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Abstract:  1 

More than a decade of gut microbiome studies have a common goal for human 2 

health. As most of the disease studies sample the elderly or the middle-aged, a 3 

reference cohort for young individuals has been lacking. It is also not clear what 4 

other omics data need to be measured to better understand the gut microbiome. 5 

Here we present high-depth metagenomic shotgun sequencing data for the fecal 6 

microbiome together with other omics data in a cohort of 2,183 adults, and observe 7 

a number of vitamins, hormones, amino acids and trace elements to correlate with 8 

the gut microbiome and cluster with T cell receptors. Associations with physical 9 

fitness, sleeping habits and dairy consumption are identified in this large multi-omic 10 

cohort. Many of the associations are validated in an additional cohort of 1,404 11 

individuals. Our comprehensive data are poised to advise future study designs to 12 

better understand and manage our gut microbiome both in population and in 13 

mechanistic investigations.  14 

 15 

The gut microbiome has been implicated in a growing list of complex diseases, showing 16 

great potential for the diagnosis and treatment of metabolic, autoimmune and 17 

neurological diseases as well as cancer. While case-control studies have been 18 
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illuminating 1, recently published studies have emphasized difficulty in extrapolating to 19 

natural cohorts due to heterogeneity in location and ethnicity 2,3. So far only a few cohorts 20 

made use of metagenomic shotgun sequencing instead of 16S rRNA gene amplicon 21 

sequencing, the largest being the LifeLines Deep cohort (n=1,135, 32 million reads per 22 

sample) from the Netherlands 4–7. Fecal or plasma metabolites are more or less included 23 

in gut microbiome studies, but the conclusions usually did not go beyond short-chain 24 

fatty acids (SCFA), amino acids, vitamin B complex or bile acids. Levels of trace 25 

elements such as arsenic have been a health concern (https://www.usgs.gov/mission-26 

areas/water-resources/science/arsenic-and-drinking-water?qt-27 

science_center_objects=0#qt-science_center_objects, 28 

https://www.fda.gov/food/metals/arsenic-food-and-dietary-supplements), but are 29 

unexplored in the microbiome field. Biological sex is a strong determent for the gut 30 

microbiome in mice and livestock 8–10. The impact of hormones on the human gut 31 

microbiome, or vice versa, remains unclear. 32 

As part of the 4D-SZ (trans-omic, with more time points in future studies) cohort, here 33 

we present metagenomic shotgun sequencing data sufficient for high-resolution 34 

taxonomic and functional profiling (86.1 ± 23.3 million reads per sample) of the fecal 35 

microbiome in a cohort of 2,183 adults, along with questionnaire data, physical fitness 36 

tests, facial skin features, plasma metabolome and immune repertoire. Trans-omics 37 

analyses in this Han Chinese cohort put into context fecal microbiome disease markers, 38 

and uncover previously overlooked measurements such as aldosterone, testosterone, trace 39 

elements and vitamin A that influence the gut microbiome, which were validated in an 40 

additional cohort of 1,400 individuals. Trends for cardiometabolic diseases and colorectal 41 
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cancer can be seen, despite the average age of 29.6. This is also to our knowledge the 42 

largest cohort with facial skin data and immune repertoire data, which would also be of 43 

interest for general health management and disease studies. 44 

A recent study casted doubt over the health benefits of probiotic consumption, concluding 45 

that colonization of the strains was highly variable between individuals 11. Our large 46 

cohort unequivocally showed commercial yogurt strains, especially Streptococcus 47 

thermophilus and Bifidobacterium animalis in feces, and suggested beneficial effects in 48 

cardiometabolic health. 49 

 50 

Results 51 

Comprehensive gut microbiome data together with other omics 52 

Fecal samples were collected during a physical examination, and 2,183 samples (Age, 53 

29.6 ± 5.5, average ± stdev) were subjected to metagenomic shotgun sequencing, yielding 54 

82.95 ± 24.26 million high-quality non-human reads per sample (Supplementary Table 55 

1a), ensuring accurate taxonomic and functional profiling. The reads were mapped to a 56 

comprehensive human gut microbiome reference gene catalog containing 9.9 million 57 

genes (with a saturating mapping rate of 80.1 ± 4.9 %) and then assigned to 1,507 58 

Metagenomic Species (MGSs) 12–14 and 2,981 metagenomic linkage groups (MLGs, 59 

Kendall’s tau instead of Pearson’s or Spearman’s correlation between genes) (Qin et al, 60 

2012, Jie et al, 2017), to include both known and unknown microbes. 61 

Other omics data, including 104 plasma metabolites (3,980 samples), 634 immune 62 

indices (PBMC (Peripheral blood mononuclear cells) V(D)J usage and its shannon 63 
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diversity, 4,120 samples) from buffy coat, 72 basic medical data (body measurements and 64 

routine blood test, 2,715 samples), 49 facial skin imaging indices (2,049 samples), 24 65 

physical fitness data (3,833 samples), 18 entries from psychological questionnaire (2,039 66 

samples), and 56 entries from lifestyle questionnaire (3,820 samples) were collected from 67 

the same individuals (Fig. 1, Supplementary Tables 1b-d). 68 

The gut microbiome as a relatively independent dimension for health 69 

To get an overall idea of the relationship between omics, an inter-omics prediction value 70 

between omics data was calculated using a 5-fold cross-validated random forest model 71 

(RFCV, Fig. 2a). Basic medical data showed the highest global systematic association 72 

with other omics data. The accuracy of prediction from basic medical data to physical 73 

fitness data and from metabolites to basic medical data reaching 75% quantile showed 74 

RFCV R = 0.461 and 0.399, respectively (Fig. 2a, b, Supplementary Fig. 1). Basic 75 

medical data showed high prediction accuracy to metabolites (Fig. 2a, b); on the other 76 

hand, serum creatinine, BMI, waist to hip ratio, hematocrit and triglyceride in basic 77 

medical data can be predicted by metabolites (Fig. 2c). Metabolites constituted the 78 

highest prediction accuracy to immune indices (R = 0.292) (Fig. 2b). Immune indices 79 

showed the second highest prediction accuracy to metabolites (Fig. 2a, b).  Facial skin 80 

features can be predicted by basic medical data, metabolites, physical fitness data and 81 

lifestyle questionnaire (Fig. 2b, c). Among the lifestyle questionnaire, smoking, drinking 82 

(especially low concentration alcohol), sports habits (especially resistance training), high-83 

sugar and high-fat dietary habit, and staying up until midnight can be predicted by other 84 

omics data (Fig. 2c). 85 
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A number of factors have been reported to explain gut microbial composition, while the 86 

total percentage of variance explained remained in single digits 4,15. According to a 87 

RFCV predict model, we observe in this metagenomic cohort influence from lifestyle 88 

questionnaire factors such as defecation, yogurt, age, gender, smoking, milk, soymilk, 89 

drinking alcohol, fruit and vegetables on gut microbiome composition (Fig. 3), and the 90 

cumulative effect size was also in single digits (Supplementary Tables 2b,2c). The BMI 91 

distribution is narrow in this cohort (21.729±3.787, Supplementary Table 1b), so its 92 

effect size was 0.0015 (q-value=0.014, Supplementary Table 2b).  ABO blood group 93 

could also predict fecal microbiome composition (RFCV R=0.2, Fig. 3), and specific 94 

differences include Lachospiraceae bacterium 3_1_46FAA in blood type A (q = 6.12E-5), 95 

Ruminococcus torques in blood type B (q = 1.59E-2), unnamed MGS209 in blood type 96 

AB (q = 1.59E-2) and Megaspaera micronuciformis in blood type O (q = 1.69E-2). 97 

As our ‘other genome’, the gut microbiome could predict other omics in this cohort. Gut 98 

microbiome showed the greatest prediction power for metabolites, such as plasma 99 

vitamins (vitamin A, folic acid, vitamin B5, vitamin D), plasma hormones (testosterone, 100 

aldosterone), trace elements (mercury, selenium, arsenic) and plasma amino acids 101 

(branched chain amino acids (BCAA), glutamic acid, tryptophan, tyrosine, histidine, 102 

alanine) (Fig. 3). Interestingly, hand grip strength, vital capacity, speckles and pores on 103 

cheeks and staying up until midnight can also be predicted by the gut microbiome (Fig. 3). 104 

We next included a validation cohort of 1404 individuals (mean age 29.515±5.248, 480 105 

males and 570 females, 82.95 ± 24.26 million high-quality non-human reads per fecal 106 

sample), which differed by hometown location compared to the initial cohort 107 

(Supplementary Table 1a, Supplementary Table 1b, Fig. 1). The gut microbiome could 108 
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also predict these plasma metabolites, with greater effects from mercury, cysteine, 109 

selenium, iron and cobalt (Fig. 3, Supplementary Table 3), while other data such as 110 

physical fitness tests and facial skin features are not available. 111 

Defecation, hormone and gender 112 

We see that gender (female 1,016, male 1,007) was one of the most significant factors to 113 

diverge gut microbiome composition (Supplementary Fig.2a). Eubacterium dolichum, 114 

and Blautia wexlerae were significantly more abundant in males (Supplementary Fig. 2a), 115 

after adjusting for age, BMI, medication and dietary supplements (Supplementary Table 116 

3b). Fusobacterium mortiferum, which positively associated with testosterone, was 117 

sensitive to the statistical adjustments (Supplementary Tables 3a, 3b). Compared to males, 118 

females showed a greater α-diversity (Supplementary Table 2a, Supplementary Fig. 2c). 119 

Bifidobacterium longum, B. bifidum, and B. catenulatum, B. pseudocatenulatum were all 120 

significantly enriched in females, as well as potentially oral or vaginal bacteria such as 121 

Streptococcus parasanguinis, Prevotella bivia (Supplementary Fig. 2a). Gut microbial 122 

functional potential for secondary bile acids strongly associated with self-reported 123 

defecation frequency, which were better validated than associations with sex hormones 124 

(Supplementary Fig. 2b), suggesting that these are stable patterns. 125 

Aldosterone, one of the major adrenal gland mineralcorticoid, positively correlated with 126 

bacteria implicated in cardiometabolic health, such as Bacteroides intestinalis, B. 127 

cellulosilyticus, B. stercorirosoris and Eubacterium eligens (Supplementary Fig. 3) 16. E. 128 

eligens and Ruminococcus lactaris scaled negatively with self-reported preference for a 129 
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salty diet, in contrast to Blautia obeum (Supplementary Fig. 2a), and mice on a high salt 130 

diet showed decrease in a number of commensal bacteria 17. 131 

The metabolome-immune-gut axis 132 

Among the strongest associations between different omics is that between immune 133 

repertoire and plasma metabolites (Fig. 2). More strikingly, when we plotted the 134 

associations in detail, the clusters of metabolites corresponded either to the same TRBV 135 

(T-cell receptor beta variable gene) or to the same TRBJ (T-cell receptor beta joining 136 

gene) (Supplementary Fig. 4a). Vitamin A, 5-methyl four hydrogen folic acid, selenium, 137 

mercury and serum aldosterone showed positive associations with a few TRBJ1-4 and 138 

TRBJ2-1, and negative association with TRBJ2-4. Vitamin B5, Vitamin E, phosphoserine, 139 

arginosuccinic acid and arsenic showed positive associations with TRBJ1-4, as well as 140 

negative associations with TRBJ2-4, TRBV20-1 and TRBV3-1. Glutamic acid and serine 141 

showed a pattern that were largely opposite to that of the vitamin A cluster, except for 142 

negative associations with TRBV20-1. 143 

We next explored how the gut microbiome might help put the metabolome-immune 144 

associations into context. Vitamin A is central to a healthy immune system but is 145 

typically studied for its role in early development 18. A recent mice study reported 146 

modulation of retinol dehydrogenase 7 expression and dampened antimicrobial response 147 

in the gut by Clostridiale 19. Consistently, we observed associations between Clostridia 148 

species (Clostridia MGS0123, MGS0560, MGS0558, Lachnospiraceae bacterium 149 

1_4_56FAA, Lachnospiraceae bacterium 6_1_63FAA, Lachnospiraceae bacterium 150 

9_1_43BFAA, C, bolteae, Clostridium sp. AT4, Clostridium sp. M62.1) and vitamin A in 151 

adult humans both with Spearman's corelation and with Masaslin associated 152 
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(Supplementary Fig. 3, Supplementary Table 3a). 5-methyl four hydrogen folic acid 153 

exhibited a positive correlation with Eubacterium eligens (Supplementary Fig. 4a, 154 

Supplementary Fig. 3), a butyrate-producing bacterium that was relatively depleted in 155 

atherosclerotic cardiovascular disease 16. 5-methyl four hydrogen folic acid also 156 

negatively associated with Dorea and Blautia species (Supplementary Fig. 4a), which 157 

have been implicated in obesity and could metabolize formate or hydrogen 20–22 158 

(Supplementary Fig. 4a). Associations between the gut microbiome and trace elements 159 

including mercury, selenium and arsenic might be surprising (Supplementary Fig. 4a). 160 

Selenium-containing rice is commercially promoted as anti-cancer, and we found that the 161 

association pattern largely followed arsenic, consistent with these two trace elements’ 162 

similar function in anaerobic respiration 23. Selenium and mercury also correlated with 163 

disease-associated species such as Clostridium bolteae and Ruminococcus gnavus in the 164 

gut microbiome.  165 

The metabolome-immune cluster represented by phosphoserine, and argininosuccinic 166 

acidnegatively associated with Bacteroides coprophilus (Supplementary Table 3i), a 167 

prevalent but not very abundant species from the Bacteroides genus. MGSs from 168 

Faecalibacterium prausnitzii (Supplementary Fig. 4a, Supplementary Fig. 3), a bacterium 169 

reported to produce butyrate and metabolize arsenic 24, positively associated with 170 

L−homocitrulline, phosphoserine, negatively associated with vitamin A, mercury, as well 171 

as with specific TCR V(D)J including positive correlation with TRBV27_TRBJ2.3 and 172 

TRBV27_TRBJ2.5 and negative correlation with TRBV20−1:TRBJ2−4 (Supplementary 173 

Fig. 4a, Supplementary Table 3). The third cluster represented by glutamic acid showed 174 

negative associations with previously reported bacteria implicated with lower BMI such 175 
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as Alistipes shahii, Bacteroides cellulosilyticus, Ruminococcus lactis and Eubacterium 176 

eligens  16  in this large cohort (Supplementary Fig. 4a), consistent with higher glutamic 177 

acid in individuals with obesity or insulin resistance 21,25, and here we tentatively 178 

identified their associated TCRs (Supplementary Fig. 4a). 179 

Moreover, gut microbiome functional potential showed specific associations with TCR 180 

immune repertoire. The gut microbial module (GMM) 26 for homoacetogenesis 181 

(production of acetate from hydrogen and carbon dioxide) displayed widespread negative 182 

associations, most notably with TRBV7-8:TRBJ2-2 (Supplementary Fig. 4b). TRBV7-8 183 

frequency had been reported to be higher in Pima Indian individuals with Type 2 diabetes 184 

27 (Supplementary Table 3i). Modules for degradation of arginine and lysine, degradation 185 

of lactose and galactose, also associated with a number of VJs (Supplementary Fig. 4b). 186 

In the validation cohort, associations with fecal microbiome modules such as lysine 187 

degradation, mucin degradation, lactose and galactose degradation, sulfate reduction were 188 

validated (Supplementary Fig. 4b, Supplementary Table 3f), which was impressive given 189 

the differences in trace metals and other metabolites between the two cohorts (Fig. 3, 190 

Supplementary Table 1). So, from both taxonomic and functional points-of-view, the gut 191 

microbiome is involved in the metabolome-immune interplay in circulation, with 192 

important new leads for experimental investigations.  193 

Biomarkers for hyperuricemia and cardiometabolic diseases 194 

Hyperuricemia is common in the East Asian population, and urate is excreted in urine or 195 

through the gastrointestinal tract. In our cohort, serum uric acid showed negative 196 

correlations with gut bacteria such as Faecalibacterium prausnitzii, Alistipes shahii, 197 

Oscillospiraceae and Bacteroides intestinalis (Fig. 4), adjusted for medication and 198 
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dietary supplements. Moreover, serum uric acid positively correlated with vitamins 199 

(vitamin A, B5, D3 and E), amino acids (glutamic acid and alanine), trace elements 200 

(arsenic and mercury), while negatively associated with testosterone (Fig. 4). The 201 

negative associations between fecal Butyricimonas virosa, Odoribacter splanchnicus and 202 

plasma alanine were consistent with butyrate production from amino acids 203 

(Supplementary Table 3i)28,29, which together with methylhistidines hinted at a meat-204 

excess diet 30. Self-reported dietary structure indeed showed association with serum uric 205 

acid (Supplementary Table 3j). This is the first set of large-scale evidence for gut 206 

microbiome dysbiosis in hyperuricemia, together with hormonal, metabolic and 207 

potentially immunological differences. 208 

We next defined a score according to 8 routine blood parameters and 80 fecal 209 

microbiome features for cardiometabolic disease risk (see Methods) in this young cohort 210 

and tested it in previously published case-control samples. With the fecal markers alone, 211 

metagenomic samples from Chinese patients with atherosclerotic cardiovascular disease 212 

(ACVD), liver cirrhosis, obesity and Crohn’s disease all scored higher compared to 213 

control samples without the disease (P <0.05) (Supplementary Fig. 5a), while those from 214 

diseases such as colorectal cancer, rheumatoid arthritis and medication-unstratified T2D 215 

did not (Supplementary Fig. 5a) 16,21,31–35. The clinical parameters help clarified T2D and 216 

Crohn’s disease (Supplementary Fig. 5b). Thus, although regional differences and 217 

misidentifications remain a concern, we illustrate the potential for population-wide 218 

screens of cardiometabolic diseases using the fecal microbiome. 219 

Biomarkers for colorectal cancer 220 
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This young multi-omic cohort also provide more insight into the relationship between gut 221 

microbiome, plasma metabolome and colorectal cancer (CRC). Both the microbiome and 222 

the plasma metabolome are being actively studied for CRC biomarkers, but to our 223 

knowledge they have not been investigated in the same cohort. We see here that 224 

previously reported CRC-enriched bacteria 1,33,36,37 showed associations with plasma 225 

metabolites regardless of statistical adjustment for covariates (Supplementary Table 3a). 226 

Peptostreptococcus stomatis positively associated with plasma leucine, phenylalanine, 227 

alanine, tyrosine, as well as sarcosine, a metabolite studied for prostate cancer and a 228 

degradation intermediate of glycine betaine 38,39 (Supplementary Fig. 6). 229 

Enterobactericeae including Escherichia coli, Klebsiella pneumoniae, Enterobacter 230 

cloacae and Citrobacter freundii positively associated with sarcosine, hydroxylysine, 231 

branched chain amino acids, tyrosine, tryptophan, 1−methylhistidine, hydroxyproline, 232 

and argininosuccinic acid (Supplementary Fig. 6). 1-methylhistidine is a marker for 233 

habitual meat intake, especially red meat 30. Bacteria such as Bacteroides 234 

thetaiotaomicron, Butyricimonas virosa were more associated with 3-methylhistidine 235 

(Supplementary Table 3a). Besides, the butyrate-producing E. eligens positively 236 

associated with fruit and vegetable intake, while negatively associated with plasma 237 

alanine (Fig. 4a, Supplementary Fig. 6). A number of these associations were also 238 

observed in the validation cohort, e.g. Enterobacter cloacae and hydroxylysine, E. 239 

eligens and alanine (Supplementary Table 3a). These results corroborate fecal markers of 240 

CRC with plasma metabolites, and suggest further studies on the long-term interplay 241 

between dietary metabolites and bacteria for CRC etiology and threshold for intervention. 242 

Physical fitness, exercising and sleeping reflected in the gut microbiome 243 
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Vital capacity, a commonly used index to assess lung function, positively associated with 244 

bacteria such as A. shahii, F. prausnitzii and Bifidobacterium adolescentis, while 245 

negatively correlated with disease-related bacteria including Clostridium clostridioforme, 246 

Ruminococcus gnavus and E. coli, regardless of statistical adjustments (Fig. 2, Fig. 5, 247 

Supplementary Table 3e). Hand grip strength, a protective factor for cardiovascular 248 

casualty 40, negatively associated with E. coli (Fig. 5). Age and sex stratified vertical 249 

jump score (Supplementary Table 4) negatively associated with E. coli, while positively 250 

associated with B. cellulosilyticus, B. intestinalis, Eubacterium rectale, etc. Bacteroides 251 

cellulosilyticus and B. stercorirosoris, which associated with exercise intensity, even 252 

correlated with a faster reaction time (Fig. 5), reminding us with associations between B. 253 

cellulosilyticus and aldosterone, B. stercorirosoris and folic acid in both cohorts 254 

(Supplementary Table 3a). Moreover, gut microbiome diversity (Shannon index) 255 

associated with favorable scores in most of the fitness tests (Supplementary Table 2a). 256 

Besides, individuals who stay up until after midnight also showed negative correlations 257 

with Holdemania filiformis, Veillonella atypica and 25-hydroxy vitamin D3/D, while 258 

positively correlated with Clostridium hatheway, Clostridium phoceensis, mercury, 259 

selenium, arsenic, vitamin A, hydroxyproline and phosphoserine (Supplementary Fig. 2a, 260 

Supplementary Fig. 5, Supplementary Table 3b). Thus, sleeping is also a factor to 261 

consider for a complete understanding of the gut microbiome. 262 

Species from yogurt in the healthy gut microbiome 263 

Besides defecation frequency and gender, yogurt consumption explained a notable 264 

portion of variances in the gut microbiome (Fig. 3, Supplementary Table 2b). A recent 265 

study casted doubt over the health benefits of probiotics, concluding that colonization of 266 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/585893doi: bioRxiv preprint 

https://doi.org/10.1101/585893


 

14 
 

the bacteria was highly variable between individuals 11. In both our large cohorts, 267 

Streptococcus thermophilus, a species included in commercial yogurt mainly for its 268 

thermal stability and metabolic support for other strains, was consistently detected in 269 

yogurt eaters, and scaled with self-reported frequency of yogurt consumption (Fig. 6, 270 

Supplementary Fig. 7). Bifidobacterium animalis, likely representing the star strain from 271 

CHR HANSEN, B. animalis subsp. lactis BB-12, was also enriched in yogurt eaters, and 272 

fecal relative abundance of B. animalis associated with less stress, less bilirubin, lower 273 

diastolic blood pressure, as well as with TCR V(D)J combinations (Fig. 6d), suggesting 274 

immune modulation. The association between B. animalis and TRBV5.6:TRBJ2.5 was 275 

also observed in the validation cohort (Supplementary Table 3c), while the other 276 

parameters were unfortunately not available. In contrast to S. thermophilus, B. animalis, 277 

and Veillonella, there was no significant increase in any Lactobacillus strains (Fig. 6). 278 

Those who used to take yogurt also showed less Clostridium bolteae, a bacterium known 279 

to be elevated in a number of cardiometabolic diseases 1,16. Intriguingly, fecal C. bolteae 280 

associated with plasma triglyceride, uric acid, phosphoserine, vitamin A, and mercury 281 

(Fig. 6e), offering an explanation for epidemiological evidence of yogurt consumption 282 

and reduced risk of gout 41. In the validation cohort, C. bolteae also associated with 283 

mercury and to a lesser extent vitamin A (the vitamin A association was sensitive to 284 

covariates, Supplementary Table 3a). Besides, yogurt consumption was associated with a 285 

number of favorable measurements such as higher HDL (high-density lipoprotein) 286 

cholesterols, lower uric acid and triglycerides, less cysteine, mercury and hydroxyproline 287 

(Fig. 6a). 288 
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Regarding Bifidobacterium in the gut microbiome, however, individuals who consumed 289 

milk enriched for B. longum, B. catenulatum and B. pseudocatenulatum (Fig. 6a, b), 290 

implying that some of the yogurt-associated differences come from its exogenous strains 291 

such as S. thermophilus and B. animalis, as well as less C. bolteae. The higher 292 

Bifidobacterium spp., and lower Blautia wexlerae and Ruminococcus sp. 5_1_39BFAA 293 

associated with milk intake were validated in the additional 1404 individuals 294 

(Supplementary Table 3). Milk drinking also associated with vitamin B2, B5, B6, HDL, 295 

lymphocytes, etc. in the blood, vital capacity, and psychological scores (Fig. 6a, b, 296 

Supplementary Fig. 7). 297 

 298 

Discussion 299 

Insights from multi-omics 300 

In summary, our trans-omic investigation of thousands volunteers establish an 301 

unprecedented reference data set for the human gut microbiome. Judging from the 302 

associations, it appears as though a number of factors in circulation crosstalk with the gut 303 

microbiome, and then manifest on the face, in the head and in fitness tests. Levels of trace 304 

elements, such as mercury, arsenic and selenium, as important cofactors for bacteria 305 

respiration and other functions 23, should be measured even in uncontaminated regions, 306 

and in individuals showing normal levels of these elements. Although rice is often 307 

studied for such contaminants, exposure can be from other food, drink, air and soil 308 

sources42(https://www.fda.gov/food/metals/arsenic-food-and-dietary-supplements). Our 309 

results suggest that commensal microbial metabolism of trace elements might help 310 

determine their levels in the blood, and influence immune functions. 311 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/585893doi: bioRxiv preprint 

https://doi.org/10.1101/585893


 

16 
 

The PBMC TCRβ CDR3 V(D)J usage in such a large cohort is a great resource for 312 

discovering microbial antigens other than those from traditional pathogens. While some 313 

TRBV and TRBJ segments are more frequent than others 43, we do not yet know how they 314 

correspond to T cell sub-populations. Existing studies on TCR have been focusing on 315 

pathogens, autoimmune diseases and cancer. For example, TCR profiles of tumor-316 

resident Treg (regulatory T) cells have been shown to significantly overlap with those of 317 

circulating Treg cells 44; immune phenotype of peripheral blood Treg II cells was not only 318 

similar to that of intratumoral Treg cells, but also predicted future relapse of breast cancer 319 

patients 45. A high diversity in the T cell immune repertoire is believed to be preferable, 320 

but the T cell immune repertoire diversity has been reported to be unchanged after a 3-321 

month switch from omnivorous to vegetarian and lower in long-term vegetarians 46. In 322 

our analyses of this cohort, the overall diversity (Immunity index, Methods) was not the 323 

most important factor that predicted other omics, yet could be reflected by metabolites, 324 

physical fitness tests, lifestyle and skin features (RFCV R ~ 0.2, Fig. 2,3). We identify 325 

clustering patterns of specific TCRβ CDR3 VJ joining with plasma metabolites including 326 

vitamins, trace elements and amino acids (Supplementary Fig. 4a). The chains of 327 

causality remain to be fully elucidated; yet, it is likely to be a two-way interplay for 328 

metabolite-gut microbiome, metabolite-T cells, and gut microbiome-T cells. Our results 329 

imply long-term differences in these features in apparently healthy individuals. A similar 330 

speculation could be made for facial skin features, which we expect to be resilient against 331 

topical interventions judging from the strong associations with blood parameters. 332 

We have tentatively identified gut bacteria associated with each ABO blood type. A 333 

larger proportion of blood type A in Europeans compared to East Asians might help 334 
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explain the greater abundance of Lachospiraceae bacterium 12,47. Blood type B is more 335 

prevalent in northern Chinese, and the blood type B-enriched mucin-degrading bacterium 336 

R. torques has recently been reported to show an association with blood glucose 48 and 337 

was also associated with ulcerative colitis 49 and a Bristol stool score of 1 or 2 338 

(Supplementary Fig. 2a). Megaspaera micronuciformis, seen in association with blood 339 

type O, can produce butyrate from acetate 50. Genetic studies of the gut microbiota have 340 

not yet reported genome-wide significant associations with ABO blood type genes 341 

themselves 51–54, while multiple studies have reported impact of FUT2 secretor/non-342 

secretor status on gut microbiota composition 55–57. Tentative associations here are yet to 343 

be matched with in vitro studies with the glycans 58,59. 344 

Differences in gut microbiome composition between sexes and a greater microbial 345 

diversity in females have recently been reported in the LifeLines Deep cohort, yet the gut 346 

microbiome in females was influenced by oral contraceptives, ovariectomy as well as 347 

antibiotics for vaginal or pelvic infections 60. Males of Hadza hunter-gatherers showed 348 

differences in gut microbiota compared to females 61, including higher Eubacterium 349 

and Blautia in men which were also recapitulated in our Chinese cohort (E. dolichum, B. 350 

wexlerae). Interestingly, E. dolichum associated with a dietary structure of more meat 351 

instead of fruit and vegetables, while B. wexlerae scaled negatively with milk 352 

consumption (Supplementary Fig. 2, Fig. 6). The evolutionary implications remain 353 

unclear. 354 

A baseline of the gut microbiome with deviations towards diseases 355 

Metagenome-wide association studies (MWAS) have documented gut microbial 356 

perturbations in a growing list of diseases by comparing cases versus controls. Here we 357 
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provide a high-depth metagenomic cohort, the mean age for which did not exceed 30 358 

years old. Alarmingly enough, trends for cardiometabolic diseases and colorectal cancer 359 

can already been seen from the fecal microbiome and a few parameters in the blood. The 360 

set of healthy gut microbes for leanness are increasingly clear 16, such as A. shahii, F. 361 

prausnitzii, E. eligens and B. cellulosilyticus. And we have a better idea how to increase 362 

their relative abundances. Interestingly, we observed few association with Akkermansia, 363 

which may indeed be too diverse among individuals 5,62 or require mucosal sampling. The 364 

list of potentially harmful gut microbes are also increasingly clear; future studies are 365 

needed to confirm whether we can decrease E. coli and R. gnavus with exercising and 366 

diet, fend off C. boltae with yogurt, etc. 367 

While an older cohort would be needed to look at type 2 diabetes 63,64, hyperuricemia is 368 

common in this cohort (Supplementary Table 1). A. shahii negatively associated with 369 

plasma tryptophan (Fig. 4, Supplementary Table 3i), and hyperuricemia has been 370 

reported to skew tryptophan metabolism towards kynurenine production in mice models 371 

65, instead of indole reported for A. shahii 66, potentially modulating signaling through 372 

aryl hydrocarbon receptors (AhR) 67. One of the bacteria negatively associated with 373 

serum uric acid, F. prausnitzii, has been reported to encode a methyltransferase for 374 

arsenic detoxification (Supplementary Table 3i) 24. IL-1β, the major cytokine responsible 375 

for gout 68, has been associated with urinary level of arsenic 69. Co-stimulation of patient-376 

derived PBMCs with monosodiurm urate crystals and TLR2 or TLR4 (toll-like receptors) 377 

ligands have been shown to disrupt IL-1β/ IL-1Ra (IL1 receptor antagonist) balance 70, 378 

consistent with involvement of microbes in gout. 379 
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Genetic potential for histidine degradation instead of synthesis have been observed to 380 

increase in CRC relative to healthy controls according to metagenomic studies 37,71. 1-381 

methylhistidine, a marker for habitual meat intake 30, could be metabolized into histidine. 382 

Plasma level  of  the  amino acid proline  was  reported to increase in a mouse  model of 383 

CRC 72, but found in another study to decrease in human CRC 73. In this young cohort 384 

from China, we did not see significant associations between proline and known gut 385 

microbiome markers of CRC. Hydroxyproline, on the other hand, is better predicted by 386 

the gut microbiome composition compared to proline (Fig. 3), and associated with meat 387 

consumption, staying up until after 0 am (Supplementary Fig. 7). Enterobacteriaceae such 388 

as Escherichia coli and Klebsiella pneumoniae positively associated with hydroxyproline 389 

in this cohort. A recent study analyzed fecal metabolites together with fecal microbiome 390 

and reported among others an increase in branched chain amino acids and aromatic amino 391 

acids in CRC 74. Here we observe plasma levels of these amino acids to associate with 392 

CRC markers such as P. stomatis, and E. coli, while the fecal metagenomic potential for 393 

leucine biosynthesis was control-enriched 37,74, implying that leucine was normally not in 394 

excess. 395 

We also find it intriguing that decarboxylases appear generally important for bacterial 396 

stress response in the microbiome, i.e. to maintain a balanced pH for themselves. The top 397 

one for gut microbes may be glutamate decarboxylase (produces GABA (γ-aminobutyric 398 

acid) from glutamate), while histidine decarboxylase in the female reproductive tract 399 

might contribute to menstrual pains 75. Besides, recent studies identified tyrosine 400 

decarboxylases in gut microbes that could digest the medication levodopa used to treat 401 

Parkinson’s disease 76,77. 402 
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Behavioral changes to be trialed for a healthy gut microbiome? 403 

Although effects of sleep fragmentation on hemopoiesis have been seen despite antibiotic 404 

treatment 78, our results nonetheless suggest that the gut microbiome may have an 405 

additional role, together with trace elements, vitamins, and host genetics 79. The less 406 

hypocretin in mice subjected to sleep fragmentation promoted atherosclerosis 78. The 407 

increased adiposity and decreased lean mass with sleep loss also involved toll-like 408 

receptors (TLRs) 80,81, and we identify cardiometabolic disease-associated species 409 

including Clostridium hatheway here. 410 

Potential influence of physical activity on the gut microbiota has been analyzed in small 411 

cohorts of rugby athletes 82 and colorectal cancer 37. Although more detailed information 412 

for physical activity is preferable, compliance to recordings such as Fitbit is notoriously 413 

bad in healthy individuals 83. Results from this large cohort at least suggest that 414 

exercising might help improve cardio-pulmonary function (grip strength, vital capacity) 415 

to decrease incidence of cardiometabolic diseases. Intense exercise, explored for 416 

application to individuals with diseases such as prediabetics and Alzheimer’s 84,85, may be 417 

no less important than endurance or resistance training; and our results suggest that 418 

different types of exercise could have differential impacts on the gut microbiome and the 419 

microbiome changes could be a readout for monitoring effects of training. Endurance 420 

training actually lowers testosterone 86 and could lead to hyperuricemia, especially if 421 

combined with high-fructose food and drinks and lack of dairy consumption 41. 422 

Our large-scale analyses provide substantial support for health benefits of yogurt 423 

consumption. The universally present species were Streptococcus thermophilus and 424 

Bifidobacterium animalis instead of commonly tested probiotics from Lactobacillus. An 425 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/585893doi: bioRxiv preprint 

https://doi.org/10.1101/585893


 

21 
 

orally administered strain of B. longum has been shown to persist in 30% of individuals 426 

for at least 6 months 87, while we failed to detect in feces an L. casei strain gavaged to 427 

rats 88,89, suggesting general differences between Bifidobacterium and Lactobacillus. The 428 

strains used by Zmora et al. included a number of Lactobacillus, Bifidobacterium, as well 429 

as Streptococcus and Lactococcus, all detectable in various gastrointestinal sites despite 430 

laxative and colonoscopy 11. One potential explanation for the association with desirable 431 

cardiometabolic and psychological scores observed in our study for yogurt or milk is the 432 

production of metabolites such as folate and GABA  by S. thermophilus, Bifidobacterium 433 

and Lactobacillus 90,91. Moreover, Lactobacilli have been reported to sequester heavy 434 

metals including lead and cadmium 92. All of these live or dead probiotics could 435 

potentially exert functions on the immune system or even the brain. The positive 436 

association with endogenous Bifidobacterium species with milk intake is more likely due 437 

to live bacteria which help metabolize the lactose in this largely lactose-intolerant 438 

population. It remains to be seen whether and how diary consumption affects the gut 439 

microbiome in other cohorts, and there appears to be regional differences in China 440 

already. 441 

Thus, this study provides a young reference for the gut microbiome with physical fitness 442 

test and questionnaire data, and reveals interrelationship with other omics such as trace 443 

elements, hormones and immune repertoire that have so far not been included in other 444 

study designs. There is a lot more to investigate both in vitro and in vivo by researchers 445 

across disciplines. Interventional as well as mechanistic studies will be needed to see how 446 

physical activity, well-timed sleeping and dietary interventions such as yogurt, milk and 447 
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vegetables might improve the gut microbiome, hormone levels, cardiometabolic and 448 

mental health. 449 

 450 

Data and materials availability: Metagenomic sequencing data for all samples have 451 

been deposited to the CNSA (https://db.cngb.org/cnsa/) of (CNGB) database under the 452 

accession code CNP00 00426, CNP0000289. 453 
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 720 

 721 

 722 

 723 

 724 

Online Methods： 725 

Study Cohort  726 

As part of 4D-SZ, all the >2000 volunteers for the first cohort were recruited 727 

between May 2017 and July 2017 during a physical examination. The 1400 volunteers for 728 

the second cohort were also recruited in 2017, with no overlaps. The samples in each 729 

omics are shown in Supplementary Table 1c. Baseline characteristics of the cohort are 730 

shown in Supplementary Table 1b, 1d. 731 

The study was approved by the Institutional Review Boards (IRB) at BGI-Shenzhen, 732 

and all participants provided written informed consent at enrolment. 733 

 734 

Demographic Data Collection 735 

The lifestyle questionnaire contained 56 entries involving age, marital status, disease 736 

history of the volunteer and his/her family, eating and exercise habits (Supplementary 737 

Table 1b, 1d). The psychological questionnaire contained 18 entries for the evaluation of 738 

irritability, dizziness, frustration, fear, appetite, self-confidence, resilience 739 

(Supplementary Table 1b). 740 

 741 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/585893doi: bioRxiv preprint 

https://doi.org/10.1101/585893


 

30 
 

Samples Collection  742 

Fecal samples were self-collected by volunteers, using a kit containing a room 743 

temperature stabilizing reagent to preserve the metagenome93. The samples were frozen 744 

on the same day. The overnight fasting blood samples were drawn from a cubital vein of 745 

volunteers by the doctors. 746 

 747 

DNA extraction and metagenomics shotgun sequencing 748 

DNA extraction of the stored fecal samples within the next few months was 749 

performed as previously described (Qin et al., 2012). Metagenomic sequencing was done 750 

on the BGISEQ-500 platform (100bp of singled-end reads for fecal samples and four 751 

libraries were constructed for each lane) 94.  752 

 753 

Amino Acid Measurements 754 

40 µl plasma was deproteinized with 20 µl 10% (w/v) sulfosalicylic acid (Sigma) 755 

containing internal standards, then 120 µl aqueous solution was added. After centrifuged, 756 

the supernatant was used for analysis. The analysis was performed by ultra high pressure 757 

liquid chromatography (UHPLC) coupled to an AB Sciex Qtrap 5500 mass spectrometry 758 

(AB Sciex, US) with the electrospray ionization (ESI) source in positive ion mode. A 759 

Waters ACQUITY UPLC HSS T3 column (1.8 µm, 2.1 × 100 mm) was used for amino 760 

compound separation with a flow rate at 0.5 ml/min and column temperature of 55 °C. 761 

The mobile phases were (A) water containing 0.05% and 0.1% formic acid (v/v), (B) 762 

acetonitrile containing 0.05% and 0.1% formic acid (v/v). The gradient elution was 2% B 763 

kept for 0.5 min, then changed linearly to 10% B during 1 min, continued up to 35% B in 764 
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2 min, increased to 95% B in 0.1 min and maintained for 1.4 min. Multiple Reaction 765 

Monitoring (MRM) was used to monitor all amino compounds. The mass parameters 766 

were as follows, Curtain gas flow 35 L/min, Collision Gas (CAD) was medium, Ion 767 

Source Gas 1 (GS 1) flow 60 l/min, Ion Source Gas 2 (GS 2) flow 60 l/min, IonSpray 768 

Voltage (IS) 5500V, temperature 600 °C. All amino compound standards were purchased 769 

from sigma and Toronto research chemical (TRC).  770 

 771 

Hormone Measurements 772 

250 µl plasma was diluted with 205 µl aqueous solution, For SPE experiments, HLB 773 

(Waters, USA) was activated with 1.0 ml of dichloromethane, acetonitrile, methanol, 774 

respectively and was equilibrated with 1.0 ml of water. The pretreated plasma sample was 775 

loaded onto the cartridge and was extracted using gravity. Clean up was accomplished by 776 

washing the cartridges with 1.0 ml of 25% methanol in water. After drying under 777 

vacuum, samples on the cartridges were eluted with 1.0 ml of dichloromethane. The 778 

eluted extract was dried under nitrogen and the residual was dissolved with 25% 779 

methanol in water and was transferred to an autosampler vial prior to LC–MS/MS 780 

analysis. The analysis was performed by UHPLC coupled to an AB Sciex Qtrap 5500 781 

mass spectrometry (AB Sciex, US) with the atmospheric pressure chemical ionization 782 

(APCI) source in positive ion mode. A Phenomone Kinetex C18 column (2.6 µm, 2.1 × 783 

50 mm) was used for steroid hormone separation with a flow rate at 0.8 ml/min and 784 

column temperature of 55 °C. The mobile phases were (A) water containing 1mM 785 

Ammonium acetate, (B) Methanol containing 1mM Ammonium acetate. The gradient 786 

elution was 25% B kept for 0.9min, then changed linearly to 40% B during 0.9min, 787 
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continued up to 70% B in 2 min, increased to 95% B in 0.1 min and maintained for 1.6 788 

min. Multiple Reaction Monitoring (MRM) was used to monitor all steroid hormone 789 

compounds. The mass parameters were as follows, Curtain gas flow 35 l/min, Collision 790 

Gas (CAD) was medium, Ion Source Gas 1 (GS 1) flow 60 l/min, Ion Source Gas 2 (GS 791 

2) flow 60 l/min, Nebulizer Current (NC) 5, temperature 500 °C. All steroid hormone 792 

profiling compound standards were purchased from sigma, Toronto research chemical 793 

(TRC), Cerilliant and DR. Ehrenstorfer.  794 

 795 

Trace element Measurements   796 

200 µl of whole blood were transferred into a 15 mL polyethylene tube and diluted 797 

1:25 with a diluent solution consisting of 0.1% (v/v) Triton X-100, 0.1% (v/v) 798 

HNO3,2mg/L AU, and internal standards (20 µg/L). The mixture was sonicated for 799 

10min before ICP-MS analysis. Multi-element determination was performed on an 800 

Agilent 7700x ICP-MS (Agilent Technologies, Tokyo, Japan) equipped with an octupole 801 

reaction system (ORS) collision/reaction cell technology to minimize spectral 802 

interferences. The continuous sample introduction system consisted of an autosampler, a 803 

quartz torch with a 2.5-mmdiameter injector with a Shield Torch system, a Scott double-804 

pass spray chamber and nickel cones (Agilent Technologies, Tokyo, Japan). A glass 805 

concentric MicroMist nebuliser (Agilent Technologies, Tokyo, Japan) was used for the 806 

analysis of diluted samples. 807 

 808 

Water-soluble Vitamins Measurements 809 
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200 µl plasma were deproteinized with 600 µl methanol (Merck), water, acetic acid 810 

(9:1:0.1) containing internal standards, thiamine-(4-methyl-13C-thiazol-5-yl-13C3) 811 

hydrochloride (Sigma-Aldrich), levomefolic acid-13C, d3, riboflavin-13C,15N2, 4-812 

pyridoxic acid-d3 and pantothenic acid-13C3,15N hemi calcium salt (Toronto Research 813 

Chemicals). 500 µl supernatant were dried by nitrogen flow. 60 µl water were added to 814 

the residues, vortexed, the mixture was centrifuged and the supernatant was for analysis. 815 

The analysis was performed by UPLC coupled to a Waters Xevo TQ-S Triple Quad mass 816 

spectrometry (Waters, USA) with the electrospray ionization (ESI) source in positive ion 817 

mode. A Waters ACQUITY UPLC HSS T3 column (1.7 µm, 2.1 × 50 mm) was used for 818 

water-soluble vitamins separation with a flow rate at 0.45 ml/min and column 819 

temperature of 45 °C. The mobile phases were (A) 0.1 % formic acid in water, (B) 0.1% 820 

formic acid in methanol. The following elution gradient was used: 0–1 min,99.0%–99.0% 821 

A; 1–1.5 min, 99.0% A–97.0% A; 1.5–2 min, 97.0% A–70.0% A,2–3.5 min, 70% A–822 

30% A; 3.5–4.0 min, 30%A–10.0%A; 4.0–4.8 min, 10%A–10.0%A; 4.9–6.0 min, 823 

99.0%A–99.0%A. Multiple Reaction Monitoring (MRM) was used to monitor all water-824 

soluble vitamins. The mass parameters were as follows, the capillary voltages of 3000V 825 

and source temperature of 150°C were adopted. The desolvation temperature was 500°C. 826 

The collision gas flow was set at 0.10 ml/min. The cone gas and desolvation gas flow 827 

were 150 l/h and 1000 l/h, respectively. All water-soluble vitamins standards were 828 

purchased from Sigma-Aldrich (USA). 829 

 830 

Fat-soluble Vitamins Measurements  831 
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250 µl plasma were deproteinized with 1000 µl methanol and acetonitrile, (v/v,1:1) 832 

(Fisher Chemical) containing internal standards, all-trans-Retinol-d5, 25-833 

HydroxyVitamin-D2-d6, 25-HydroxyVitamin-D3-d6, vitamin K1-d7, α-Tocopherol-d6 834 

(Toronto Research Chemicals). 900 µl supernatant were dried by nitrogen flow. 80 µl 835 

80% acetonitrile were added to the residues, vortexed, the mixture was centrifuged, and 836 

the supernatant was used for analysis. The analysis was performed by UPLC coupled to 837 

an AB Sciex Qtrap 4500 mass spectrometry (AB Sciex, USA) with the atmospheric 838 

pressure chemical ionization (APCI) source in positive ion mode. A Waters ACQUITY 839 

UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) was used for fat-soluble vitamins 840 

separation with a flow rate at 0.50 ml/min and column temperature of 45 °C. The mobile 841 

phases were (A) 0.1 % formic acid in water, (B) 0.1% formic acid in acetonitrile. The 842 

following elution gradient was used: 0–0.5 min,60.0%–60.0% A; 0.5–1.5 min, 60.0% A–843 

20.0% A; 1.5–2.5 min, 20.0% A–0% A,2.5–4.5 min, 0% A–0% A; 4.5–4.6 min, 0%A–844 

60.0%A; 4.6–5.0 min, 60.0%A–60.0%A. Multiple Reaction Monitoring (MRM) was 845 

used to monitor all fat-soluble vitamins. The mass parameters were as follows, Curtain 846 

gas flow 30 l/min, Collision Gas (CAD) was medium, Ion Source Gas 1 (GS 1) flow 40 847 

l/min, Ion Source Gas 2 (GS 2) flow 50 l/min, Nebulizer Current (NC) 5, temperature 400 848 

°C. All fat-soluble vitamins standards were purchased from Sigma-Aldrich (USA), 849 

Toronto research chemical (TRC). 850 

 851 

Immune indices Measurements 852 

10 ml whole blood was centrifuged at 3,000 r/min for 10 min, then 165 µl buffy coat 853 

were obtained to extract DNA using MagPure Buffy Coat DNA Midi KF Kit (Magen, 854 
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China). The DNA was sequenced on the BGISEQ- 500 platform using 200 bp singled-855 

end reads. The data processing was performed using Immune IMonitor 95. VJ Gene use 856 

diversity is shannon index of VJ gene usage profile. Immune cell diversity is Shannon 857 

index of CDR3. Immune cell species result is unique CDR3 number. Immunity 858 

uniformity is CDR3 pielou index. Score of above index is the sample rank in population. 859 

 860 

Medical Parameters  861 

All the volunteers were recruited during the physical examination. The medical test 862 

including blood tests, urinalysis, routine examination of cervical secretion. All the 863 

medical parameters were measured by the physical examination center and shown in 864 

Supplementary Table 1b, 1d. 865 

 866 

Facial Skin feature 867 

The volunteer's frontal face without makeup was photographed by VISIA-CRTM 868 

imaging system (Canfield Scientific, Fairfield, NJ, USA) equipped with chin supports 869 

and forehead clamps that fix the face during the photographing process and maintain a 870 

fixed distance between the volunteers and the camera at all times. Eight indices were 871 

obtained including spots, pores, wrinkles, texture, UV spots, porphyrins, brown spots and 872 

red area from the cheek and forehead, respectively (Supplementary Table 1b). The 873 

percentile of index was calculated based on the index value ranked in the age-matched 874 

database, the higher the better (Supplementary Table 1b). 875 

 876 

Physical fitness test 877 
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8 kinds of tests were performed to evaluate volunteers’ physical fitness condition 878 

(Supplementary Table 1b). Vital capacity was measured by HK6800-FH (Hengkangjiaye, 879 

China). Eye-closed and single-legged standing was measured by HK6800-ZL. Choice 880 

reaction time was measured by HK6800-FY. Grip strength was measured by HK6800-881 

WL. Sit and reach was measured by HK6800-TQ. Sit-ups was measured by HK6800-YW. 882 

Step index was measured by HK6800-TJ. Vertical jump was measured by HK6800-ZT. 883 

We got a measure value from each test. Then each measure value score was assigned 1 884 

through 5 based on its corresponding age-matched national standards (Supplementary 885 

Table 4). Both the direct measurements and the scores were used for analyses 886 

(Supplementary Table 2, Supplementary Table 3). 887 

 888 

Quality control, taxonomic annotation and abundance calculation  889 

The sequencing reads were quality-controlled as described previously 94. Taxonomic 890 

assignment of the high-quality fecal metagenomic data was performed using the reference 891 

gene catalog comprising 9,879,896 gene12. Taxonomy of the fecal MGSs/MLGs were 892 

then determined from their constituent genes, as previously described1,13,14,35.  893 

 894 

The factors in each type of omics predicted by other type omics 895 

The factors in each type of omics were regressed against the relative abundances of 896 

mgs profile (found in at least 10% of the samples) in the fecal samples using default 897 

parameters in the RFCV function from randomForest package in R. Dichotomous 898 

variables (such as gender ) and unordered categorical variable (such as region)  were re-899 

coding into dummy variables. Frequency items such as yogurt eating habit were assigned 900 
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integers. RFCV R defined as spearman’s correlation between measured value and 5-fold 901 

cross-validation predicted value was calculated, and then rank the top 5 predictable 902 

factors in each omics type. The same prediction process was done between any two types 903 

of omics. Then ggplot2 package in R was used to boxplot predict power of target omics 904 

factors by all kinds of other predictor omics (Fig. 2b). 75% quantile RFCV R between 905 

any two types omics (from a to b and from b to a) was used to construct the bi-direction 906 

global omics correlation network using CytoScape (Fig. 2a). R pheatmap and barplot was 907 

used to make heatmap plot for some representative factors (Fig. 2c, Supplementary Fig. 908 

1). 909 

 910 

Adjusting for potential confounders 911 

Associations between gut microbiome MGSs, functional modules, Shannon 912 

diversity, and variance explained and other  omics data were all adjusted for factors that 913 

probably influence the gut microbiome, including gender, age, BMI, health products 914 

(amino acid, vitamin, calcium), antivirus, antibiotics, drugs (currently using 915 

antihypertensive drugs, hyperglycemic drugs, lipid lowering drugs), days since last 916 

menstrual bleeding, pregnant, lactation, bowel problem (defecation). Besides the above 917 

basic set of confounders, we also show the results adjusting for more potential 918 

confounders including dietary (dietary taste spicy, sweet, salty, oil, or light, high sugar 919 

and high-fat diet habit, fruit and vegetable intake, favors fat meat), exercise (exercise 920 

frequency, exercise intensity, average time per exercise), drinking, smoking and Bristol’s 921 

stool score. 922 

 923 
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Benjamini-Hochberg multiple hypothesis testing correction 924 

The multiple hypothesis testing Benjamini-Hochberg corrections are done for one 925 

source target omics pair each time for Fig. 4-6, except immune index and gut microbe 926 

pair which BH-adjust was done on one immune index each time. We show two versions 927 

of Benjamini-Hochberg correction for Shannon and other omics in Supplementary Table 928 

2a. One of the BH adjust was done within one omics each time. Another adjust was done 929 

overall on all omics. 930 

  931 

Robust association network construction between any two omics data type including 932 

fecal microbial MGSs 933 

An rank average method 96 was used to combine the results of multiple inference 934 

methods to make a robust omics association network. We combined two non-linear 935 

models, one-to-many randomforest and one-to-one partial spearman’s correlation, to test 936 

the association between factor from any two types omics.  937 

Step 1: Data preprocessing.  938 

Dichotomous variables (such as gender) and unordered categorical variable (such as 939 

region) were re-coding into dummy variables. Frequency items such as yogurt eating 940 

habit were assigned integers. We removed variables following these rules: (i) The 941 

microbial species less than 10% in all the samples. (ii) Near zero variance. (iii) With 942 

more than 70% missing value. Missing values were filled with median. Outliers were 943 

defined as outside of the 95% quartiles and outliers samples are removed.  944 

Step 2: Computation of associations using multiple inference methods.  945 
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For each factor in one omics, we did regression using RFCV function with default 946 

parameter based on all factors in one other omics and calculated RFCV R. 97. 5-fold 947 

average variable importance was output for step3. Partial spearman’s correlation (ppcor R 948 

package) between factors from any two types of omics were also output.  Potential 949 

confounders were considered as described above. We also show generalized linear model 950 

results from MaAslin R package98) with default parameters after adjusting above 951 

confounders. 952 

Step 3: Robust networks construction.  953 

To get the robust and strongest association between factors from any two type omics, 954 

in other words, to filter predictor factors and target factors, we did it in two steps. First to 955 

choose the target factors, we just kept the top 20 target factors with highest RFCV R. 956 

Then to choose predictor factors for every selected target factor, we kept predictor factors 957 

with top 30 average ranks and retained edges with partial spearman’s correlation BH-958 

adjusted pvalue <0.05.  The average rank was computed as sum of the ranks across the 959 

RFCV importance and absolute partial spearman rho. For example, metabolites as target 960 

and gut microbe as source. We regressed gut microbes against the metabolites and 961 

compute the 5-fold cross validation predict power (RFCV R) for each metabolites and 962 

partial spearman correlation. 20 metabolites with highest RFCV were kept. For each of 963 

the 20 select metabolites such as VA, average ranks across RFCV and partial spearman 964 

were done. Gut microbe biomarker for VA was found with average rank top 30th and 965 

passed the partial spearman BH-adjusted pvalue <0.05.  966 

Step 4: Network visualization.   967 
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For each target factor, top 5-10 average ranks source factor in each source omics 968 

type were selected as representative factors to make barplots using ggplot2 package (Fig. 969 

6). The pheatmap package was used to plot the common representative factors that could 970 

be strongest predicted by multiple omics data type (Fig. 2c). All the source-target factors 971 

pair RFCVR (a as source, b as target and b as source, a as target) was boxplot (Fig. 2b) 972 

using ggplot2. The ComplexHeatmap package in R was used to plot omics triadic relation 973 

(Fig. 4-6). CytoScape was also used to visualize the global omics network (Fig. 2a).  974 

 975 

Microbial metabolic syndrome risk index validation in cardiometabolic cohort. 976 

Using multi-omics analyses method described above after controlling for the 977 

potential confounders above, we picked up 80 MGSs that significantly correlated with 978 

one of the eight cardiometabolic risk factors (waist Hip Ratio, BMI, triglyceride 979 

(mmol/L), High-Density-Lipoprotein (mmol/L), serum Uric Acid (μmol/L),γ-glutamyl 980 

transpeptidase (U/L), serum alanine aminotransferase(U/L), fasting blood glucose 981 

(mmol/L) ) (Supplementary Fig. 5, 6). And they are link to the BCAA metabolites (valine 982 

/ leucine / alanine), tryptophan, glutamic acid (q<0.1, Supplementary Table 3a). For the 983 

published disease studies from China, all the MGSs abundances were derived from 984 

metagenomic shotgun data, while the 8 clinical measurements could be missing, e.g. liver 985 

cirrhosis and Crohn’s disease only had BMI available 21,31,32,34,35 (Supplementary Fig. 5, 986 

6). The microbial metabolic syndrome risk index is similar with the T2D index (Qin et al, 987 

2012). For each individual validation sample, the microbial metabolic syndrome risk 988 

index of sample � that denoted by MMSR � was computed by the formula below: 989 

���� � ����	
��� � ��/� 
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Where ��� is a scalar represents the relative abundance of MGS � in validation 990 

sample �. R� is a vector represents the relative abundance of MGS � of all samples in this 991 

cohort which served as healthy reference.  � is the sample size of this cohort that is 2183. 992 

Percentile rank PR�� is the percentage of test sample �’s MGS � relative abundance in its 993 

reference cohort frequency distribution that are equal to or lower than it. B is 12 out of 80 994 

MGS that were positively correlated with BMI and Triglyceride. G is 68 out of 80 MGS 995 

that were negatively correlated with BMI and Triglyceride. And |B| and |G| are the sizes 996 

of these two sets. We used percentile rank instead of relative abundance to avoid that the 997 

index was influenced too much by the dominant species.  998 

 999 

Figure legends: 1000 

Fig. 1 | Overview of the multi-omic cohorts. Diagram for features available from the 1001 

main cohort of 2,183 individuals and validation cohort of 1,404 volunteers. Details are 1002 

available in Supplementary Table 1. 1003 

Fig. 2 | Overview of the interrelationship between omics in the main cohort. a, 1004 

Global association strength between omics datasets. Each arrow is a 5-fold cross-1005 

validation random forest (RFCV) prediction. The direction of the arrow indicated the 1006 
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direction of prediction, used the source omics dataset to predict the target dataset. The 1007 

darkness and size of the arrow lines indicated 75% quantile of spearman’s correlation 1008 

between measured value and 5-fold cross-validation RFCV predicted value (RFCV R). b, 1009 

Detailed predict power of source omics for each target omics. Tick label in x-axis is 1010 

target omics. Title in top is source omics. Each node in box is a target factor. The color of 1011 

the node and box line indicated the target omics data type. Y-axis is the target factor 1012 

RFCV R predicted from source omics. c, Common representative factors that could be 1013 

strongest predicted by multiple omics data type. Y-axis tick label is source omics. Title is 1014 

target omics. X-axis tick label is common representative factors (target factors). The cell 1015 

color in heat map indicated the RFCV R using the omics data in y-axis to predict each 1016 

factor in x-axis.  1017 

Fig. 3 | Factors associated with gut microbiome in both cohorts. Top 45 factors with 1018 

RFCV R > 0.1 in each type of omics that are predicted by gut microbiome. Factors with 1019 

R ≤ 0.1  in main cohort  are not shown. The length of the bar indicated the rank RFCV R 1020 

using all samples and the color indicated the rank of max of RFCV R using male or 1021 

female samples only, the darker the greater. Due to missing medical data in the validation 1022 

cohort (Fig. 1, Supplementary Table 1), only red blood cell count can be validated. 1023 

Fig. 4 | Association map of the four-tiered analyses integrating the metabolites, 1024 

clinical indices, life style and the fecal microbiome. The color of heat map show the 1025 

partial spearman correlation adjusted for factors that probably influence the gut 1026 

microbiome, as shown in Supplementary Fig. 3. BH-adjusted p-value is denoted: +, q-1027 

value<0.1; *, q-value<0.05; **, q-value<0.01.  1028 
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Fig. 5 | Gut microbiome associated with physical fitness and exercise in the main 1029 

cohort.  The color of heat map shows the partial spearman correlation adjusted factors 1030 

that probably influence the gut microbiome, as shown in Supplementary Fig. 3. BH 1031 

adjusted p-value is denoted: +, q-value<0.1; *, q-value<0.05; **, q-value<0.01 1032 

Fig. 6 | Influence of yogurt and milk intake on omics in the main cohort. a-e, The top 1033 

5 factor in each omics data associated with yogurt, milk intake habit and the 1034 

Streptococcus thermophiles, Bifidobacterium animalis and Clostridium bolteae 1035 

abundance. The length of the bars represents partial Spearman’s correlation coefficient 1036 

adjusted for factors that probably influence the gut microbiome, as shown in 1037 

Supplementary Fig. 3. BH adjusted p-value is denoted: +, q-value<0.1; *, q-value<0.05; 1038 

**, q-value<0.01; ***, q-value<0.001; ****, q-value<0.0001. f, Fecal relative abundance 1039 

of S. thermophilus in volunteers with increasing frequency of yogurt consumption.  1040 
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Smoking, Drinking, Disease history, 
Eating habits, Exercise habits... 

Psychological questionnaire
(18 entries)
The evaluation of irritability, Appetite,
Dizziness, Frustration, Resilience,
Fear, Self-confidence... 
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Amino acids (plasma)
Hormones (plasma)
Vitamins (plasma)
Trace elements (whole blood)
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(buffy coat)

72 basic medical data
(9 in validation cohort)
Body measurements:
 BMI, Chest circumference, Uric acid
Routine blood test: 
 Alkaline phosphatase, Bilirubin, HDL,
 LDL, Globulin, Creatinine (serum) 

24 physical fitness data
(only in the main cohort)
Vital capacity, Grip strength, Sit-ups,
Choice reaction time, Sit and reach, 
One-leg stand with eyes closed,
Step index, Vertical jump... 

49 facial skin imaging indices
(only in the main cohort)
Spots, Pores, Wrinkles, Porphyrins, 
Texture, UV spots, Porphyrins, 
Brown spots and red area from the 
cheek and forehead, respectively. 

3,587 Healthy adults：
 The main cohort: 2,183 individuals
 The validation cohort: 1,404 individuals
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