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Abstract: 22 

Reciprocal adaptation is the hallmark of arms race coevolution, but the symmetry of 23 

evolutionary change in each species is often untested even in the best-studied battles between 24 

natural enemies. We tested whether prey and predator exhibit a symmetrical pattern of local co-25 

adaptation in the classic example of a geographic mosaic of coevolution between toxic newts 26 

(Taricha granulosa) and resistant garter snakes (Thamnophis sirtalis). Contrary to conventional 27 

wisdom, landscape variation in the newt toxin TTX is best predicted by neutral population 28 

divergence and not predator resistance, whereas snake resistance is clearly explained by prey 29 

toxin levels. Prey populations structure variation in levels of TTX, which in turn structures 30 

selection on predators—implying that neutral processes including gene flow, rather than 31 

reciprocal adaptation, are the primary source of variation across the coevolutionary mosaic. 32 

 33 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/585851doi: bioRxiv preprint 

https://doi.org/10.1101/585851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main Text: 34 

Coevolutionary dynamics result from the reciprocal selection generated between 35 

interacting species (1, 2). Adaptation and counter-adaptation occur at the phenotypic interface of 36 

coevolution, the traits in each species that mediate interactions (3, 4). Because species 37 

interactions and their fitness consequences vary spatially, heterogeneity in the form of reciprocal 38 

selection is expected to generate a geographic mosaic of coevolution in which phenotypes of 39 

both species covary due to local conditions (2, 5–7). Coevolving species often exhibit matched 40 

trait variation across the landscape, for example, in seed traits and their predators (5, 7) or host 41 

and pathogen genotypes (8, 9), a pattern typically interpreted as a signature of local co-42 

adaptation. 43 

 However, a geographic mosaic of matched phenotypes may not be solely the result of 44 

reciprocal co-adaptation (10, 11). A simpler, non-adaptive explanation for matched trait variation 45 

involves the spatial population structure and ancestry of each species. Common barriers to 46 

dispersal or a shared biogeographic history, for example, could structure phenotypic divergence 47 

congruently in co-occurring species (12). Only when phenotypic variation deviates from the 48 

neutral expectations of population structure in both species can we infer local adaptation in the 49 

geographic mosaic of coevolution (10). Otherwise, drift, gene flow, and phylogeography provide 50 

a parsimonious explanation for patterns of divergence across the landscape. 51 

We tested whether neutral processes account for localized trait matching in a textbook 52 

example of a geographic mosaic of coevolution, the arms race between deadly newt prey and 53 

their resistant snake predators. In western North America, rough-skinned newts (Taricha 54 

granulosa) secrete the deadly neurotoxin tetrodotoxin (TTX), which binds to the outer pore of 55 

voltage-gated sodium channels (NaV) and prevents the initiation of action potentials (13, 14). 56 
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Common garter snakes (Thamnophis sirtalis) exhibit resistance to TTX that is largely due to 57 

specific amino acid substitutions in the fourth domain pore-loop (DIV p-loop) of the skeletal 58 

muscle sodium channel (NaV1.4) that disrupt toxin-binding (Fig. 1) (15, 16). Channel-level TTX 59 

resistance conferred by each allele in the DIV p-loop is tightly correlated with muscle and 60 

whole-animal levels of phenotypic resistance in Th. sirtalis (15–17). TTX-resistant alleles occur 61 

at high frequency in coevolutionary “hotspots” with highly toxic newts, but are largely absent in 62 

surrounding “coldspots” where newts are non-toxic, creating a putative mosaic of local 63 

adaptation in which predator and prey have roughly matched abilities at the interface of toxin-64 

binding (11, 18, 19).  65 

We conducted fine-scale population sampling of newts (n=138) and garter snakes 66 

(n=169) along a latitudinal transect of nine locations on the Pacific Coast in Washington and 67 

Oregon (USA) that spans the geographic mosaic (Fig. 1, Table S1), ranging from low levels of 68 

newt toxin and snake resistance (northern Washington) to a hotspot of extreme escalation in both 69 

species (central Oregon). At each location, we characterized levels of TTX in newt populations 70 

and TTX resistance in garter snakes, including whole-animal phenotypic resistance and NaV1.4 71 

channel genotypes. We then compared these data to neutral patterns of population genomic 72 

variation using single nucleotide polymorphisms (SNPs) in each species.  73 

Spatial patterns of newt TTX and snake resistance were broadly consistent with previous 74 

work suggesting arms race coevolution has led to closely matched phenotypes in each species 75 

(11). TTX levels (μg/cm2) of newts varied by population (ANOVA; F[8,114]=37.43, p<0.001) 76 

and by sex (F[1,114]=4.37, p=0.039) along the latitudinal transect (Fig. 1; Table S1). TTX 77 

resistance (50% MAMU dose) of snakes also varied by population (according to non-78 

overlapping 95% confidence intervals; Fig. 1; Table S1) and was closely correlated with prey 79 
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toxins (Table 1). The presence of TTX-resistant alleles in the NaV1.4 channel co-varied with 80 

phenotypic resistance in garter snakes, such that pairwise FST divergence at the DIV p-loop was 81 

correlated with population divergence in phenotypic resistance (Mantel test, r=0.47, p=0.032). 82 

Variation in levels of newt TTX, however, was best predicted by neutral population 83 

divergence, calling into question whether the covariance between prey toxins and predator 84 

resistance is a result of co-adaptation to local conditions in the geographic mosaic. We used 85 

neutral SNPs to assess population genetic structure in prey and predator and found a pattern of 86 

isolation-by-distance (IBD) in both species (distance-based redundancy analysis; newts, F=-87 

38.528, p=0.002; snakes, F=22.021, p=0.001). Principal coordinate (PCoA) and Bayesian 88 

clustering (STRUCTURE) analyses indicated that newts and snakes each have a distinct spatial 89 

pattern of population structure along the transect (Fig. 2). We generated distance matrices to test 90 

whether phenotypic divergence in one species (e.g., newt TTX levels) is best explained by (1) 91 

neutral genomic divergence (pairwise FST; Table S3) or (2) phenotypic divergence in the natural 92 

enemy (snake resistance). In univariate regressions, population divergence in the TTX level of 93 

newts was strongly predicted by neutral FST divergence (R2=0.414), as well as TTX resistance of 94 

garter snakes (R2=0.274; Table 1). FST divergence remained significant in the multiple 95 

regression, indicating that population structure of newts predicts TTX levels, even after 96 

controlling for TTX resistance of the predator (which was only marginally significant; p=0.065). 97 

In contrast, garter snake resistance was strictly predicted by newt toxins and not neutral FST 98 

divergence. Both phenotypic resistance and FST divergence at the DIV p-loop (the site of toxin-99 

binding in NaV1.4) were uncorrelated with neutral FST values in garter snakes (Table 1). These 100 

results imply that neutral genetic divergence structures population variation in levels of the prey 101 

toxin, which in turn predicts TTX resistance in predator populations. The geographic structure of 102 
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newt populations appears to be so influential to spatial dynamics that divergence in garter snake 103 

phenotypic resistance and FST at the DIV p-loop are both significantly predicted by neutral FST 104 

divergence of newts (Table 1). 105 

Clinal variation in the TTX level of newts is highly congruent with neutral genomic 106 

variation based on the PCoA (Fig. 3) and Bayesian clustering analyses (Fig. S2). TTX resistance 107 

of garter snakes, in contrast, clearly deviates from neutral expectations to track variation in prey 108 

toxins. Cline-fitting analyses show that prey toxin levels and predator resistance are tightly 109 

matched along the 611 km transect; the geographic center points of each cline are located just 64 110 

km apart and do not differ statistically. The cline center of TTX-resistant alleles in snakes is also 111 

located nearby, although it differed statistically from the center of newt TTX. Despite similar 112 

phenotypic clines in prey and predator, variation in levels of newt toxin showed an even tighter 113 

match to clinal variation in neutral population structure. The center points of the TTX and neutral 114 

clines were located only 19 km apart. PC 1 from the PCoA was a strong predictor of variation in 115 

TTX levels (linear model; t-value=5.682, p<0.001), even after controlling for the effect of TTX 116 

resistance of garter snakes (Supplemental Materials, Table S5). Conversely, variation in 117 

phenotypic resistance and TTX-resistant alleles in snakes both deviated significantly from the 118 

neutral cline (Fig. 3), such that resistance was not predicted by PCs 1 or 2 from the PCoA (Table 119 

S5). The center points of the snake phenotypic resistance and neutral clines were located a 120 

distant 310 km apart. 121 

Levels of prey toxin and predator resistance are tightly matched across the landscape, but 122 

this pattern does not appear to be the primary result of local co-adaptation in the arms race. 123 

Although predator resistance is geographically structured by a signature of local adaptation to 124 

prey, levels of prey toxin are clearly structured according to neutral population divergence. 125 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/585851doi: bioRxiv preprint 

https://doi.org/10.1101/585851
http://creativecommons.org/licenses/by-nc-nd/4.0/


These results imply that mosaic variation in newt toxins is largely explained by non-adaptive 126 

processes, such as drift and historical biogeography, rather than spatially variable adaptation. For 127 

example, latitudinal patterns of newt TTX and neutral divergence are both consistent with a 128 

population history of northward expansion after the Pleistocene glacial period (20). Toxin levels 129 

in the newts may have been under strong selection in the past, particularly at the southern end of 130 

the transect, but now it is predominantly subject to neutral processes like drift and gene flow. 131 

The asymmetric signatures of adaptation we observed in prey and predator may reflect 132 

differences in the mechanisms that underlie phenotypic variation in each species. The 133 

evolutionary response in newts may be obscured by environmental effects that disproportionally 134 

contribute to variance in TTX levels compared to resistance of snakes. Little is known about the 135 

production of TTX, but some researchers suggest exogenous factors, like environmentally-136 

derived precursors, may affect the ability of newts to synthesize or sequester TTX (21, 22). 137 

Evidence from the California newt (Ta. torosa) suggests TTX levels could also be a plastic 138 

response to sustained stressful conditions such as predation (23). On the other hand, TTX 139 

resistance in garter snakes is largely due to a small number of amino acid changes to the p-loops 140 

of the NaV1.4 channel (15–17, 19). These large-effect mutations could make TTX resistance 141 

more evolutionarily labile than toxicity, permitting rapid local adaptation in predator populations 142 

(11, 17). 143 

Asymmetric patterns of evolution could also arise from a selective imbalance associated 144 

with the interactions between prey and predator. In antagonistic interactions, the species under 145 

more intense selection is generally expected to be better adapted to local conditions (24). While 146 

prey are typically thought to experience stronger selection than their predators (the “life-dinner 147 

principle”) (25), this asymmetry may be reversed when prey contain deadly toxins like TTX (3). 148 
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In fact, populations in central Oregon are the most toxic newts known (11), so non-resistant 149 

predators should experience severe fitness consequences. 150 

Non-adaptive processes of drift and gene flow provide a parsimonious explanation for 151 

landscape-level patterns of variation in newt TTX, but the extreme exaggeration in levels of prey 152 

toxins and predator resistance in some locations is likely the result of arms race coevolution. 153 

Reciprocal coevolution may be ongoing in hotspots, like central Oregon, while levels of newt 154 

TTX in surrounding regions are spatially structured according to patterns of gene flow. This 155 

overall pattern establishes the important role of “trait remixing”, a largely untested component of 156 

the geographic mosaic theory that is thought to generate spatial variation in species interactions 157 

(2, 10). The neutral processes of drift and gene flow (termed “trait remixing”) are predicted to 158 

continually alter the spatial distribution of allelic and phenotypic variation, potentially interfering 159 

with local selection. Gene flow outwards from hotspots of coevolution is predicted to alter 160 

dynamics in surrounding populations (26, 27), and if gene flow is high, the population with the 161 

strongest reciprocal effects on fitness is expected to dictate broader landscape patterns of trait 162 

variation (24, 26, 28). The homogenizing effects of gene flow may be less influential in snake 163 

populations due to the simple genetic basis of TTX resistance or strong selection on predators. 164 

Our results underscore that landscape patterns of phenotypic matching in natural enemies 165 

are not the inherent result of coevolution (10). External factors such as abiotic conditions (29), 166 

evolutionary constraints (30), or interactions with other species (31) are likely to have unique 167 

effects on the evolution of prey and predator. In the newt-snake arms race, it appears that neutral 168 

processes and population structure disproportionally affect toxin levels in newts, which in turn, 169 

determines mosaic patterns of phenotypic variation in both species across the landscape. The 170 

evolutionary response to selection at the phenotypic interface is almost certain to differ in two 171 
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interacting species—so much so that coevolution may not always be the most parsimonious 172 

explanation for observed patterns of phenotypic divergence and trait matching across the 173 

geographic mosaic.  174 

 175 
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Fig. 1. Matching phenotypes in prey and predator imply arms race coevolution. (A) 397 
Population means of TTX levels (μg/cm2) in newts and (B) phenotypic TTX resistance (50% 398 
MAMU dose) in snakes along the latitudinal transect. Error bars indicate 95% confidence 399 
intervals. The x-axis represents linear distance (km) from the northernmost sampling site 400 
(Clallam; 0 km). For snakes, the frequency of TTX-resistant alleles in the NaV1.4 channel is 401 
shown with pie charts proportional to sample size. To the right, the schematic of NaV1.4 shows 402 
the four domains of the channel (DI–DIV), with the extracellular pore loops (p-loops) 403 
highlighted with bold lines. Specific amino acid changes in the DIV p-loop are shown in their 404 
relative positions within the pore. The TTX-sensitive ancestral sequence (purple) is listed, 405 
followed by the two derived alleles known to confer increases in channel resistance in this 406 
lineage. (C) Map inset illustrates population estimates of prey toxins and predator resistance at 407 
each location in the geographic mosaic. Blue colors correspond to low estimates of TTX 408 
(squares) or resistance (circles), whereas red indicates escalated phenotypes in the arms race. 409 

 410 
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Fig. 2. Populations of prey and predator differ in geographic structure. Results from the 411 
principal coordinate (PCoA) and STRUCTURE analyses of neutral SNPs from newts and 412 
snakes. PCoA graphs are rotated 90º to emphasize the major axis of variation corresponding to 413 
latitude. The PC 1 values for each individual were used as a neutral expectation in the cline-414 
fitting analyses. STRUCTURE plots are arranged latitudinally by population, in the same order 415 
as the map. Each horizontal bar represents the ancestry assignment of an individual, with 416 
populations separated by white dashed lines.  417 

 418 
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Fig. 3. Levels of prey toxin are best predicted by neutral population structure, whereas 419 
predator resistance is predicted by prey toxins. Cline-fitting results for phenotypic and 420 
genetic variation are shown, with error bars indicating confidence intervals surrounding the 421 
geographic cline centers. (A) Phenotypic clines of TTX levels (log[TTX μg/cm2 + 0.1]) and (B) 422 
TTX resistance (ln[MAMU + 1]) are shown in red. For snakes, the frequency of TTX-resistant 423 
alleles in the NaV1.4 channel was also modeled (in black). Gray dashed lines represent the 424 
neutral expectation for trait variation due to population structure, based on the PCoA. The cline 425 
center points of TTX levels and neutral PC 1 in newts, and phenotypic resistance and TTX-426 
resistant alleles in snakes, are all located within in 84 km of each other along the 611 km 427 
transect.428 

 429 
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Table 1. Results from multiple regression of distance matrices (MRMs) comparing population 430 
divergence in phenotypic and genetic data.  431 
 432 

Response Variable Explanatory Variable(s)  Coefficient p-value R2 

Newt TTX levels 

Neutral FST of newts 
 

5.998 0.002* 0.414 

TTX resistance of snakes 
 

0.415 0.019* 0.274 

Neutral FST + TTX resistance 
    

Neutral FST of newts 
 

4.827 0.006* 0.501 

TTX resistance of snakes 
 

0.253 0.065˙ 
 

      

Snake TTX resistance 

Neutral FST of snakes 
 

1.442 0.719 0.006 

TTX level of newts 
 

0.662 0.021* 0.274 

Neutral FST + TTX toxicity  
    

Neutral FST of snakes 
 

-5.830 0.189 0.338 

TTX level of newts 
 

0.873 0.011*  
Neutral FST of newts 

 
4.632 0.035* 0.155 

      

Snake FST of DIV p-loop 
Neutral FST of snakes  2.649 0.202 0.080 

Neutral FST of newts 
 

3.196 0.010* 0.311 

 433 
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