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Summary 
Variation in gene expression underlies neurotypical development, while genomic variants 
contribute to neuropsychiatric disorders. BrainVar is a unique resource of paired whole-genome 
sequencing and bulk-tissue RNA-sequencing from the human dorsolateral prefrontal cortex of 
176 neurotypical individuals across prenatal and postnatal development, providing the 
opportunity to assay genomic and transcriptomic variation in tandem. Leveraging this resource, 
we identified rare premature stop codons with commensurate reduced and allele-specific 
expression of corresponding genes, and common variants that alter gene expression 
(expression quantitative trait loci, eQTLs). Categorizing eQTLs by prenatal and postnatal effect, 
genes affected by temporally-specific eQTLs, compared to constitutive eQTLs, are enriched for 
haploinsufficiency, protein-protein interactions, and neuropsychiatric disorder risk loci. 
Expression levels of over 12,000 genes rise or fall in a concerted late-fetal transition, with the 
transitional genes enriched for cell type specific genes and neuropsychiatric disorder loci, 
underscoring the importance of cataloguing developmental trajectories in understanding cortical 
physiology and pathology. 
 
Keywords 
Gene expression, eQTL, human brain development, dorsolateral prefrontal cortex, whole-
genome sequencing, transcriptome, cell type-specific, neuropsychiatric disorders 
 
Highlights 

• Whole-genome and RNA-sequencing across human prefrontal cortex development in 
BrainVar 

• Gene-specific developmental trajectories characterize the late-fetal transition 
• Identification of constitutive, prenatal-specific, postnatal-specific, and rare eQTLs 
• Integrated analysis reveals genetic and developmental influences on CNS traits and 

disorders 
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Introduction 
The human nervous system develops slowly over several decades, starting during 
embryogenesis and extending postnatally through infancy, childhood, adolescence and young 
adulthood (Keshavan et al., 2014; Shaw et al., 2010; Silbereis et al., 2016; Tau and Peterson, 
2010). Over this time, myriads of functionally distinct cell types, circuits, and regions are formed 
(Hu et al., 2014; Lui et al., 2011; Silbereis et al., 2016). These aspects of neurodevelopment are 
highly context-dependent, since neural cells are born in an immature state and must 
differentiate, migrate, and establish circuits to produce regionally distinct brain structures. In 
doing so, the cells undergo a variety of molecular and morphological changes. Consequently, 
the characteristics of a given cell and brain region at a given time offer only a snapshot of 
organogenesis and brain function, necessitating consistent profiling across development.  
 
The molecular and cellular processes underlying development of the nervous system rely on the 
diversity of transcripts and their precise spatiotemporal regulation (Bae and Walsh, 2013; 
Silbereis et al., 2016). Functional genomic analyses of the developing human brain have 
revealed highly dynamic spatiotemporal patterns of gene expression and epigenetic changes 
during prenatal and early postnatal development (Kang et al., 2011; Li et al., 2018). In contrast, 
these metrics are comparatively stable over several decades of adulthood (Colantuoni et al., 
2011; Jaffe et al., 2018; Kang et al., 2011; Li et al., 2018; Pletikos et al., 2014). Disruptions of 
these developmentally dynamic regulatory processes are likely to be important contributors to 
multiple neurodevelopmental and neuropsychiatric disorders (Birnbaum and Weinberger, 2017; 
Breen et al., 2016; Geschwind and Flint, 2015; McCarroll and Hyman, 2013; Rosti et al., 2014; 
Sestan and State, 2018; Turner and Eichler, 2018). In keeping with this expectation, analyses 
of spatiotemporal expression patterns have implicated mid-fetal brain development as a 
vulnerable process, and the prefrontal cortex as a vulnerable region, for both autism spectrum 
disorder (ASD) and schizophrenia (SCZ) risk genes (Chang et al., 2015b; Gulsuner et al., 2013; 
Li et al., 2018; Network and Pathway Analysis Subgroup of the Psychiatric Genomics 
Consortium, 2015; Parikshak et al., 2013; Satterstrom et al., 2018; Willsey et al., 2013; Xu et al., 
2014). More generally, atypical trajectories of brain maturation likely affecting pathophysiological 
manifestations have been described in ASD, SCZ, and other neuropsychiatric disorders 
(Birnbaum and Weinberger, 2017; Courchesne et al., 2007; Ecker et al., 2015; Insel, 2010; 
Keshavan et al., 2014; Shaw et al., 2010; Tang and Gur, 2018). Given that neuropsychiatric 
disorders have discrete ages of onset and patterns of progression and may arise due to genetic 
or environmental insults at various times and places during the life of an individual, there is a 
clear need to examine gene expression and neuropsychiatric risk across the span of human 
brain development. 

 
In addition to spatiotemporal variation, genetic sequence variants are also associated with 
variation in gene expression levels, which can thereby contribute to differences in brain structure, 
function, and behavior between individuals (Elliott et al., 2018). Several laboratories and 
consortia have systematically identified such expression quantitative trait loci (eQTLs) through 
paired analysis of single nucleotide polymorphism (SNP) genotyping and gene expression data 
in numerous tissues, including the brain (BrainSeq: A. Human Brain Genomics Consortium, 
2015; Dobbyn et al., 2018; Fromer et al., 2016; Gibbs et al., 2010; Heinzen et al., 2008; Jaffe et 
al., 2018; Liu et al., 2010; Myers et al., 2007; Psych et al., 2015; The GTEx Consortium, 2015; 
Wang et al., 2018). However, there are relatively few such studies of the developing human brain 
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(Colantuoni et al., 2011; Jaffe et al., 2018; Kang et al., 2011; O'Brien et al., 2018) and most of 
these, as a result of limitations forced by then-contemporary technologies or limited tissue 
availability, were unable to assess the full scope of genetic variants and/or gene expression 
dynamics across the whole of brain development (Colantuoni et al., 2011; Jaffe et al., 2018; Li 
et al., 2018; O'Brien et al., 2018). Thus, developmentally regulated and rare variant eQTLs are 
sparsely represented in the current catalog of human brain eQTLs, highlighting the need for 
additional resources. Such eQTL catalogues offer the potential to gain insight into the functional 
consequences of the hundreds of coding and noncoding genetic loci that have been associated 
with neuropsychiatric disorders, including developmental delay (DD), ASD, SCZ, major 
depressive disorder (MDD), and Alzheimer’s disease (AD) (Deciphering Developmental 
Disorders Study, 2017; Grove et al., 2017; Kosmicki et al., 2016; Sanders et al., 2015; Sanders 
et al., 2017; Satterstrom et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 
Consortium, 2014). Many of these variants are presumed to act by altering gene expression, 
including noncoding SNPs that alter expression regulation, copy number variants (CNVs) that 
delete one copy of a gene, and premature stop codon variants that are predicted to induce 
nonsense-mediated decay (NMD) of transcripts (Nagy and Maquat, 1998; Rivas et al., 2015).  

 
To help fill this gap, we have generated BrainVar, a unique resource of whole-genome 
sequencing (WGS) paired with bulk tissue RNA sequencing (RNA-seq) analyses of 176 samples 
from the human dorsolateral prefrontal cortex (DLPFC) across the span of its development, 
starting from 6 postconceptional weeks (PCW) to young adulthood (20 years). We focused our 
analyses on DLPFC due to its importance in higher order cognition (Silbereis et al., 2016) and 
the co-expression of many ASD and SCZ risk genes observed in this region during mid-fetal 
development (Gulsuner et al., 2013; Li et al., 2018; Network and Pathway Analysis Subgroup of 
the Psychiatric Genomics Consortium, 2015; Parikshak et al., 2013; Willsey et al., 2013). The 
single-base resolution captured by WGS across almost the entire genome allowed us to go 
beyond common SNPs captured by genotyping arrays used in previous eQTL studies of the 
human brain and detect other important classes of genetic variants, including those which span 
multiple basepairs (insertion/deletions (indels), copy number variants (CNVs)) or those that are 
rare or even unique to a person's genome. Combined with high-depth paired-end RNA-seq in 
the same tissue samples, this approach allows hitherto unattainable analyses of the 
developmental transcriptome and the impact of diverse classes of genetic variants identified by 
WGS.  

 
Our analysis discovers gene-specific developmental trajectories, identifying the genes that 
underlie the late-fetal transition, a dramatic shift in gene expression between mid-fetal 
development and infancy (Li et al., 2018). We characterize distinct groupings of genes as defined 
by their developmental expression trajectories and their co-expression patterns, and then 
leverage WGS to identify common variants implicated in cis-regulation of gene expression 
across development or during specific stages, and rare protein-truncating variants with 
corresponding changes in allele-specific and absolute gene expression. Finally, we evaluate 
relationships between these variants and genes associated with genome-wide significant loci in 
ten central nervous system (CNS) traits and disorders to identify unique temporal, cell type, and 
eQTL signatures. 
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Results 
 

 
 
Figure 1: Overview of the dataset and the analysis. 176 samples from the dorsolateral 
prefrontal cortex (DLFPC) of the developing human brain were processed to generate RNA-seq 
gene expression data and WGS data (top). The distribution of the samples is shown by sex 
(color) and developmental stage (x-axis). Periods were defined previously (Kang et al., 2011) 
and epochs are defined as a superset of periods, based on principal component analysis of 
these RNA-seq data. The analyses conducted using these data are shown below, and the width 
of each box corresponds to the age of the samples included in each analysis.  
 
Description of the cohort and data generation 
To characterize gene expression across prenatal and postnatal development of human DLPFC 
and identify genetic variants associated with expression changes, post mortem tissue was 
obtained from 176 de-identified, clinically unremarkable donors (genotypic sex: 104 male, 72 
female) without known neuropsychiatric disorders or large-scale genomic abnormalities, ranging 
between 6 PCW and 20 years of age (Figure 1 and Table S1). In keeping with prior analyses 
(Kang et al., 2011), we assign these samples to 12 developmental stages, which we group into 
four developmental epochs (Figures 1 and 2). Gene expression data were generated using RNA-
seq from tissue dissected from the frontal cerebral wall from donors aged <10 PCW or the 
DLPFC (corresponding mainly to Brodmann area 46) from donors at later developmental stages. 
WGS data (31.5x median coverage) were generated simultaneously from DNA isolated from the 
same individuals.  
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Data processing  
RNA-seq reads were aligned to GRCh38 using the STAR aligner (Dobin et al., 2013) with genes 
defined by Gencode v21 (Harrow et al., 2012). Read counts per gene were calculated using 
HTSeq (Anders et al., 2015) and converted to counts per million (CPM), which were 
logarithmically scaled to base 2 (log2CPM). Of the 60,155 genes assessed, 23,782 were defined 
as being cortically-expressed, based on CPM ≥ 1 in at least 50% of samples of either sex in at 
least one of the 12 developmental periods. We restricted further analysis to these 23,782 genes, 
for which median log2CPM ranges from -5.9 to 12.3, with a median of 2.3. Of these, 16,296 
(68.5%) encode proteins, while 7,486 (31.5%) are noncoding, including lncRNA (12.6%) and 
antisense (9.2%) genes (Table S2). On average, noncoding genes were expressed at lower 
levels than protein-coding genes (3.1 log2CPM vs. -0.9 log2CPM; p<2x10-16, Wilcoxon test), 
especially lncRNAs (-1.5 log2CPM). However, not all noncoding genes follow this pattern, with 
1,081 noncoding genes expressed above the median for all cortically-expressed genes and the 
nuclear lncRNA MALAT1 being the fifth most highly expressed gene. 
 
Although the vast majority of samples were newly ascertained for this study (162/176, 92%), 14 
samples were previously analyzed by the BrainSpan Consortium (Li et al., 2018), but 
resequenced in BrainVar. For these 14 samples with replicate RNA-seq data in BrainSpan 
DLPFC samples, we compared the correlation of gene expression values with the current data. 
Despite differences in library preparation, with BrainSpan using poly-A priming compared to 
TruSeq random priming in BrainVar, the per sample correlations range from 0.76 to 0.91, while 
the median gene to gene correlation was 0.54 (Figure S1). The first principal component of gene 
expression in both data sets correlated strongly with developmental age (Figure S1). 
 
WGS data were processed using a pipeline functionally equivalent to major WGS datasets 
(Regier et al., 2018), using BWA (Li and Durbin, 2009) for alignment to GRCh38, Picard 
(https://github.com/broadinstitute/picard/) to flag duplicate reads, and GATK v3.8 Haplotype 
Caller (McKenna et al., 2010) to call variants. Ancestry was estimated based on principal 
component analysis of 118,849 common SNPs and indels (≥5% minor allele frequency), 
alongside corresponding WGS data for 3,804 individuals of known ancestry (An et al., 2018). 
The results correlated strongly with self-reported ancestry and identified clusters corresponding 
to African-American ancestry (42 samples, 24% of cohort), European ancestry (82 sample, 
47%), and Asian ancestry (4 samples, 2%), while 48 samples (27%) were outside of these 
clusters and enriched for individuals who identified as Hispanic, Alaskan native, or mixed 
ancestry (Table S1). Ancestry groups were differentially represented across developmental 
periods (F=3.4, df=5, p=0.006, ANOVA), with posthoc analysis showing a greater representation 
of African American samples in later developmental periods compared with samples of Hispanic, 
Alaskan native, or mixed ancestry (median age across cohort: one postnatal month vs. 17 PCW 
respectively; p.adj = 0.02, TukeyHSD). 
 
To confirm concordant sample identity between the WGS and RNA-seq samples, we determined 
genetic sex, based on expression of XIST and chromosome Y genes, and sample genotype for 
289 high fixation index (FST) protein-coding SNPs (Table S1). All 176 samples had concordant 
sex and genotypes between the expression and sequencing data.  
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Figure 2. Temporal trajectories of gene expression in the human dorsolateral prefrontal 
cortex. A) Gene expression log2CPM for each sample was used to calculate principal 
components (Figure S2). The first principal component (PC1) explains 42% of the variance 
between samples and 81% of variance in PC1 is explained by developmental stage (Figure S2). 
The changes in PC1 over time were used to define four “epochs” of gene expression. Dotted 
lines represent the boundaries of the indicated developmental period as defined previously 
(Kang et al., 2011) B) Trajectory analysis was used to identify sets of genes with similar 
developmental profiles. Three groups of genes were identified and distinguished by their 
behavior across the late-fetal transition in epoch 2 (Table S2). For each group, the expression 
over time, normalized by the interquartile range and smoothed using locally weighted smoothing 
(LOESS) is shown. These three groups are further characterized by plotting: C) The median 
log2CPM across all samples in epoch 1 (E1) and epoch 3 (E3). D) The relative proportion of 
Gencode coding and noncoding genes. E) The distribution of probability loss-of-function 
intolerance (pLI) scores for protein-coding genes (Lek et al., 2016). F) The twelve gene ontology 
biological processes with the lowest FDR values. G) Enrichment in the most tissue-specific 
genes from the 53 tissues with bulk tissue RNA-seq data from GTEx. H) Enrichment of the 200 
most cell type cluster-specific genes from 19 clusters defined by scRNA-seq data in the 
developing human cortex (Nowakowski et al., 2017). I) Enrichment of the 200 most cell type 
cluster-specific genes in 29 clusters defined by snRNA-seq data in the adult human DLPFC (Li 
et al., 2018). Abbreviations: CPM: Counts per million; RG: radial glia; IPC: intermediate 
progenitor cell; NN: newborn neuron; ExN: excitatory neuron; InN: inhibitory neuron; CGE: 
caudal ganglionic eminence; MGE: medial ganglionic eminence; OPC: oligodendrocyte 
precursor cell. Statistical analyses: A: Principal component analysis; B: Longitudinal mixture 
model with Gaussian noise; C: Wilcoxon two-sided; D: FET; E: gProfiler (Reimand et al., 2011); 
F: t-test with Benjamini-Hochberg correction; G: FET with Benjamini-Hochberg correction; H: 
FET, corrected for 57 comparisons; I: FET, corrected for 87 comparisons. 
 
Temporal dynamics of gene expression  
Across the 176 samples, the first principal component explains 42% of the variance in gene 
expression and is highly correlated with developmental age (partial R2 for Period with PC1 = 
0.88; Figure 2A and S2); the same pattern is observed for the 162 brain samples that are new 
to this analysis. This result is in keeping with prior analyses, highlighting the dramatic shift in 
gene expression across developmental age (Kang et al., 2011; Li et al., 2018). Similar to earlier 
reports, we also identified a coordinated shift in gene expression across multiple genes between 
mid-fetal development and early infancy (periods 6 to 8; epoch 2; Figure 2A), which we will refer 
to as the “late-fetal transition.” The data suggest a similar coordinated shift in embryonic and 
early fetal development (periods 1-2; epoch 0; Figure 2A). However, due to the sparse sampling 
(nine individuals), we did not characterize this “early-fetal transition” in detail. Using trajectory 
analysis, and excluding the nine epoch 0 individuals, we identified three distinct gene expression 
trajectories based on the presence or absence of persistent, progressive, and statistically 
significant expression variance across this late-fetal transition (Figure 2B). The groups are 
composed of 6,934 “Rising” genes, with expression rising through late-fetal development and 
infancy leading to higher postnatal expression; 5,143 “Falling” genes, with higher prenatal 
expression that then falls across late-fetal development leading to lower postnatal expression; 
and 11,705 “Non-transitional” genes that exhibit no statistically significant change in gene 
expression between mid-fetal development and childhood, adolescence, and/or adulthood. 
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Emphasizing the magnitude of this transition, the first principal component of 11,705 genes with 
a Non-transitional trajectory explains only 18.4% of the variance in gene expression and is 
weakly correlated with developmental age (partial R2 for Period with PC1 = 0.3; Figure S2).  
 
Characteristics of transitional and non-transitional genes  
To further characterize the nature of the late-fetal transition, we assessed the characteristics of 
the genes within the Rising, Falling, and Non-transitional groups. On average, the Falling genes 
were expressed at a higher level than both the Rising and Non-transitional groups throughout 
development, even in epoch 3, when their expression was lowest (3.4 vs. 3.2 median log2CPM 
for Falling vs. Rising genes in epoch 3; p=0.003, Wilcoxon test; Figure 2C). Falling genes had a 
higher proportion of coding genes than the Non-transitional genes (73.9 vs. 63.3%, p<1x10-40, 
chi-squared; Figure 2D) and were also enriched for genes with high probability Loss-of-function 
Intolerant scores (pLI ≥ 0.995; 10.1% of Falling genes, 1.6-fold expectation; Figure 2E), which 
identify genes with fewer protein truncating variants than expected in exome sequencing of 
~60,000 population samples (Lek et al., 2016), suggesting haploinsufficiency resulting in 
selective pressure. 
 
Gene ontology analysis of the Falling genes demonstrated enrichment for biological processes 
relating to development and anabolism, including cell division, gene expression regulation, RNA 
synthesis and processing, and protein translation (Figure 2F). Comparison with genes enriched 
in specific adult tissues from the Genotype-Tissue Expression (GTEx) project dataset (The GTEx 
Consortium, 2015) showed enrichment for several non-cortical tissues (Figure 2G), driven by 
genes with ontology terms relating to RNA transcription in the cerebellum, ovaries, and uterus 
and cell division in transformed cells (Table S2). Compared to H3K27ac DLPFC peaks from 
BrainSpan (Li et al., 2018), Falling genes were enriched in genes associated with fetal-biased 
H3K27ac peaks (Figure S2). To further understand how these temporal changes relate to cell 
differentiation and cell type, we assessed the overlap of our bulk tissue expression with data 
from single-cell RNA-seq (scRNA-seq) in prenatal human forebrain (Nowakowski et al., 2017) 
and single-nucleus RNA-seq (snRNA-seq) in postnatal DLPFC (Li et al., 2018). Using cell 
clusters previously defined in each of these studies, we applied a Tau metric to define the 200 
protein-coding genes most enriched in each cell type cluster. The Falling genes are enriched in 
multiple neuronal cell type clusters of the excitatory and inhibitory lineages, mainly from the 
prenatal data (Figure 2H). 
 
The Rising genes had median postnatal expression values that were lower than Falling genes 
(3.2 vs. 3.4 median log2CPM in epoch 3), though a similar proportion of protein-coding genes 
(73.1 vs. 73.9%). The Rising genes were enriched for adult-biased H3K27ac peaks (Figure S2) 
but depleted for genes with high pLI scores (5.1% pLI ≥ 0.995; 0.80-fold expectation), suggesting 
greater tolerance to variation in expression. Gene ontology terms enriched in the Rising genes 
related to immune processes and metabolic processes, such as transportation, secretion, and 
ion homeostasis, with the genes highly enriched in all adult brain tissues in GTEx except the 
cerebellum. In the single cell data, the Rising genes are enriched in multiple non-neuronal cell 
types, including microglia, oligodendrocyte precursor cells (OPC), oligodendrocytes, and 
astrocytes in both the pre- and postnatal data, and multiple classes of excitatory neurons, mainly 
in the postnatal data (Figure 2I).  
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The Non-transitional genes had the lowest levels of expression, the lowest proportion of protein-
coding genes, and few genes with high pLI score (5.4%, 0.86-fold expectation). They were not 
enriched for either fetal-biased or adult-biased H3K27ac peaks (Figure S2), mapped to gene 
ontology terms relating to mitochondria and protein folding and transport and were expressed 
ubiquitously across GTEx tissues. None of the cell type clusters in pre- or postnatal scRNA-seq 
data were enriched for Non-transitional genes and, compared to Transitional genes (Falling and 
Rising), the Non-transitional genes were less likely to be enriched in a cell type cluster (14.3% 
of Transitional genes vs. 8.3% of Non-transitional genes; odds ratio (OR) = 1.8 (95%CI: 1.7-2.0); 
p≤2x10-16 FET). 
 
Co-expression modules in the developing human cortex 
To further define the relationships between the 23,782 cortically-expressed genes, we applied 
weighted gene co-expression network analysis (WGCNA) to define 19 consensus modules that 
included 10,459 genes (Figures 3A and S3). As expected, genes within each module shared 
functional roles (Figure 3B), temporal trajectories of gene expression (Figure 3C and 3D), and 
regulatory transcription factors (Figure S3). In contrast, genes that were not assigned to modules 
were more likely to be noncoding (OR = 2.5; 95%CI: 2.3-2.6; p<2x10-16, FET), have lower 
expression (0.74 vs. 3.20 median log2CPM; p<2x10-16, Wilcoxon test), and belong to the Non-
transitional group (OR = 1.7; 95%CI: 1.6-1.8; p<2x10-16, FET). Module preservation analysis 
using BrainSpan data (Li et al., 2018) identifies similar co-expression patterns in independent 
DLPFC samples and across all neocortical samples, but not in non-neocortical regions (Figure 
3E). Comparison of the modules to the prenatal and postnatal scRNA-seq data showed 
enrichment for specific cell type clusters for ten of the modules, with patterns similar to those 
observed for the temporal trajectories (Figure 3F and 3G). 
 
In keeping with our trajectory analysis (Figure 2), multidimensional scaling analysis of the 
module eigengenes demonstrated that developmental age accounted for 44.7% and 36.1% of 
the variance in the first two dimensions. Plotting the relationship of 19 modules between these 
two dimensions, and considering the developmental trajectories of the genes in each module, 
we identified five groups of related modules (Figure 3A and 3B). Group 1 modules (M1 Black, 
M2 Royal-blue, M3 Green-yellow, M4 Yellow) are closely related to the Falling genes (Figure 
3D) and have similar characteristics, including enrichment for gene ontology terms related to cell 
division, protein translation and targeting, and histone modifications, along with enrichment in 
developing neurons of the excitatory and inhibitory lineages. Of note, the M4 Yellow module is 
enriched for numerous ontology terms related to neuronal development, contains genes specific 
to neuronal stem cells (e.g. NCAM1/ncam, PROM1/cd133), and is highly enriched for genes 
related to maturing excitatory and inhibitory neurons, while the M2 Royal-blue module, which 
captures cell cycle, is enriched in neuroprogenitor cells, radial glia, and intermediate progenitor 
cells. Group 2 modules (M5 Pink, M6 Tan, M7 Salmon) are enriched for factors relating to RNA 
processing (Figure 3C) and contain targets of numerous transcription factors and microRNAs 
(Figure S3). Gene expression of group 2 modules increases between periods 10-11 (1-12 years 
post birth), suggesting a key role for RNA processing during childhood cortical development.  
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Figure 3. Co-expression modules in the developing human cortex. A) WGCNA identified 
19 modules comprised of 10,459 genes, shown as colored nodes, from patterns of co-
expression for 23,782 expressed genes. The nodes are plotted based on the first two dimensions 
from multidimensional scaling. The weight of the connecting lines represents the degree of 
correlation between module eigengenes. B) Normalized expression is shown for the 19 modules 
arranged in five groups based on proximity in ‘A’ and similar temporal trajectories. C) Gene 
ontology enrichment analysis for each module, showing only biological processes with the lowest 
FDR; M10 Dark-green, was not enriched for any process after correcting for multiple 
comparisons. D) The relationship between the five groups of co-expression modules (from ‘A’) 
and the genes with Falling, Rising, or Non-transitional temporal trajectories (Figure 2). The 
number represents the WGCNA group, with the height proportional to the number of genes in 
the group and the width proportional to the number of genes in each temporal trajectory group. 
Detailed relationships between modules and temporal trajectories are shown in Figure S3. E) 
Module preservation in independent BrainSpan samples (Li et al., 2018) from the same brain 
region (left), other cortical regions (middle), and five subcortical regions (right). F) Enrichment 
between the 19 modules and the 200 genes most specific to 19 cell type clusters defined by 
scRNA-seq data in the developing human cortex (Nowakowski et al., 2017). G) Enrichment 
between the 19 modules and the 200 genes most specific to 29 cell type clusters defined by 
snRNA-seq data in the adult human DLPFC (Li et al., 2018). Abbreviations: FDR: False 
discovery rate; SRP: Signal Recognition Particle. Statistical analysis: A: WCGNA with the 
consensus module detection from 100 random resampling; B: FET, corrected for gProfiler gene 
ontology pathways (10 to 2000 term size); C: gene expression normalized by interquartile range; 
E: FET, corrected for 361 comparisons; F: FET, corrected for 551 comparisons. G: FET, 
corrected for 19 comparisons. 
 
Group 3 modules (M8 Red, M9 Brown, M10 Dark-green, M11 Magenta, M12 Cyan) overlap with 
the Non-transitional gene set, with expression peaking between periods 6-9 (19 PCW to 1-year 
post birth) before returning to mid-fetal levels. They are enriched for terms related to protein 
localization, ion transport, synapses, and receptors. The M8 Red module, which is enriched for 
ontology terms relating to cell fate and morphogenesis, is highly enriched for noncoding genes 
and has an expression peak in early fetal development, hinting at an early-fetal transition in 
epoch 0 analogous to the epoch 2 late-fetal transition. Several genes associated with regional 
patterning in non-cortical tissues, including hindbrain (e.g. UNCX, CCDC140) and hypothalamus 
(e.g. DMBX1, SOX14), are expressed at high levels in this module. Group 4 modules (M13 
Green, M14 Purple, M15 Dark-red) are relatively static during development before rising steeply 
between periods 10 and 11 (1-12 years post birth), mirroring the group 2 modules. They are 
enriched for multiple ontology terms relating to mitochondria and cellular respiration, possibly 
reflecting the metabolic activity necessary to support neuronal activity during this postnatal stage 
(Ashrafi and Ryan, 2017). Finally, the group 5 modules (M16 Blue, M17 Silver, M18 Light-cyan, 
M19 Turquoise) are closely related to the Rising genes (Figure 2) with expression rising 
throughout development. Both the M18 Light-cyan and M19 Turquoise modules are strongly 
enriched in glial and other non-neuronal cell clusters, accordingly, both modules are enriched 
for ontology terms related to immune responses. The M19 Turquoise module is also enriched in 
excitatory neurons on the postnatal cortex and ontology terms relating to synaptic signaling and 
neurotransmitter transport. The other two modules in group 5, M16 Blue and M17 Silver, are 
enriched for terms relating to numerous metabolic processes, including glycolysis, respiration, 
and protein catabolism, along with neuronal death and autophagy. 
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Figure 4. Common variant cis-eQTLs. A) Prenatal (x-axis) and postnatal (y-axis) effects for 
the eQTLs with the smallest p-value for 8,421 eGenes (points). The eQTLs are split into five 
categories based on temporal specificity using effect size and statistical thresholds; categories 
are represented by color. B) The total number of eQTLs in each temporal category is 
represented by the height of the bar. The number of eQTLs that match previously identified 
significant eQTLs in the prenatal whole brain (O'Brien et al., 2018) (left) and postnatal frontal 
cortex (The GTEx Consortium et al., 2017) (right) is shown by the darker shade. C) The 
percentage overlapping eQTLs between datasets (from ‘B’) is shown on the x-axis against the 
percentage of these overlapping eQTLs with concordant direction of effect in both datasets. D) 
Density plot of the distance of top eQTLs per eGene from the TSS by eGene temporal category. 
Characteristics of non-eGenes and eGenes in each temporal category are shown by plotting 
the: E) proportion of coding and noncoding genes, F) proportion of genes with pLI scores in 
different bins, G) centrality to an assigned WGCNA module (kME values, black line is the non-
eGene median), and H) BioGRID protein-protein interactions (permuted Z-scores from Ripley’s 
K-net function (Cornish and Markowetz, 2014), black line is the non-eGene median). I) Mosaic 
plot of the proportion of genes in each temporal trajectory with eGenes split by temporal 
category. J) Expression data binned by genotype for the top Prenatal-specific eQTL for CHD1L, 
a gene with a Rising trajectory. Main panel: Gene expression by sample age across 
development. Lines are loess-smoothed trajectories for expression in samples with each of three 
genotypes for rs138586968. Inset: Boxplots for prenatal (left) and postnatal (right) samples with 
each of three rs138586968 genotypes. K) Distribution of eQTL effect size for eGenes binned by 
pLI scores, the black line is the median of the pLI < 0.5 group. Abbreviations: eQTL: expression 
quantitative trait locus; eGene: gene regulated by an eQTL; TSS: transcription start site; pLI: 
probability loss-of-function intolerant. Statistical analysis: D, G, H: two-sided Wilcoxon rank sum 
test for Constant versus other eGenes; E, F: two-sided FET for Constant versus other eGenes; 
K: two-sided Wilcoxon rank sum test for three top pLI bins versus genes with pLI < 0.5. 
 
Common genetic variants regulating gene expression 
We next leveraged WGS data to identify 6,573,196 high-quality SNPs and indels, observed at 
an allele frequency of at least 5% in both our prenatal (periods 1-6, N=112) and postnatal 
(periods 8-12, N=60) samples. The four samples from period 7 were excluded due to the sparse 
representation over this dynamic developmental phase (Figure 2). This common variant set 
included only variants located outside of low-complexity regions (Li, 2014) that passed variant 
quality score recalibration, with allelic balance between 0.22-0.78 (SNPs; 0.2-0.8 for indels), 
Hardy Weinberg equilibrium p-value ≥1x10-12, call rate ≥90% across all samples, and that 
reached variant and genotype thresholds established and validated in a previous analysis of 
family-based WGS data (Werling et al., 2018).  
 
Linear regression was used to identify common variants within 1Mb of a gene associated with 
altered levels of gene expression, i.e. cis-eQTLs. Developmental period, sex, and the first five 
principal components for ancestry were included as covariates. Subsequently, we applied two 
approaches to control for technical covariates: Hidden Covariates with Prior (HCP) and 
surrogate variable analysis (SVA). To distinguish temporally specific eQTLs, we performed cis-
eQTL analysis for three sets of samples: all 176 samples (complete sample), 112 samples in 
periods 1-6 (prenatal), and 60 samples in periods 8-12 (postnatal). Within each analysis, results 
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for all tested variant-gene pairs were corrected for multiple testing using the Benjamini-Hochberg 
procedure. 
 
Across these three analyses, we identified 252,629 unique eQTLs (FDR ≤ 0.05) associated with 
the expression of 8,421 unique genes (eGenes) (Table S4). While HCP-adjusted results were 
used for our primary analysis, results for 167,665 unique eQTLs identified using SVA are also 
provided (Table S4). The rate of eGene discovery from each analysis aligns with expectation 
given sample size (Figure S4).  
 
We observed no significant difference in the effect size between SNVs and indels (p = 0.55, two-
sided Wilcoxon test) or between insertions and deletions (p = 0.87, two-sided Wilcoxon test; 
Figure S4). Considering functional annotations, we identified greater overlap with H3K27ac 
peaks derived from the human brain (Li et al., 2018; Reilly et al., 2015) for eQTLs than non-
eQTL variants (Figure S4). Analysis with GREGOR (Schmidt et al., 2015) using 18 human frontal 
lobe derived chromatin states (Roadmap Epigenomics Consortium et al., 2015) showed 
enrichment of eQTLs near transcription start sites and genic enhancers (Figure S4). 
 
Temporal specificity of eQTLs 
Given the dramatic changes in gene expression across development, we leveraged the inclusion 
of both prenatal and postnatal samples to assess whether eQTLs also varied across 
development. To delineate the temporal specificity of eQTLs, we categorized eQTLs and their 
associated eGenes according to the magnitude and significance of their effects in our prenatal, 
postnatal, and complete analyses. We defined 161,293 (63.8% of 252,629 eQTLs) “Constant” 
eQTLs as those observed in all three analyses (FDR ≤ 0.05 in the complete sample, uncorrected 
p ≤ 0.05 in both the prenatal and postnatal samples) with the same direction of effect. The 19,142 
(7.6%) “Prenatal-specific” eQTLs were observed in the prenatal data (FDR ≤ 0.05), but not the 
postnatal data (p > 0.05) and had a significant difference in effect size between these two cohorts 
(FDR-corrected Z-test of regression coefficients p ≤ 0.05). Analogous criteria were used to define 
7,973 (3.2%) “Postnatal-specific” eQTLs. For the remaining eQTLs, the absolute value of the 
effect size in the prenatal and postnatal data sets was used to define 55,659 (22.0%) “Prenatal-
trending” eQTLs and 7,931 (3.1%) “Postnatal-trending” eQTLs (Figure 4A).  
 
To assess concordance with comparable datasets, we assessed FDR-significant eQTLs that 
overlapped between our data and prenatal whole brain (O'Brien et al., 2018) or postnatal frontal 
cortex (The GTEx Consortium et al., 2017). The percentage of overlapping eQTLs was highest 
for the Constant group (26.8% with prenatal brain and 35.9% with postnatal frontal cortex; Figure 
4B), while 73.2% and 64.1% (118,543 and 103,868 constant eQTLs), respectively, were novel 
to this analysis. Of the Constant eQTLs that did overlap, the direction of effect was concordant 
for 99.4% and 99.3% of eQTLs respectively, despite differing cohorts, library preparation 
methods, genome-build, the use of WGS, and analysis pipelines. As expected, temporally 
specific eQTLs showed higher overlap and concordance in samples of an equivalent 
developmental age (e.g. Prenatal-specific eQTLs in prenatal whole brain) compared to samples 
of a different developmental age (e.g. Postnatal-specific eQTLs in prenatal whole brain; Figure 
4C). A comparison of the prenatal whole brain and postnatal cortex reference data sets to each 
other demonstrated comparable or a lower percentage of overlapping eQTLs (29.7% of prenatal 
brain eQTLs in postnatal frontal cortex; 13.9% of postnatal frontal cortex eQTLs in prenatal brain) 
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than we attain for Constant eQTLs, with only 93.9% concordance in the direction of effect (Figure 
S4). 
 
Characteristics of genes influenced by eQTLs 
More than one eQTL was identified for 5,538 of the 8,421 eGenes (65.8%), often with similar 
direction and magnitude of effect due to linkage disequilibrium. We therefore identified the top 
eQTL for each eGene, defined as the lowest FDR-significant p-value in any of the three sample 
sets (Table S4). By allowing the eGene to inherit the temporal classification of this top eQTL, we 
categorized 1,691 eGenes as Prenatal-specific, 2,110 as Prenatal-trending, 2,977 as Constant, 
498 as Postnatal-trending, and 1,145 as Postnatal-specific (Figure 4A). The temporal-specific 
category of the top eQTL matched the majority of eQTLs in the gene for 7,425 (88.2%) of eGenes 
(Fig S4), with a further 688 (8.2%) of genes shifting by no more than one category (e.g. Prenatal-
specific to Prenatal-trending, Postnatal-trending to Constant). While 63.8% of all eQTLs are 
Constant, only 3,804 (45.2%) eGenes have any Constant eQTLs. This difference is because 
many Constant eQTLs have high rates of linkage disequilibrium and regulate the same gene. 
 
eQTLs are often observed in close proximity to the Transcription Start Site (TSS) of the 
associated gene (Fromer et al., 2016; The GTEx Consortium et al., 2017). This pattern was 
evident for the top eQTLs of the 2,977 Constant eGenes with a median distance of 92,223bp 
and both statistical significance and effect size of the eQTL increasing with proximity to the TSS 
(p = 6.6x10-66 for -log10(P), p = 1.0x10-12 for |β|, linear regression). In contrast, the median 
distance for the top eQTLs of the 5,444 eGenes with a degree of temporal specificity was 
402,591bp (p = 1.3x10-148 two-sided Wilcoxon rank sum test compared to Constant eGenes, 
Figure 4D) with statistical significance, but not the effect size, of the eQTL increasing with 
proximity to the TSS (p = 2.8x10-41 for -log10(P), p = 0.25 for |β|, linear regressions for distance 
from TSS. 
 
This distinction between Constant eGenes and those with a degree of temporal specificity was 
also observed across multiple other metrics. Compared to other eGenes, Constant eGenes 
include fewer protein-coding genes (OR = 0.62 (95%CI: 0.57-0.68), p = 6.5x10-24, two-sided 
Fisher’s exact test (FET); Figure 4E). Of the protein-coding genes, Constant eGenes also 
include fewer genes with high pLI scores than other eGenes (≥ 0.995; OR = 0.74 (95%CI: 0.58-
0.93), p = 0.01, two-sided FET; Figure 4F). Considering the WGCNA results, Constant eGenes 
are less likely to be assigned to a module (OR = 0.66 (95%CI: 0.61-0.73), p = 3.0x10-18, two-
sided FET) and, for those that are assigned a module, show weaker co-expression with the 
module eigengene (0.83 vs. 0.85 median kME, p = 2.5x10-9, two-sided Wilcoxon rank sum test; 
Figure 4G). Constant eGenes also show weaker connectivity to PPI networks (median Z-score 
-0.914 for Constant vs. 1.294 for other eGenes, p = ≤2x10-16, two-sided Wilcoxon rank sum test; 
Figure 4H). Across these metrics, eGenes with a degree of temporal specificity tend to be more 
similar to non-eGenes than the Constant eGenes.  
 
Temporally specific eQTLs could be a consequence of higher expression yielding better power 
to detect variation between samples at one developmental stage; this explanation would predict 
that Prenatal-specific eGenes would be enriched for Falling genes and Postnatal-specific 
eGenes would be enriched for Rising genes. We do not observe this effect (Figure 4I); instead, 
the Prenatal-specific eGenes are enriched for Rising genes (OR = 1.5 (95%CI: 1.3-1.6), p = 
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1.1x10-10, two-sided FET) and depleted for Falling genes (OR = 0.79 (95%CI: 0.69-0.9), p = 
4.2x10-4, two-sided FET), while the distribution of Postnatal-specific eGenes across trajectories 
does not differ significantly from expectation. The Rising gene CHD1L and Prenatal-specific 
eQTL rs138586968 provides a representative example of this pattern (Figure 4J).  
 
Comparing eGenes to WGCNA modules (Figure S4), we find that Constant eGenes are enriched 
for four of the five Group 3 modules, with significant enrichment for the M9 Brown module (OR 
= 2.1 (95%CI: 1.6-2.8), p = 1.46x10-6, two-sided FET); Constant eGenes are also significantly 
depleted from the M19 Turquoise module (OR = 0.38 (95%CI: 0.27-0.53), p = 1.1x10-8, two-
sided FET) and the M8 Red module (OR = 0.47 (95%CI: 0.32-0.69), p = 2.83x10-3, two-sided 
FET). Postnatal-specific eGenes are enriched for the M8 Red module (OR = 2.5 (95%CI: 1.8-
3.5), p = 1.77x10-5, two-sided FET; Figure S4), which is characterized by high expression in 
epoch 0 and low expression thereafter (Figure 3; Table S2), and Prenatal-specific eGenes are 
depleted for the M3 Green-yellow module (OR = 0.51 (95%CI: 0.33-0.76), p = 0.04, two-sided 
FET), which has high prenatal and lower postnatal expression. 
 
The lack of enrichment for Prenatal-specific eGenes in the Group 1 modules and the Falling 
genes or Postnatal-specific eGenes in the Group 5 modules and the Rising genes raises the 
possibility that natural selection constrains the variability of gene expression at developmental 
stages where the genes perform critical functions, necessitating high expression. We reasoned 
that selective pressure would similarly constrain the variability in gene expression of eQTLs near 
dosage sensitive genes. Accordingly, we observed an inverse relationship between eQTL effect 
size and pLI score (0.59 vs. 0.38 median |β| for genes with pLI < 0.5 vs. pLI ≥ 0.995-1; p = 
4.0x10-36; two-sided Wilcoxon rank sum test; Figure 4K). 
 
Allele specific expression and eQTLs for rare variants  
Along with identifying common variant eQTLs, WGS data raises the possibility of detecting rare 
variants that alter gene expression. However, at allele frequencies below 5%, rare variants would 
be present in eight or fewer samples in our cohort of 176, limiting the power for detection in a 
genome-wide analysis. We therefore focused on rare protein truncating variants (PTVs) with a 
premature stop codon and exonic deletions in cortically expressed protein-coding genes 
predicted to halve gene expression. To identify the rarest variants, which have the potential to 
mediate the highest effects, we defined rare for PTVs as never observed in 15,708 individuals 
with WGS in the Genome Aggregation Database (GnomAD; (Lek et al., 2016) or in 3,804 
unrelated samples with WGS data from the Simons Simplex Collection (SSC) and, for deletions, 
never observed in 9,097 samples from SSC families (An et al., 2018; Werling et al., 2018). 
 
We expect a PTV to induce nonsense-mediate decay (NMD) of the mRNA, resulting in allele 
specific expression, i.e. the absence of reads containing the variant in RNA-seq data (Nagy and 
Maquat, 1998; Rivas et al., 2015). We identified 88 rare PTVs in Gencode-defined protein-coding 
genes with at least five RNA-seq reads overlaying the variant and classified them into three 
categories: 22 “Escaping NMD” variants in the last coding exon or 50bp upstream of the last 
splice site (Nagy and Maquat, 1998); 11 “Possible NMD” variants in exons that are not expressed 
in all isoforms or in single-exon genes; and “Probable NMD” for the remaining 55. For the 
Probable NMD group, 45 of the 55 PTVs (81.8%) had fewer than 50% of reads that contained 
the variant (p=1x10-6, binomial exact test; Figure 5A), with a mean of 35.3% (95% CI: 30.4 to 
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40.2%), which was lower than the mean of 48.8% (95% CI: 44.2 to 53.5%; p=0.001, Wilcoxon 
test) in the Escaping NMD group, in which 11 of 22 PTVs (50.0%) had fewer than 50% variant 
reads (p=0.58, binomial exact test). The Possible NMD group is similar to the Probable NMD 
group (10 out of 11 had below 50% variant reads, p=0.006, binomial exact test; mean of 31.3%, 
95% CI: 27.9 to 34.6%). 
 

 
 
Figure 5. Rare variant eQTLs. A) For 55 rare PTVs (red points) predicted to undergo NMD 
(Probable NMD) with at least 5 RNA-seq reads at the site of the variant, the percentage of RNA-
seq reads containing the variant (y-axis) is plotted against the difference between the observed 
and imputed log2CPM in the individual with the PTV (x-axis). The black point shows the centroid 
and 95% confidence intervals across all 55 PTVs. This plot is repeated for 12 “Possible NMD” 
PTVs in single exon genes or with the PTV-containing exon varying between isoforms (middle) 
and 22 “Escaping NMD” PTVs in the last exon or 50bp upstream of the last splice site (right) 
(Nagy and Maquat, 1998; Rivas et al., 2015). B) A deletion of all protein-coding exons in the 
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Deoxyribonuclease 1 (DNASE1) gene and the first seven protein-coding exons of TNF receptor 
associated protein 1 (TRAP1) in sample HSB496 has no appreciable effect on the expression 
level of DNASE1 (shown) or TRAP1 (Figure S5). C) A variant causing a premature stop codon 
in a constitutive exon in the C-Terminal Src Kinase (CSK) gene in sample HSB489 has no 
appreciable effect on expression level or allele specific expression (53.7% variant reads), 
despite being predicted to cause NMD. Abbreviations: PTV: Protein truncating variant; NMD: 
Nonsense-mediated decay; pLI: probability loss-of-function intolerant. Statistical analysis: A: 
binomial exact test. 
 
Alongside allele specific expression, we also expect NMD to induce a 50% reduction in gene 
expression, equivalent to -1 log2CPM. To evaluate this expectation, we assessed the difference 
between observed and expected expression, with the later estimated by imputation accounting 
for variation between samples and across developmental periods. In the Probable NMD group, 
expression was lower than expectation for 43 of the 55 PTVs (p=2x10-5, binomial exact test), 
with a mean of -0.19 log2CPM (95%CI: -0.11 to -0.27), equivalent to a 12.1% (95%CI: 7.2 to 
16.9%) reduction in expression. This was also lower than the mean of -0.02 log2CPM observed 
in the Escaping NMD group (p=0.02, Wilcoxon test). For genes with lower median log2CPMs, 
and consequently fewer reads from which to estimate expression, we observed greater 
variability in gene expression (Figure S5). Of note, none of the Probable NMD PTVs resulted in 
the expected magnitude of decreased expression, with the largest difference being -0.77 
log2CPM, equivalent to a 41% reduction. In contrast, we observed numerous examples of 
variants predicted to decrease expression that did not, including a heterozygous deletion of all 
protein-coding exons in the DNASE1 gene (pLI = 0.000; Figure 5B, S5) and a premature stop 
codon in the haploinsufficient CSK gene (pLI = 0.999; Figure 5C).  
 
Temporal trajectories in human traits and disorders 
To leverage this dataset to provide insight into the biology underlying CNS traits and disorders, 
we assessed the enrichment of gene lists based on developmental trajectory, module, and cell 
type for genes associated with human traits and disorders. We selected ten datasets that applied 
genome-wide statistical thresholds to identify multiple associated variants. For DD, ASD, and 
epilepsy with developmental delay (EPDD) we used gene lists derived from rare and de novo 
variants identified with exome sequencing (Deciphering Developmental Disorders Study, 2017; 
Heyne et al., 2018; Satterstrom et al., 2018). For educational attainment (EA), attention 
deficit/hyperactivity disorder (ADHD), SCZ, MDD, multiple sclerosis (MS), Parkinson’s Disease 
(PD), and AD we used genes within 10kb of common variants detected with genotyping arrays 
in genome-wide association studies (GWAS) (Chang et al., 2017; Demontis et al., 2019; 
International Multiple Sclerosis Genetics Consortium et al., 2013; Lambert et al., 2013; Lee et 
al., 2018; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Wray 
et al., 2018). For our analyses, we excluded genes within the Major Histocompatibility Complex 
on chromosome 6, due to the complicated nature of this region (Schizophrenia Working Group 
of the Psychiatric Genomics Consortium, 2014). 
 
To assess temporal relationships for CNS traits and disorders we plotted the normalized gene 
expression across development, ordering the disorders by the mean period of maximal 
expression for each gene (Figure 6A), and assessed the enrichment for the transitional gene 
groups (Figure 6B). In general, early-onset traits and disorders, including DD, EA, and ASD, 
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have higher prenatal than postnatal expression and are enriched for Falling genes. In contrast, 
later-onset disorders, including PD and AD, have higher postnatal expression and are enriched 
for Rising genes. EPDD would be expected to group with DD if there were a simple relationship 
between maximal gene expression and the onset of a disorder, however it is ranked last on this 
list, after PD and AD. We note that, while GWAS loci are genome-wide significant, the genes 
associated with these loci are likely to contain false positives, which may obscure clearer 
temporal relationships. Furthermore, critical periods of neurological vulnerability may precede 
symptom onset. 
 

 
 
Figure 6. Expression of genes associated with CNS traits and disorders. A) Genome-wide 
significant loci were collated for ten CNS traits and disorders from exome sequencing (DD, ASD, 
EPDD) or GWAS (ADHD, MDD, EA, SCZ, MS, PD, AD) and genes associated with these loci 
were identified. The normalized expression of these gene lists is shown for each disorder with 
alternating colors (black and blue). For each gene the developmental period with the maximum 
log2CPM value was identified and the mean period across the genes in each disorder is indicated 
with a point. B) The relative proportion (left, dashed lines represent expectation) and gene set 
enrichment (right) for trait/disorder-associated genes to the three trajectory groups (Figure 2). 
C) The analysis in ‘B’ is repeated for WGCNA modules. D) The analysis in ‘B’ is repeated for 
genes enriched for cell type clusters from scRNA-seq of the prenatal human brain. E) The 
analysis in ‘D’ is repeated for snRNA-seq of the adult human DLPFC. Abbreviations: DD: 
developmental delay; ASD: autism spectrum disorder; EPDD: epilepsy with developmental 
delay; GWAS: Genome-wide association study; ADHD: Attention deficit/hyperactivity disorder; 
MDD: major depressive disorder; EA: educational attainment; SCZ: schizophrenia; MS: multiple 
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sclerosis; PD: Parkinson’s disease; AD: Alzheimer’s disease. Statistical analysis: B: FET, 
corrected for 30 comparisons. C: FET, corrected for 190 comparisons. D: FET, corrected for 190 
comparisons. E: FET, corrected for 290 comparisons.  
 
Enrichment of CNS traits and disorders in co-expression and single cell gene lists 
An alternative approach to identifying convergence across genes within a trait or disorder is to 
use co-expression (Gandal et al., 2018; Li et al., 2018; Parikshak et al., 2013; Willsey et al., 
2013); therefore, we assessed enrichment for disease and trait-associated genes across the 19 
WGCNA modules (Figure 3). Two modules are enriched after correcting for multiple 
comparisons (Figure 6C). The M4 Yellow module is enriched for genes associated with ASD 
and EA, including NRXN1, TCF4, and BCL11A, with a nominally significant trend in ADHD, DD, 
MDD, and SCZ. The M9 Brown module is enriched for genes associated with DD and EA, 
including CDK13, PACS1, and EP300, with a nominally significant trend in ASD and SCZ. Other 
modules in group 3 (M10 Dark-green, M11 Magenta, M12 Cyan) show nominally significant 
trends in multiple disorders and these include many of the genes with the strongest evidence for 
association with ASD and DD, including ARID1B in M10, and ANKRD11, SETD5, and SYNGAP1 
in M11. 
 
Enrichment of cell type-specific genes in disorder-associated genes has been used to implicate 
cell types in disease pathology (Li et al., 2018; Satterstrom et al., 2018; Willsey et al., 2013; Xu 
et al., 2014). Using the gene lists described above (Figure 2), we perform a consistent analysis 
of cell type gene enrichment across the ten CNS traits and disorders (Li et al., 2018; Nowakowski 
et al., 2017). Five clusters showed significant enrichment, all from the fetal single cell data: C18 
Excitatory newborn neurons and C1 Striatal interneurons in ASD, C3 Early excitatory neurons 
and C6 MGE-derived interneurons in EA, and C15 CGE-derived interneurons in EPDD (Figure 
6D and 6E). Considering the nominally significant results too, we observe enrichment for a 
mixture of excitatory and inhibitory lineages in DD, ASD, EA, EPDD, and PD. For these 
disorders, the results in postnatal data are less pronounced, but not contradictory. For MS and 
AD, we observe nominally significant enrichment in prenatal microglia cluster-specific genes, 
while the postnatal data shows nominally significant enrichment for interneurons and astrocytes 
in MS and excitatory and inhibitory neurons in AD. Overall, protein-coding genes associated with 
a trait or disorder were more likely to be enriched in a cell type cluster in fetal single cell data 
(23.6% of trait or disorder genes vs. 16.1% of non-associated genes; OR=1.6 (95%CI:1.4-1.9); 
p=1.5x10-10 FET). 
 
eQTLs in CNS traits and disorders 
We next considered whether the eGenes and eQTLs identified in this dataset overlapped with 
the genes and variants identified in the four GWAS analyses with the most loci: EA, SCZ, MS, 
and AD. To assess whether GWAS loci were enriched for eQTLs, as has been observed 
previously (Fromer et al., 2016; Nicolae et al., 2010), we used a permutation-based method that 
assessed expectation based on SNPs with similar LD structure, MAF, and gene density. 
Correcting for multiple comparisons, we find that SCZ, EA, and MS, but not AD, are enriched for 
eQTLs, with the lowest p-values obtained with Constant eQTLs rather than temporally specific 
eQTLs (Figure 7A), though we note that these temporal-specific enrichments are driven by small 
numbers of overlapping loci (Table S7). A complementary analysis, considering if eGenes are 
enriched for GWAS signal, did not show evidence of enrichment (Figure S6). Given that GWAS 
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loci are enriched for eQTLs, we assessed whether the specific variants with strongest evidence 
at GWAS loci for EA and SCZ also had the strongest evidence of acting as eQTLs. This co-
localization analysis showed that, while the loci overlapped, we did not see statistical evidence 
of overlap between the specific variants implicated in GWAS and acting as eQTLs (Figure S6).  
 
To further understand the relationship between eQTLs and variants associated with human traits 
and disorders, we assessed the characteristics of the genes in four categories: Constant eQTLs, 
temporally specific eQTLs, GWAS loci (ADHD, EA, MDD, SCZ, MS, PD, AD), and Rare variant 
loci (DD, ASD, EPDD). The genes in proximity to GWAS loci are more likely to be protein-coding 
(Figure 7B), have high pLI scores (Figure 7C), and have multiple protein-protein interactions 
(Figure 7D) to a greater extent than temporally specific eQTLs (Figure 4) and similar to disorder-
associated genes identified through rare variants. 
 

 
 
Figure 7. Relationship of eQTLs to genes associated with CNS traits and disorders. A) 
Enrichment of the eQTLs is shown for the four CNS GWAS datasets with p-value plotted against 
the degree of enrichment. Gray dashed line indicates nominal significance; red dashed line 
indicates significance threshold after correcting for 30 multiple comparisons. B) The relative 
proportions of coding and noncoding genes are shown for four gene sets defined by: eQTLs 
(Constant or Temporally specific, with Prenatal-specific and Postnatal-specific eGenes 
considered together, Figure 4), the union of the seven GWAS datasets, and the union of the 
three exome sequencing datasets (Rare variants). C) The distribution of pLI scores are shown 
for protein-coding genes in these four gene sets. D) BioGRID protein-protein interaction data 
was used to assess clustering on a network (Ripley’s K-net function), shown as a z-score, for 
these four gene sets. Abbreviations: GWAS, genome-wide association study; pLI, probability of 
loss-of-function intolerance. Statistical analysis: A: Permutation procedure comparing observed 
proportion of GWAS-significant SNPs that were eQTLs to a null distribution matched on LD 
structure, MAF, gene density and corrected for 30 comparisons. 
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Discussion 
In this manuscript, we describe BrainVar, a unique resource of paired genome (WGS) and 
transcriptome (bulk tissue RNA-seq) data, derived from 176 human dorsolateral prefrontal cortex 
samples across prenatal and postnatal development (Figure 1). We leverage these data to 
identify 23,782 genes expressed during human cortical development, gene lists relating to 
developmental trajectories and co-expression, common and rare variants that alter gene 
expression (eQTLs), and how these datasets relate to cell type, derived from scRNA-seq data, 
and CNS traits and disorders, derived from genomic analyses (exome sequencing and GWAS). 
In addition to developing a resource with utility for future studies on human development, 
neurobiology, and neuropsychiatric disorders, we also describe key biological insights, including 
the nature of the late-fetal transition in gene expression (Figure 2 and 3), the relative 
independence of variation in gene expression across development compared to gene 
expression between individuals (Figure 4), the variable penetrance of many haploinsufficient 
neuropsychiatric disorders (Figure 5), the developmental processes and cell types implicated in 
CNS traits and disorders (Figure 6), and the distinctive characteristics of genes with Constant 
eQTLs compared to those with temporally specific eQTLs or associated with CNS traits and 
disorders (Figure 4 and 7). Across these analyses, we observe complicated relationships 
between gene function and development, consistent with the impact of natural selection. 
 
Principal component analysis identifies developmental age as the most important factor 
underlying the variance in gene expression in this dataset. The majority of this temporal variance 
occurs in two transitional phases (Figure 2). The early-fetal transition is a coordinated decrease 
in expression of multiple genes in early development (epoch 0; periods 1-2; 6-10 PCW), captured 
in the lncRNA-enriched M8 Red module (Figure 3). This transition may relate to the 
establishment of regional identity across the brain since it includes genes associated with identity 
of non-cortical tissues, however the paucity of samples in this stage limits our interpretation of 
this shift. The late-fetal transition between mid-fetal development and infancy involves over 
12,000 genes, with similar numbers rising and falling (Figure 2). Prior reports in humans (Li et 
al., 2018) and primates (Zhu et al., 2018) associated this transition with a reduction in intra- and 
inter-regional variation evident at the levels of bulk tissue and individual cell types. In keeping 
with these initial reports, our data suggest this transition represents a combination of changes in 
the relative proportions of various cell types and biological processes within these cells (Figure 
2 and 3). Specifically, the late-fetal transition appears to be the co-occurrence of decreasing cell 
division (M2 Royal-blue), neuronal differentiation (M4 Yellow) and anabolic processes (M1 
Black) with increasing gliogenesis (M18 Light-cyan, M19 Turquoise), neuronal maturation and 
synaptogenesis (M19 Turquoise), and the metabolic demands of supporting neuronal activity 
(M13 Green, M14 Purple, M16 Blue). Critically, this larger sample set allowed us to better define 
the inflection point at which the late-fetal transition begins as being within period 5, further 
distinguishing the late-fetal transition from previously reported organotypic changes (Domazet-
Loso and Tautz, 2010; Kalinka et al., 2010; Li et al., 2018).  
 
While previous analyses have identified eQTLs in human brain tissue both postnatally, (Fromer 
et al., 2016; The GTEx Consortium, 2015) and prenatally (O'Brien et al., 2018), this dataset has 
two unique characteristics. First, no prior study has assessed the impact of genomic variation in 
the context of gene expression across the whole of brain development, from embryogenesis 
through fetal development, infancy, childhood, adolescence, and into young adulthood. 
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Consequently, we were able to identify temporally specific eQTLs that only modulate expression 
prenatally or postnatally. Second, by using deep coverage WGS rather than genotyping arrays 
to detect various types of genomic variation, we were able to assess the impact of both common 
and rare variants on gene expression. 
 
For common variation, we identify 252,629 eQTLs that act on 8,241 of the 23,782 cortically-
expressed genes. The majority are Constant eQTLs, observed in both the prenatal and postnatal 
samples, while 91,336 eQTLs (36.1%) are temporally specific and act on 5,444 genes (Figure 
4A). Considering the FDR-significant variant-gene pairs that overlap with prior eQTL catalogues 
(O'Brien et al., 2018; The GTEx Consortium et al., 2017) we observe high concordance in both 
the direction and magnitude of effect (Figure 4C), despite differing in cohorts, methods, and 
analysis. Concordance was greatest for Constant eQTLs and temporally specific eQTLs from 
cohorts of equivalent developmental stages (Figure 4C).  
 
Across multiple metrics, we observe dramatic differences between the eGenes with Constant 
and temporally specific eQTLs (Figure 4 and 7). Compared to other genes expressed in the 
cortex, the genes affected by Constant eQTLs are more likely to be noncoding, be weakly co-
expressed, and have few protein-protein interactions. In contrast, the genes regulated by eQTLs 
with a degree of temporal specificity are similar to genes for which we did not detect eQTLs. A 
similar distinction was observed for distance from the TSS, with Constant eQTLs close to the 
gene (~90kb), while temporally specific eQTLs are further (~420kb). Critically, we find that pLI 
score, a measure of sensitivity to variation in gene expression, and eQTL effect size are inversely 
related (Figure 4K). Furthermore, Prenatal-specific eGenes are more common among Rising 
genes with low prenatal expression. These observations suggest that developmental and 
evolutionary constraints limit the population frequency or impact of eQTLs on key developmental 
processes, a hypothesis that might be testable in future studies as additional information 
concerning spatiotemporal and cell type specificity of enhancers and eQTLs becomes available 
for a variety of tissues. Under this model, Constant eQTLs with high effect sizes tend to influence 
genes that tolerate variation in expression (e.g. non-rate-limiting metabolic steps) or are non-
critical to brain function, while temporally specific eQTLs tend to influence genes with critical 
roles that are sensitive to variation in expression, but only to a small degree or at a stage in 
development when expression variation is tolerated. These temporally specific effects appear to 
be modulated through distal regulatory elements, perhaps reflecting the influence of transcription 
factors with temporal and/or cell type specificity. 
 
Relationships between developmental stage, cell type specificity and other confounding factors, 
such as natural selection, are evident in other aspects of our dataset. For example, although 
GWAS loci in SCZ, MS, and EA are enriched for eQTLs (Figure 7A), colocalization analysis 
suggests that different variants mediate the effects in each dataset (Figure S7). A potential 
explanation may lie in the observation that those characteristics distinguishing temporally 
specific eQTLs from Constant eQTLs, such as higher pLI scores and interactions with more 
proteins, are exaggerated at GWAS loci and disorder-associated rare variant loci. Alternatively, 
neuropsychiatric disorders may be mediated by cell types and subtypes, which our study is not 
powered to detect. Indeed, relationships between genes associated with neuropsychiatric 
disorders and specific cell types are evident in the data presented in this manuscript, as we 
observe the enrichment of genes associated with DD, ASD, and EA in developing neurons of 
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the excitatory and inhibitory lineages in the prenatal brain and increased associations between 
late-onset disorders and glial cell types (Figure 6). eQTLs derived from single cell expression 
data or other brain regions may provide greater clarity. Also suggesting differing specificity or 
other confounding issues, the magnitude of effects we observed for rare heterozygous PTVs 
and deletions was less than anticipated and inconsistent between variants, potentially reflecting 
a dilution of cell type specific signals against a background of inter-individual variation, which 
may explain variable penetrance, or other effectors including autoregulation, protective alleles, 
alternate isoforms, or an incomplete model of PTV effects (MacArthur et al., 2012; Rivas et al., 
2015). Higher resolution datasets across development, including single cell, additional brain 
regions, and larger sample sizes, along with complementary analyses in the brains of individuals 
with neuropsychiatric disorders and rare genetic disorders, are likely to provide additional 
insights into these relationships.  
 
The combination of genomic and transcriptomic data across development allows us to 
interrogate human cortical development from a molecular perspective at a higher resolution than 
before. Understanding patterns of temporal and cell type specificity has already provided insights 
into the pathology underlying neuropsychiatric disorders and further delineation of these patterns 
is likely to be critical to a detailed understanding of etiology as a foundation for therapeutic 
development. 
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