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Abstract	
	

The	faces	of	those	most	personally	relevant	to	us	are	our	primary	source	of	social	

information,	making	their	timely	perception	a	priority.	Recent	research	indicates	that	

gender,	age	and	identity	of	faces	can	be	decoded	from	EEG/MEG	data	within	100ms.	Yet	

the	time	course	and	neural	circuitry	involved	in	detecting	personal	relevance	of	faces	

remain	unknown.	We	applied	representational	similarity	analyses	and	simultaneous	

EEG-fMRI	to	examine	neural	responses	to	emotional	faces	of	participants’	romantic	

partners,	friends,	and	a	stranger.	EEG-fMRI	representations	of	personal	relevance	

started	prior	to	structural	encoding	at	100ms	in	visual	cortex,	but	also	in	prefrontal	and	

midline	regions	involved	in	value	representation,	and	monitoring	and	recall	of	self-

relevant	information.	Representations	specifically	related	to	romantic	love	emerged	

after	400ms.	Our	results	suggest	that	models	of	face	perception	need	to	be	updated	to	

account	for	rapid	detection	of	personal	relevance	in	cortical	circuitry	beyond	the	core	

face	processing	network.	
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Faces	are	arguably	the	most	important	social	and	emotional	stimuli	we	encounter	in	

daily	life.	They	tell	us	an	enormous	amount	about	our	fellow	humans,	including	whether	

they	are	strangers,	friends,	enemies,	or	loved	ones,	how	old	they	are,	and	how	they	are	

feeling,	both	generally,	as	well	as	towards	us	specifically.	So	important	are	faces	to	us,	

that	we	appear	to	be	experts	at	processing	them,	and	have	developed	specialised	neural	

circuitry	to	do	so	1.	Based	on	a	substantial	body	of	behavioural	and	neuroimaging	

research,	theories	of	how	different	types	of	face	information	are	extracted	from	the	

visual	stream	have	been	proposed,	with	separate	processing	pathways	being	suggested	

for	transient	(e.g.	emotion)	and	stable	(e.g.	identity)	aspects	of	faces	2.	Yet	testing	the	

temporal	dynamics	and	neural	circuitry	of	specific	aspects	of	face	perception	is	

hampered	by	the	lack	of	temporal	resolution	needed	to	delineate	several	rapidly	

occurring	processing	stages.	Here,	we	address	this	question	using	simultaneous	

recordings	of	EEG	and	fMRI.	

Cumulative	evidence	from	EEG	and	MEG	research	has	identified	the	N170/M170	

component	(at	170	ms	after	stimulus	onset)	as	a	correlate	of	structural	face	encoding	

and	representations	of	identity	3,4.	However,	more	recent	research	using	multivariate	

pattern	analysis	and	related	techniques	has	demonstrated	that	various	aspects	of	face	

information,	including	identity,	emotional	expressions,	age,	and	gender,	are	represented	

already	within	the	first	100	ms	after	stimulus	onset	5–8.	Yet	while	these	studies	provide	

valuable	evidence	about	the	time	course	of	face	processing,	the	brain	networks	involved	

in	the	specific	aspects	of	face	perception	remain	difficult	to	identify.	Furthermore,	these	

studies	have	almost	exclusively	focused	on	faces	that	carry	little	or	no	personal	

relevance	to	the	observer.	

We	thus	know	little	about	the	most	important	type	of	real-life	face	processing,	namely	

detecting	and	recognising	the	faces	of	our	families	and	close	friends,	a	skill	in	which	we	
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are	highly	efficient	and	robust	9.	The	processing	of	personally	familiar	faces	involves	

additional	brain	areas	outside	of	the	visual	processing	stream,	including	regions	

involved	in	monitoring	of	self-relevant	information	(medial	prefrontal	cortex),	episodic	

memories	(precuneus,	anterior	temporal	cortex),	person	knowledge	(temporoparietal	

junction;	TPJ),	and	emotion	processing	(amygdala,	insula)	10–13.	However,	it	is	largely	

unknown	how	quickly	personal	relevance	can	be	extracted	from	faces,	and	where	in	

visual	or	higher-level	processing	streams	this	occurs.	EEG	findings	suggests	that	earliest	

effects	of	personal	relevance	of	faces	might	occur	around	170	ms	after	stimulus	onset	9,	

although	effects	are	more	robust	at	higher-order	processing	stages,	modulating	the	

amplitudes	of	the	P3	component	14.	These	studies	suggest	that	representation	of	

personal	relevance	of	faces	might	depend	at	least	on	structural	encoding	in	the	ventral	

visual	stream,	as	well	as	possibly	more	elaborate	cognitive	processing.	Interestingly,	a	

recent	study	using	MEG	reported	enhanced	early	(70-100ms)	encoding	of	gender	and	

identity	in	familiar	faces,	with	less	robust	encoding	of	gender	and	identity	in	unfamiliar	

faces.	Encoding	of	familiarity	itself	was	only	detectable	400	ms	after	stimulus	onset	7.	

The	authors	speculated,	based	on	the	timeline	of	their	results,	that	amplification	of	

familiar	faces	might	involve	early	perceptual	tuning	that	precedes	structural	encoding	

and	top-down	processing.	However,	their	MEG	analyses	did	not	provide	the	spatial	

specificity	to	investigate	the	network	underlying	the	early	amplification	of	familiar	

faces;	and	the	authors	thus	suggested	that	future	multimodal	studies	might	shed	light	on	

this	important	question.	It	is	also	noteworthy	that	the	study	used	famous	faces	(actors),	

which	are	of	less	personal	relevance	and	have	been	shown	to	be	processed	in	a	

qualitatively	different	way	than	personally	relevant	faces	9,15.	Thus,	despite	considerable	

progress,	it	remains	unclear	at	what	stage	genuine	personal	relevance	of	faces,	such	as	

those	of	our	friends	and	loved	ones,	is	decoded,	which	brain	regions	are	involved,	and	
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whether	rapid	prioritisation	of	personally	relevant	faces	is	based	on	tuning	of	sensory	

areas	16,	or	on	top-down	influence	on	these	areas	17.	

In	the	present	study,	we	aimed	to	answer	these	questions	through	simultaneous	

recordings	of	EEG	and	fMRI.	We	presented	heterosexual	females	in	a	romantic	

relationship	with	pictures	of	their	romantic	partner,	a	close	male	friend,	and	a	male	

stranger,	displaying	fearful,	happy	and	neutral	facial	expressions.	In	addition	to	

standard	unimodal	analyses	of	EEG	and	fMRI,	we	combined	these	data	using	

representational	similarity	analyses	(RSA;	Fig	1)	18.	Our	results	reveal	two	major	

findings:	First,	we	show	that	personal	relevance	leads	to	increased	activation	in	the	face	

processing	network,	and	to	fast	attention	allocation	in	ERPs.	Second,	we	show	that	

shared	representations	between	EEG	and	fMRI	spatial	activation	start	as	early	as	100	ms	

after	stimulus	onset	not	only	in	the	visual	cortex,	but	also	in	cortical	areas	previously	

associated	with	value	representation	and	the	monitoring	of	self-relevant	information.	

	

	

Fig.	1.	Representational	Similarity	Analyses.	Representational	dissimilarity	matrices	

(RDMs)	are	constructed	for	each	voxel	in	the	brain	and	for	each	data	point	in	grand	
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averaged	ERPs	by	comparing	pairwise,	condition-specific	activations.	RDMs	are	

symmetric	with	a	diagonal	of	zeros,	and	their	size	corresponds	to	the	number	of	

experimental	conditions,	here	9	x	9.	Model-based	RDMs	reflect	theoretical	predictions.	

After	construction,	RDMs	are	compared	across	modalities	and	with	model-based	RDMs.	

	

Results	

Unimodal	fMRI	analyses	

Increased	activation	for	Partner	>	Stranger	and	Friend	>	Stranger	was	observed	in	right	

fusiform	cortex,	precuneus,	posterior	cingulate	cortex,	anterior	cingulate	cortex	(ACC),	

right	middle	temporal	gyrus	and	posterior	superior	temporal	sulcus	(Fig.	S1).	

Additionally,	the	contrast	Partner	>	Stranger	showed	activation	in	the	bilateral	

orbitofrontal	cortex,	while	Friend	>	Stranger	yielded	activation	in	the	ventromedial	

prefrontal	cortex.	Emotion	contrasts	yielded	activation	for	Happy	>	Neutral	in	the	

parieto-occipital	cortex	(including	the	intracalcarine	cortex,	lingual	gyrus	and	

precuneus),	cerebellum	and	brain	stem.	Further	clusters	were	located	in	the	medial	and	

ventromedial	prefrontal	cortex,	orbitofrontal	cortex,	ACC,	inferior	and	superior	frontal	

gyrus,	and	insular	cortex.	Subcortically,	activation	was	seen	in	the	left	amygdala,	

bilateral	thalamus	and	left	caudate.	For	Happy	>	Fear,	activation	was	found	in	bilateral	

insula	and	frontal	operculum,	and	left-lateralized	inferior	and	middle	frontal	gyrus	and	

lateral	occipital	cortex.		See	Table	S1	for	a	complete	list	of	activated	brain	regions.	

Region	of	interest	analyses	showed	an	effect	of	Identity	on	bilateral	VTA	activations,	

Fs(2,42)	>	4.60,	ps	<	.016,	ηp2s	>	.107,	based	on	increased	activations	for	Partner	>	

Stranger,	p	=	.01	(L	VTA).	In	the	left	VTA,	an	interaction	between	Identity	and	Emotion	

reflected	that	activation	in	response	to	the	Friend’s	face	was	modulated	by	the	

emotional	expression,	with	increased	activation	for	happy	expressions	compared	to	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2019. ; https://doi.org/10.1101/585133doi: bioRxiv preprint 

https://doi.org/10.1101/585133
http://creativecommons.org/licenses/by/4.0/


	 7	

fearful	and	neutral	expressions,	Fs(1,21)	>	7.21,	ps	<	.042.	In	bilateral	caudate	activity,	a	

main	effect	of	Emotion,	Fs(2,42)	>	2.86,	ps	=		.025,	ηp2s	>	.161,	was	based	on	numerically	

higher	activations	in	response	to	happy	faces,	but	post-tests	were	not	significant.	ROI	

analyses	of	Amygdala,	putamen	and	N.	accumbens	did	not	reveal	significant	results.	Full	

statistical	analyses	are	reported	in	S2.	

	

Unimodal	EEG	analyses	

Analyses	of	P1	amplitudes	showed	a	main	effect	of	Identity,	F(2,68)	=	4.1,	p	=	.025,	ηp2		=	

.194,	based	on	higher	amplitudes	for	Partner	as	compared	to	Stranger,	p	=	.017	(Fig.	3).	

Likewise,	N170	amplitudes	were	modulated	by	the	factor	Identity,	F(2,34)	=	9.17,	p	=	

.001,	ηp2	=	.350,	with	higher	amplitudes	for	Partner	and	Friend	compared	to	Stranger,	ps	

<	.02.	Both	P3	and	LPC	showed	main	effects	of	Identity,	Fs(2,34)	>	13.86,	ps	<	.001,	ηp2s	>	

.449;	post-tests	showed	higher	amplitudes	for	Partner	compared	to	both	Friend	and	

Stranger,	ps	<	.014	(Fig.	2).	See	Table	S3	for	detailed	follow-up	analyses.	

	

Fig.	2.	Effects	of	personal	relevance	in	event-related	potentials.	a	Grand	mean	ERP	
waveforms	for	the	factor	Identity	at	electrodes	PO8	and	Pz,	showing	increased	
amplitudes	for	Partner	compared	to	Friend/Stranger	in	P1	and	P3/LPC	amplitudes.	b	
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Scalp	distributions	for	Partner,	Stranger,	and	their	difference	topography	at	indicated	
time	intervals.	
	
	
Representational	similarity	analyses:	Model-based	RDMs		
	
Face	Identity	
	
Using	a	model-RDM	for	face	identity	as	a	searchlight	in	voxelwise	fMRI	analyses	

revealed	widespread	representations	in	the	core	and	extended	face	processing	network	

(Fig.	3).	Analyses	using	a	model-based	RDM	for	familiarity	(Partner	and	Friend	vs.	

Stranger)	showed	a	high	level	of	consistency	with	representations	of	Identity,	suggesting	

that	face	familiarity	accounts	for	the	majority	of	observed	effects.	In	contrast,	analysis	

with	an	RDM	reflecting	romantic	Love	(Partner	vs.	Friend	and	Stranger)	revealed	more	

focal	activations,	which	were	located	in	bilateral	insula,	opercular	cortex,	lateral	

occipital	cortex	and	superior	temporal	gyrus,	and	in	subcortical	regions	in	putamen,	

caudate,	amygdala,	thalamus,	cerebellum,	and	regions	of	the	brain	stem	including	

corticospinal	and	corticobulbar	tracts	and	substantia	nigra.	See	Table	S1	for	a	complete	

list	of	brain	regions.	
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Fig.	3:	Representations	of	conceptual	RDMs	for	Identity,	Familiarity	and	Love.	Activation	

thresholded	with	FWE	<	0.05	using	permutations	and	TFCE.	

	

Emotional	expression	

Comparisons	with	the	model-based	Emotion	RDM	revealed	representations	that	were	

less	widespread	than	effects	of	Identity,	but	included	bilateral	amygdala,	right	putamen,	

the	orbitofrontal	and	ventromedial	prefrontal	cortex,	the	temporoparietal	junction	(TPJ)	

and	left	inferior	frontal	gyrus.	A	model-based	RDM	for	valence	(distance	=	1	from	

neutral	to	both	fear	and	happy,	distance	=	2	between	fear	and	happy)	showed	activation	

in	most	areas	of	the	core	and	extended	face	network,	including	bilateral	amygdala,	

insula,	hippocampus,	ventromedial	and	orbitofrontal	PFC	(Fig.	4).	The	analyses	of	

model-based	emotional	arousal	(assuming	increased	values	for	fearful	and	happy	

compared	to	neutral	faces)	revealed	no	significant	representations.	
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Fig.	4:	Representations	of	conceptual	model	RDMs	for	Emotion	and	Valence.	Activation	

thresholded	with	FWE	<	0.05	using	permutations	and	TFCE.	

	

Combined	EEG-fMRI	RSA	analyses	

Peaks	in	EEG	RDM	structure	were	evident	at	52	ms,	108	ms,	204	ms,	308	ms,	428	ms,	

and	660	ms.	Accordingly,	these	RDMs	were	used	as	searchlight	RDMs	in	the	whole-brain	

analyses	on	single-subject	fMRI	data	(Fig.	5).	

For	the	EEG	RDM	at	52	ms	after	stimulus	onset	there	were	no	brain	regions	with	

significantly	correlated	spatial	RDMs.	EEG	representations	at	108	ms	showed	

correspondence	to	BOLD	representations	in	the	extended	face	network,	including	the	

precuneus,	posterior	cingulate	cortex	and	TPJ,	but	also	in	the	ventromedial	PFC	and	in	

the	visual	cortex	(intracalcarine	cortex	and	lingual	gyrus).	The	EEG	RDM	at	this	time	

point	mainly	represented	effects	of	familiarity	(Stranger	vs.	Partner	and	Friend),	as	

apparent	from	correlations	of	the	EEG	RDM	with	model-based	RDMs	(see	Table	1).	The	

same	was	true	for	the	EEG	RDM	at	204	ms,	with	more	widespread	corresponding	EEG-

fMRI	representations	that	additionally	included	the	ACC,	fusiform	gyrus,	amygdala,	

insula	and	N.	accumbens.	At	308	ms	and	428	ms,	EEG	RDMs	showed	highest	
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correspondence	to	model-based	RDMs	of	Love	(that	is,	Partner	vs.	Friend	and	Stranger).	

In	EEG-fMRI,	corresponding	representations	at	308	ms	were	more	focal	and	most	

evident	in	the	precuneus,	posterior	cingulate	and	superior	frontal	gyrus.	Finally,	EEG-

fMRI	representations	at	428	ms	and	660	ms	after	stimulus	onset	were	again	more	

extended,	with	additional	significant	representations	in	the	middle	temporal	gyrus,	TPJ,	

in	the	inferior	and	superior	frontal	gyri,	as	well	as	in	regions	of	the	midbrain.	See	Table	1	

for	correlations	between	EEG	RDMs	and	model-based	RDMs,	and	Table	S1	for	a	

complete	list	of	brain	regions.	
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Fig.	5:	Combined	EEG-fMRI	representations.	Brain	regions	in	which	fMRI	RDMs	

corresponded	to	representations	in	the	EEG	at	the	corresponding	time	points.	RDMs	
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show	EEG	representations	used	as	target	RDMs	in	the	combined	EEG-fMRI	analyses,	

selected	on	the	basis	of	peaks	in	the	RDM	structure	(top	graph).	Each	line	in	the	lower	

graph	represents	the	mean	time	series	for	one	electrode.	

	

Table	1.	Pearson’s	correlation	values	of	model-based	RDMs	and	EEG	RDMs	used	in	fMRI	

searchlight	analyses	

	 108	ms	 204	ms	 308	ms	 428	ms	 660	ms	

Identity	 0.41	 0.35	 0.32	 0.48	 0.52	

Familiarity	 0.70	 0.62	 0.20	 0.33	 0.60	

Love	 0.13	 0.07	 0.51	 0.61	 0.41	

Emotion	 -0.14	 0.00	 -0.11	 -0.16	 -0.17	

	

Discussion	

The	faces	of	those	closest	to	us	are	arguably	the	most	personally	relevant	social	stimuli	

we	commonly	encounter	and	thus	might	receive	a	high	degree	of	processing	priority.	In	

this	study,	we	investigated	the	time	course	of	neural	processing	of	the	faces	of	romantic	

partners	and	friends	using	simultaneous	EEG-fMRI	and	representational	similarity	

analyses.	Our	results	point	to	the	strong	and	rapid	impact	of	personal	relevance	on	face	

processing,	with	increased	activation	in	the	core	and	extended	face	processing	network,	

as	well	as	fast	attention	allocation	in	ERPs,	and	shared	representations	between	EEG	

and	fMRI	spatial	activation	patterns	in	multiple	cortical	regions	starting	as	early	as	100	

ms	after	stimulus	onset.		

	

Model-based	representational	similarity	analyses	revealed	neural	representations	of	

identity	in	large	parts	of	the	core	face	processing	network,	including	fusiform	gyrus,	

posterior	STS	and	inferior	frontal	gyrus,	and	in	precuneus,	posterior	and	anterior	
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cingulate	cortex,	and	medial	prefrontal	cortex	as	parts	of	the	extended	face	network,	

corroborating	previous	research	9,10,13.	Personal	relevance	was	examined	both	in	terms	

of	personal	familiarity	(Partner/Friend	vs.	Stranger),	and	romantic	love	(Partner	vs.	

Friend/Stranger).	Personal	familiarity	accounted	for	the	majority	of	effects	of	personal	

relevance	across	the	face	processing	network.	In	contrast,	representations	

corresponding	to	the	romantic	love	RDM	were	more	focal	and	mostly	outside	the	face	

network,	including	subcortical	regions	in	putamen,	caudate,	amygdala,	thalamus,	

cerebellum,	and	regions	of	the	brain	stem	including	corticospinal	and	corticobulbar	

tracts	and	substantia	nigra,	but	also	cortical	regions	including	the	insular	cortex,	medial	

and	ventromedial	prefrontal	cortex,	inferior	frontal	gyrus	and	in	the	intracalcarine	

cortex.	These	results	are	consistent	with	previous	findings	that	the	processing	of	a	loved	

one’s	face	engages	areas	of	the	brain’s	dopaminergic	reward	circuitry	in	the	dorsal	

striatum	(putamen	and	caudate)	19	and	substantia	nigra.	Furthermore,	our	region-of-

interest	analyses	revealed	increased	BOLD	activation	for	Partner	compared	to	Stranger	

in	the	ventral	tegmental	area,	which	is	the	major	source	of	dopaminergic	neurons	in	the	

mesolimbic	dopamine	system.	In	the	left	VTA,	analyses	also	showed	an	interaction	of	

personal	relevance	and	emotional	expressions:	While	activity	was	generally	increased	in	

response	to	the	partner’s	face	compared	to	a	stranger,	activation	to	the	Friend’s	face	was	

increased	only	for	happy	expressions,	showing	a	coding	of	both	identity	and	emotional	

expression	that	reflects	the	degree	of	personal	reward	value.	

	

Event-related	potentials	revealed	that	personal	relevance	increased	activation	

throughout	the	processing	time	course.	Increased	P1	amplitudes	are	especially	

noteworthy,	since	the	P1	was	related	to	perceptual	processing	at	100	ms	after	stimulus	

onset,	and	thus	precedes	structural	face	encoding	as	indexed	by	the	N170	component	3,	
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as	well	as	subsequent	face	identification	processes	2.	Similar	activations	have	been	

reported	for	stimuli	with	emotional	and	motivational	relevance	20,	and	have	been	

related	to	associative	learning	of	physical	stimulus	properties	21,22.		Thus,	our	results	are	

not	necessarily	in	conflict	with	models	of	face	recognition	based	on	structural	encoding	

and	associative	memory	2,	but	might	reflect	reward	value	associated	with	(the	physical	

features	of)	a	loved	one’s	face,	extracted	prior	to	full	structural	encoding.		

	

While	ERP	analyses	suggest	early	modulation	of	visual	perceptual	processes	by	personal	

relevance,	the	combination	of	EEG	and	fMRI	data	using	RSA	allows	for	the	time-resolved	

analyses	of	representations	within	the	fMRI.	These	analyses	suggest	fast	modulation	of	

neural	processing	across	a	far	more	widespread	collection	of	cortical	regions.	Shared	

EEG-fMRI	representations	were	first	apparent	as	early	as	100	ms	after	stimulus	onset	

not	only	in	the	visual	cortex,	but	also	in	the	ventromedial	and	medial	prefrontal	cortex,	

regions	involved	in	the	monitoring	of	self-relevant	information	and	value	encoding	23,24.	

Further	early	representations	were	observed	in	regions	linked	to	multimodal	sensory	

integration	and	theory	of	mind	(TPJ)	25,	and	episodic	and	autobiographical	memory	

(posterior	cingulate	cortex)	26.	The	fast	and	widespread	activation	of	brain	areas	

involved	in	social	cognition	and	reward	encoding	serves	to	highlight	the	prioritization	of	

genuinely	personally	relevant	information:	In	contrast	to	our	findings,	a	previous	MEG	

study	using	famous	faces	instead	of	personally	relevant	faces	reported	decoding	of	face	

familiarity	only	after	400	ms	7.		However,	this	study	reported	increased	early	

representations	of	gender	and	identity	for	familiar	compared	to	unfamiliar	faces	with	

latencies	of	60	to	100	ms.	Based	on	the	timeline	of	their	results,	the	authors	speculated	

that	these	activations	might	be	based	on	selective	bottom-up	amplification	of	sensory	

representations.	In	contrast,	although	starting	somewhat	later,	our	results	show	that	at	
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100	ms	after	stimulus	onset,	corresponding	fMRI	representations	were	evident	outside	

of	visual	areas,	including	the	PFC.		

Taken	together,	our	unimodal	EEG	and	EEG-fMRI	RSA	analyses	suggest	that	personal	

relevance	of	faces	can	be	extracted	prior	to	full	structural	face	encoding,	involving	both	

visual	and	frontal/midline	brain	regions.	Based	on	this	circuitry,	we	suggest	that	these	

effects	might	rely	on	associative	learning	of	visual	stimulus	features	and	the	reward	

value	of	personally	relevant	faces.	This	explanation	is	consistent	with	reports	of	fast	

activations	of	the	PFC	in	affective	associative	learning	of	faces	at	latencies	starting	as	

early	as	50	-	80	ms	after	stimulus	onset	22.	Therefore,	future	models	of	face	perception	

should	consider	the	influence	of	face-unspecific	mechanisms	on	face	perception,	like	

reward-related	processes,	which	seem	to	play	an	important	role	in	processing	real-life	

faces.		

	At	200	ms,	shortly	after	the	stage	of	structural	face	encoding,	representations	

additionally	included	the	fusiform	gyrus,	but	also	amygdala,	insular	cortex	and	N.	

accumbens.	This	time	course	of	representations	of	face	relevance	suggests	that	the	

response	of	subcortical	relevance-	and	reward	related	structures	like	the	amygdala	and	

the	N.	accumbens	might	rely	on	the	output	of	structural	face	encoding	at	around	170	ms	

after	stimulus	onset.		

Finally,	at	the	stage	of	higher-order	processing	from	approximately	400	ms	after	

stimulus	onset,	representations	were	identified	in	all	regions	of	the	core	and	extended	

face	processing	network,	including	amygdala,	insular	and	orbitofrontal	cortex	10,	but	

also	in	regions	identified	with	the	theoretical	RDM	for	romantic	love,	like	putamen,	

cerebellum	and	regions	of	the	brain	stem.	Consistent	with	EEG	RDMs,	ERPs	showed	

evidence	for	differential	processing	of	romantic	partners	at	a	similar	time	scale.	Across	

modalities,	our	results	suggest	that	early	processing	mainly	reflects	the	amplification	of	
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familiarity;	whereas	effects	specific	for	romantic	love	only	emerge	at	a	higher-order	

processing	stage.	However,	it	is	important	to	keep	in	mind	that	the	terms	‘familiarity’	

and	‘love’	in	this	case	are	not	exclusively	related	to	Friend	and	Partner,	respectively,	but	

reflect	different	aspects	of	close	relationships	27:	Both	Partner	and	Friend	are	of	high	

personal	relevance;	and	one	can	feel	both	friendship	love	towards	a	close	friend	as	well	

as	friendship	towards	one’s	partner.	Thus,	romantic	love	in	our	study	refers	to	

representations	that	are	unique	to	a	romantic	relationship,	over	and	above	a	close	

friendship.	

	

In	this	study,	effects	related	to	personal	relevance	clearly	dominated,	while	emotional	

expressions	were	associated	with	relatively	weak	effects.	This	should	not	come	as	a	

surprise.	Being	able	to	rapidly	identify	and	respond	to	those	closest	to	us	is	a	

fundamental	ability	present	from	early	infancy	28.	It	also	suggests	that	emotional	

expressions	are	not	processed	in	a	rigid,	automatic	way,	but	that	brain	responses	rather	

reflect	context-specific	relevance	of	social	stimuli.	Understanding	the	time	course	and	

neural	circuitry	of	processing	individually	relevant	faces	might	be	of	special	importance	

in	clinical	conditions,	where	processing	of	emotional	or	social	information	is	specifically	

disrupted.	Autism	spectrum	conditions	(ASC)	are	an	example	in	which	atypical	face	

processing	might	reflect	altered	personal	relevance	attached	to	strangers,	rather	than	a	

dysfunction	of	the	neural	face	processing	architecture	29,	with	potential	consequences	

for	the	design	of	targeted	interventions.	

What	is	clear	from	this	study	is	that	in	basic	social	neuroscience,	as	well	as	in	clinical	

research,	there	are	compelling	reasons	to	study	responses	to	individualised	social	

stimuli.	Such	studies	might	yield	valuable	insights	into	how	the	brain	engages	circuitry	

beyond	that	typically	considered	in	models	of	face	perception,	in	order	to	prioritise	
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processing	of	genuinely	personally	relevant	faces.	After	all,	by	far	the	most	pervasive	

social	stimuli	we	encounter	in	our	daily	lives,	the	ones	our	brains	are	most	attuned	to,	

are	our	close	friends	and	loved	ones.		

	

Methods	

The	study	was	reviewed	and	approved	by	the	University	of	Reading	research	ethics	

committee.	All	participants	provided	informed	consent	before	taking	part	in	the	study.		

	

Participants	

Data	were	collected	from	22	female	participants	(mean	age	=	19.8	years,	sd	=	0.9).	For	

four	participants,	no	EEG	data	was	available	due	to	technical	problems	and	insufficient	

data	quality.	All	participants	were	in	a	heterosexual	romantic	relationship	at	the	time	of	

data	collection	(mean	duration	=	20.0	months,	sd	=	14.6;	friendship:	mean	duration	=	

35.9	months,	sd	=	26.5).	Participants	received	a	mean	score	of	105.9	points	(sd	=	10.7)	of	

135	points	on	the	Passionate	Love	Scale	30.	They	reported	high	contentment	both	with	

their	relationship	(mean	=	8.8/10,	sd	=	1.3)	and	their	friendship	(mean	=	8.3,	sd	=	1.3).	

All	participants	had	normal	or	corrected-to-normal	vision;	20	participants	were	right-

handed.	Participants	were	recruited	through	the	Undergraduate	Research	Panel	and	

Internet	ads;	they	received	course	credit	or	£25	for	participation.	

	

Stimuli	

Stimuli	consisted	of	portraits	of	the	participant’s	boyfriend,	a	male	close	friend,	and	a	

male	stranger,	displaying	fearful,	happy,	and	neutral	facial	expressions	(3	x	3	design).	All	

stimuli	were	obtained	by	taking	screen	shots	during	a	Skype	session	prior	to	the	

experimental	session;	all	participants	were	presented	with	the	same	stranger.		

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2019. ; https://doi.org/10.1101/585133doi: bioRxiv preprint 

https://doi.org/10.1101/585133
http://creativecommons.org/licenses/by/4.0/


	 19	

After	the	main	experiment,	participants	completed	ratings	of	stimulus	valence	and	

arousal,	as	well	as	on	attractiveness	(neutral	expression)	using	7-point	Likert	scales.	

Rating	values	are	reported	in	table	1;	full	statistical	analyses	are	reported	in	Table	S4.			

	
Table	2.	Rating	values	(means	and	standard	deviations)	of	experimental	stimuli	

	

Attractiveness	
(1-7)	

	

Valence		
(-3	-3)	

	
1	

Arousal	
(1-7)	
	

	 	 Fearful	 Happy	 Neutral	 Fearful	 Happy	 Neutral	

Partner	
6.1	(1.1)	 -0.4	(1.5)	 2.3	(0.7)	 0.0	(1.8)	 3.2	(1.7)	 5.4	(1.5)	 3.7	(1.8)	

Friend	 4.1	(1.4)	 -1.1	(1.1)	 1.6	(0.8)	 -0.6	(1.1)	 2.1	(1.6)	 2.9	(1.9)	 2.5	(1.6)	

Stranger	 4.1	(1.2)	 -2.0	(1.1)	 0.5	(1.1)	 -0.6	(1.2)	 1.6	(1.1)	 3.2	(2.0)	 2.5	(1.6)	

	

	

Procedure	

After	receiving	information	about	the	study,	participants	provided	informed	consent	

and	were	fitted	with	the	EEG	cap.	Inside	the	scanner,	participants	performed	a	passive	

face-viewing	task.	Face	stimuli	were	presented	for	1s.	Every	face	stimulus	was	

presented	40	times,	resulting	in	360	experimental	trials.	Additionally,	40	1-back	trials	

were	presented	to	ensure	participant’s	attention	to	the	faces.	In	these	trials,	participants	

had	to	indicate	whether	a	face	presented	after	a	question	mark	was	identical	in	identity	

and	emotion	to	the	one	presented	before	the	question	mark.	Stimuli	were	presented	in	

10	blocks.	The	stimulus	sequence	and	the	jittering	of	the	inter-trial	interval	was	

determined	using	fMRI	simulator	31	(mean	ITI	=	3000	ms,	min	=	2500	ms,	exponential	

function).	A	central	fixation	cross	was	presented	during	the	ITI.	Stimuli	were	presented	

on	a	Nordic	Neuro	Labs	goggle	system	at	60	Hz	on	an	800	x	600	pixel	screen	using	

EPrime	software	(Psychology	Software	Tools,	Inc.).	
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Data	acquisition	and	pre-processing	

fMRI	

Data	were	collected	on	a	3T	Siemens	Trio	MRI	scanner	using	the	standard	12	channel	

head	coil.	Functional	images	were	acquired	with	a	T2*-weighted	gradient	echo	EPI		

sequence	(40	interleaved	axial	slices,	phase	encoding	P	to	A,	2.5	x	2.5	mm	voxels,	slice	

thickness	=	2.5	mm,	interslice	gap	=	0.25mm,	100x100	in-plane	matrix,	TR	=	2500	ms,	

TE	=	30	ms,	Flip	Angle:	90°).	A	high-resolution	T1-weighted	whole-brain	structural	

image	was	acquired	using	an	MPRAGE	sequence	(1mm	isotropic	voxels,	FOV	=	160	x	256	

x	256	mm,	Flip	Angle:	9°).	

Data	were	processed	with	FSL	5.0	(www.fmrib.ox.ac.uk/fsl).	Brain	extraction	was	

performed	using	the	BET	32.	Data	were	denoised	(Marchenko-Pastur	Principal	

Component	Analyses),	motion	corrected	33,		spatially	smoothed	using	a	5	mm	FWHM	

Gaussian	kernel	34,	and	grand-mean	intensity	normalized.	Motion	artefacts	were	

removed	with	ICA-AROMA	35	and	data	were	high-pass	filtered	(100	s).	Single	subject	4D	

data	were	registered	to	the	subject’s	structural	image	using	BBR	36.	Registration	of	the	

individual	structural	image	to	the	2mm	MNI	152	template	was	performed	using	ANTS	37.	

Finally,	transformations	were	combined	for	the	registration	of	the	functional	data	to	

standard	space.		

	

EEG	

Continuous	EEG	data	were	collected	from	64	Ag-AgCl	electrodes	simultaneously	to	fMRI	

acquisition	(BrainProducts	system);	the	electrocardiogram	(ECG)	was	recorded	from	an	

electrode	placed	left	of	the	spinal	column.	The	sampling	rate	was	5000	Hz;	data	were	

referenced	online	to	electrode	FCz	with	electrode	AFz	as	ground.	Electrode	impedances	

were	kept	below	20	kΩ.	A	sync	box	(BrainProducts)	synchronised	the	MRI	and	EEG	
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computer	clocks.	Offline,	MR	gradient	artefacts	were	removed	from	continuous,	baseline	

corrected	data	(using	the	whole	artefact	for	baseline	correction)	with	a	sliding	window	

of	21	artefacts	38.	Data	were	low-pass	filtered	using	a	FIR	filter	(70	Hz)	and	down-

sampled	to	250	Hz.	Ballistocardiographic	artefacts	were	identified	using	the	ECG	with	a	

semiautomatic	template	matching	procedure	and	corrected	using	a	template	subtraction	

approach	(sliding	window	of	15	pulse	intervals).	A	restricted	Infomax	ICA	39	was	used	to	

remove	eye	blinks,	eye	movements	and	residual	ballistocardiographic	artefacts.	Data	

was	re-referenced	to	average	reference	and	segmented	into	epochs	from	-100	ms	to	800	

ms	relative	to	stimulus	onset,	and	baseline-corrected	using	a	100	ms	pre-stimulus	

baseline.	Trials	with	activity	exceeding	±	100	μV	or	voltage	steps	larger	than	100	μV	

were	excluded	from	analyses	(0.6	%	of	trials).	Data	were	averaged	per	participant	and	

experimental	condition.		

	

Data	analyses	

All	voxelwise	fMRI	statistical	tests	were	one-sided;	all	other	tests	were	two-sided.	

	

fMRI	

A	first	level	GLM	was	applied	with	regressors	for	emotion	by	identity	conditions	(9	

regressors)	and	for	1-back	trials,	created	by	convolving	the	temporal	profile	of	each	

experimental	condition	with	the	double	gamma	haemodynamic	response	function.	

Nuisance	regressors	without	convolution	were	included	to	model	breaks	between	

blocks	and	artefacts	(framewise	displacement	>	1mm).	Contrasts	of	interest	in	unimodal	

fMRI	analyses	included	effects	of	Identity	and	Emotion.	Region-of-interest	(ROI)	

analyses	were	performed	for	bilateral	activations	of	amygdala,	Nucleus	accumbens,	

putamen	and	caudate	(masks	created	from	Harvard-Oxford	subcortical	structural	atlas)	
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and	ventral	tegmental	area	(VTA;	;	mask	retrieved	from	

neurovault.org/collections/1380)	40.	Masks	were	thresholded	at	25%	and	binarised.	

Within	ROIs,	subject-wise	covariation	parameter	estimates	for	all	experimental	

conditions	were	compared	with	repeated-measures	ANOVAs	with	the	factors	Identity	

and	Emotion	(3	x	3).	Huynh-Feldt	correction	was	applied	for	violations	of	sphericity;	

post-tests	were	Bonferroni	corrected. Whole-brain	analyses	were	thresholded	with	

permutation	tests	(using	an	MNI	gray	matter	mask	with	tissue	priors	thresholded	at	0.3	

and	variance	smoothing	of	2mm)	and	threshold-free	cluster	enhancement	to	ensure	a	

corrected	Familywise	Error	(FWE)	of	<	.05.		

	

EEG	

EEG	analyses	were	performed	on	ERP	components	P1,	N170	and	P3	and	LPC.	P1	

amplitudes	were	quantified	at	the	average	of	occipital	electrodes	PO8,	PO4,	POz,	PO3,	

PO7,	O1,	Oz,	and	O2	using	semi-automatic	peak	detection	in	the	time	window	from	90	to	

130	ms	after	stimulus	onset	(mean	peak	latency	=	107ms).	N170	peak	amplitudes	were	

detected	on	averaged	electrodes	TP9,	TP7,	TP8,	TP10,	P7	and	P8	from	150	to	220	ms	

after	stimulus	onset	(mean	peak	latency	=	172ms).	In	order	to	account	for	differences	in	

the	preceding	P1	component,	N170	amplitudes	were	subtracted	from	P1	amplitudes.	P3	

and	LPC	amplitudes	were	analysed	at	electrodes	CP1,	CPz,	CP2,	P1,	Pz,	P2	and	POz	in	the	

time	windows	of	300	to	400ms	(P3)	and	400	to	800	ms	(LPC).	Analyses	were	performed	

with	repeated-measures	ANOVAs	including	the	factors	Identity	(3),	Emotion	(3)	and,	for	

P3	and	LPC,	electrode	(7).		Huynh-Feldt	correction	was	applied	for	violations	of	

sphericity;	post-tests	were	Bonferroni	corrected	for	multiple	comparisons.	
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RSA	analyses	

RSA	analyses	were	performed	using	the	CoSMoMVPA	toolbox	41	and	the	toolbox	for	

representational	similarity	analyses	42	on	Matlab	R2017b.		

fMRI	

Representational	dissimilarity	matrices	(RDMs)	were	constructed	for	each	voxel	in	the	

brain,	separately	for	each	subject,	based	on	z-values	of	each	of	the	9	experimental	

conditions	included	in	the	mixed-effects	GLM.	For	each	voxel	and	condition,	we	created	a	

vector	(based	on	a	sphere	around	each	voxel,	radius	=	2	voxels).	We	quantified	the	

dissimilarity	between	each	pair	of	experimental	conditions	as	1	–	Pearson’s	R	of	the	two	

corresponding	vectors.	This	resulted	in	a	9	x	9	RDM	for	each	voxel	and	each	participant.	

EEG	

RDM	matrices	were	constructed	using	grand-averaged	waveforms.	For	each	time	point	

from	stimulus	onset	to	800	ms	after	stimulus	onset,	the	distance	between	pairs	of	

experimental	conditions	was	quantified	as	their	Euclidean	distance	across	all	62	scalp	

electrodes.	Euclidean	distance	was	used	in	order	to	account	for	amplitude	differences,	

which	convey	essential	information	in	event-related	potentials.	Analyses	resulted	in	a	9	

x	9	RDM	for	each	time	point	(Fig.	S2).	

In	order	to	select	EEG	time	points	as	target	RDMs	in	the	fMRI	analyses,	we	derived	a	

measure	of	internal	structure	of	each	time	point’s	RDM	by	computing	the	Euclidean	

distance	of	RDM	cell	values	to	the	arithmetic	mean	of	cell	values.	As	a	result,	time	points	

with	pronounced	differences	of	dissimilarity	values	(RDM	cell	entries)	between	

condition	pairs	receive	high	values,	whereas	smaller	differences	result	in	low	values.	For	

these	calculations,	we	used	one	half	of	the	(symmetrical)	RDM,	excluding	the	diagonal	

zeros.		
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Conceptual	model	RDMs	

Conceptual	model	RDMs	for	Emotion	and	Identity	were	created	based	on	the	

assumption	of	high	similarity	within	experimental	categories	and	low	similarity	across	

categories	(coded	as	0	and	1,	respectively).	We	also	computed	conceptual	model	RDMs	

for	face	familiarity	(Partner/Friend	vs.	Stranger)	and	romantic	love	(Partner	vs.	

Friend/Stranger;	see	Figure	4,	and	for	emotional	valence	(distance	between	

happy/fearful	vs.	neutral	=	1,	distance	happy	vs.	fearful	=	2)	and	arousal	(distance	

happy/fearful	vs.	neutral	=	1,	distance	happy	vs.	fearful	=	0).		

	

Joint	EEG-fMRI	

For	combination	of	EEG	and	fMRI	data,	we	performed	representational	similarity	

analyses	using	EEG	RDMs	as	a	searchlight	with	each	participant’s	individual	fMRI	RDMs	

for	each	voxel	using	Pearson’s	R.	Analyses	were	performed	only	on	subjects	where	both	

fMRI	and	EEG	data	was	available	(n=	18).	Resulting	brain	maps	of	similarity	were	

combined	across	subjects	using	permutation	tests	and	threshold-free	cluster	

enhancement	in	order	to	ensure	FWE	of	<	.05.		
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