PFA) in phosphate-191	

buffered saline (PBS, pH 7.4) at 4°C overnight. Postnatal mice (P21) were fixed by intracardiac 192	

perfusion with 4 % PFA in PBS. Brains were then extracted and incubated in 4% PFA at 4°C 193	

overnight. Next day, all samples were washed 3 times, 10 minutes each, with 0.1 M PBS, pH 7.4. 194	

Postnatal mice brains were embedded into 3 % agarose and cut in a vibratome into 60 µm thick 195	

sections. Sections were collected sequentially. Embryonic brains were cut with a cryostat into 20 196	

µm thick sections as previously described (Sánchez-Guardado et al., 2009). 197	

We amplified the signal from fluorescent proteins by performing immunohistochemistry with 198	

antibodies against RFP and GFP. Although anti-GFP antibody recognizes nGFP, cYFP and mCFP 199	

proteins, we were able to distinguish between them based on the different subcellular location of 200	

the proteins (nuclear, cytoplasmic and membrane). In the figures cells are shown with their original 201	
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9	
	

colors from the Confetti cassette, even though the signal from cYFP and mCFP proteins was 202	

amplified using the antibody against GFP (Figure 1-figure supplement 1, Figure 2, Figure 2-figure 203	

supplement 1). We did not include nGFP+ cells in our analyses because we cannot identify their 204	

morphology.  205	

For immunocytochemistry, we incubated the sections during 30 minutes in blocking solution 206	

containing 1% bovine serum albumin in 0.1 M PBS-0.1% Triton X-100 (PBS-T). Sections were 207	

incubated overnight with the following antibodies diluted into blocking solution: chicken anti-GFP 208	

(1:1,000; AB3080; Millipore Bioscience Research Reagents), rabbit anti-RFP (1:1,000; LS-209	

C60076; Lifespan). The next day sections were washed 3 times, 10 minutes each, in PBS-T. Later, 210	

sections were incubated during 90 minutes at room temperature with secondary antibodies (Alexa 211	

Fluor 488 goat anti-rabbit, Alexa Fluor 555 goat anti-chicken; Invitrogen) diluted 1:1,500 in 212	

blocking solution. Finally, the sections were counterstained with DAPI (D9542, Sigma), mounted 213	

sequentially on glass slides and mounted with Fluoromount (F4680, Fluoromount Aqueous 214	

Mounting Medium). 215	

Z-stacks images were acquired using10x, 20x or 40x objectives on a confocal microscope (Zeiss 216	

LSM 800). Z-stacks were merged and analyzed using ImageJ and edited with Photoshop (Adobe) 217	

software. 218	

3D reconstruction and data analysis. 219	

Each section was analyzed and traced in sequential order from rostral to caudal using Neurolucida 220	

and StereoInvestigator software (MBF Bioscience Inc., Williston, VT). The boundaries of the OB 221	

and neocortex were traced and used to line up each section with the previous one to form 3D 222	

reconstructions. Each labeled cell in the OB or neocortex was tagged with a blue dot.   223	

The distribution of the nearest neighbor distance (NND) was calculated using Neurolucida 224	

Explorer software based on our 3D reconstruction. NND was calculated by identified the shortest 225	

straight path between labeled cells. The NND was represented as cumulative percentage (average 226	

± standard deviation) of the clones analyzed in the OB (n=9) and neocortex (n=6). In addition, we 227	

generated a dataset of random simulations based on the same number of the M/T cells detected in 228	

our experiments (n=178). The distances were generated randomly with a normal distribution 229	

between the longest and shortest distances observed between M/T cells (closest and farthest sister 230	
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10	
	

M/T cells were separated by 21.51 µm and 974.82 µm, respectively), and repeated 100 times. We 231	

followed the same procedure for pyramidal neurons (n=556) in the neocortex (closest and farthest 232	

sister pyramidal neurons were separated by 13.54 µm and 415.2 µm, respectively).  233	
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Figures 345	

Figure 1. Clonal analysis of projection neurons using Nestin-CreERT2::Confetti mice to 346	

sparsely label neuronal progenitors  347	

(A) Schematic representation of the olfactory bulb (OB). Axons from olfactory sensory neurons 348	

(OSNs) expressing the same receptor project to a single glomerulus, forming synaptic contacts 349	

with the apical dendrites of mitral and tufted cells. (B) Experimental design to label neuronal 350	

progenitors with tamoxifen (TMX) at embryonic day 10 (E10.5) and their posterior analysis at 351	

E12.5 and P21. (C) The Confetti cassette encodes 4 different fluorescent proteins (nuclear GFP 352	

(nGFP), membrane CFP (mCFP), and cytoplasmic YFP (cYFP) and RFP (cRFP)). Upon Cre 353	

recombination, the STOP sequence is excised and randomly generates four possible outcomes.  354	
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Figure 1-figure supplement 1. Pyramidal and M/T neurons labeled with different fluorescent 355	

proteins. 356	

(A-C) Confocal images of three M/T cells and (D-F) three pyramidal neuron clones labeled with 357	

different fluorescent proteins in OB and neocortex coronal sections of P21 mice treated with TMX 358	

at E10.5. (A, D) Cytoplasmic YFP (cYFP); (B, E) cytoplasmic RFP (cRFP) and (C, F) membrane 359	

CFP (mCFP). Scale bar in C is 50 µm. Scale bar in F is 100 µm. 360	
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Figure 2. Sparse labeling of progenitor cells in the embryonic mouse brain. 361	

(A-D) Sagittal sections through the brain of an E12.5 mouse treated with TMX at E10.5. (A-B) 362	

Confocal images of individual clones labeled in the OB expressing cRFP (A-A’) and cYFP (B-363	

B’). (A’-B’) High magnification images of the clones showed in A and B. (C-D) Single clones 364	

labeled in the neocortex expressing cRFP (C-C’) and cYFP (D-D’). (C’-D’) High magnification 365	

images of the clones showed in C-D. Cell nuclei are labeled with DAPI (blue). Scale bar in D is 366	

200 µm and applies to A-D, scale bar in D’ is 50 µm applies to A’-D’. Orientation of brains: D, 367	

dorsal; A, anterior. 368	
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Figure 2-figure supplement 1. Progenitor cells labeled in neocortex with three different 369	

fluorescent proteins.  370	

(A-C) Confocal images of single clones labeled in the neocortex with cYFP (A), cRFP (B) and 371	

mCFP (C) in brain sagittal sections of E12.5 mice treated with TMX at E10.5. (A’-C’) High 372	

magnification images of the clones showed in A-C. DAPI staining (blue) reveals cell nuclei. Scale 373	

bar in C is 200 µm applies to A-C. Scale bar in C’ is 50 µm applies to A’-C’. Orientation of brains: 374	

D, dorsal; A, anterior. 375	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584805doi: bioRxiv preprint 

https://doi.org/10.1101/584805
http://creativecommons.org/licenses/by/4.0/


18	
	

 

Figure 3. Clone size and distribution of cells labeled in the olfactory bulb and neocortex. 376	

(A) Clone size quantification in the OB and neocortex. Data are shown as average ± standard 377	

deviation. (B-D) 3D reconstruction of a NestinCreERT2::Confetti P21 mice OB (B-C) and 378	

neocortex (D) treated with TMX at E10.5. Green lines indicate the contours of the brain and blue 379	

dots represent the cell bodies of labeled neurons. (B) Frontal and (C) lateral views of the 3D 380	

reconstruction of one OB. (D) Frontal view of the neocortex 3D reconstruction. (E) Cumulative 381	

percentage of the NNDs of sister neurons labeled in the OB (red) and neocortex (blue). Data are 382	

shown as average ± standard deviation (OB, n=178 neurons in 9 clones; neocortex, n=556 neurons 383	

in 6 clones). Dark and light gray lines represent 100 datasets of random simulations of OB and 384	

neocortex NND, respectively. Scale bar in C is 0.5 mm and applies to B-C.  Scale bar in D is 1 385	

mm. Orientation of diagrams in B-D: D, dorsal; A, anterior; M, medial. 386	
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Figure 3-figure supplement 1.  3D reconstruction of clones labelled in the olfactory bulb and 387	

neocortex  388	

(A-B) 3D reconstructions from four individual clones in the OB. (A) Frontal and (B) lateral views 389	

of the OBs. (C) 3D reconstructions from four single clones in the neocortex. Scale bar in B is 0.5 390	

mm and applies to A-B.  Scale bar in C is 1 mm. Orientation of diagrams: D, dorsal; A, anterior; 391	

M, medial. 392	
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Figure 3-figure supplement 2. NND distribution of single clones based on their cell number 393	

(A) NND cumulative percentage of individual clones analyzed in the OBs (n=9). Red line 394	

represents the NND average of all clones analyzed, while dark and light blue represent the NND 395	

of single clones containing clone sizes above or below the mean (mean=19.7), respectively. 396	
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Figure 4. Connectivity clonally related M/T cells. 397	

(A) Confocal images of four sister M/T cells belonging to a putative individual clone in the OB 398	

(B-E) Confocal images of sister M/T cells from four clones, in four different OBs, with their 399	

somata close to each other and their apical dendrites innervating different glomeruli. (B’-E’) 400	

Schematic representation of the confocal images in B-E. Scale bar in E is 50 µm and applies to 401	

A-E. 402	
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