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ABSTRACT24

Given the clinical success of immune checkpoint blockade (ICB) across a diverse set of solid25

tumors, and the emerging role for different immune infiltrates in contributing to response to ICB,26

a comprehensive assessment of the properties that dictate immune infiltrations may reveal new27

biological insights and inform the development of new effective therapies. Multiple studies have28

examined somatic and functional immune properties associated with different tumor infiltrates;29

however, germline features that associate with specific immune infiltrates in cancers have been30

incompletely characterized. Here, we analyzed over 7 million autosomal germline variants in31

the TCGA cohort (5788 European-ancestry samples across 30 cancer types) and tested for pan-32

cancer association with established immune-related phenotypes that describe the tumor immune33

microenvironment. We identified: one SNP associated with the fraction of follicular helper T34

cells in bulk tumor; 77 unique candidate genes, some of which are involved in cytokine-mediated35

signaling (e.g. CNTF and TRIM34 ) and cancer pathogenesis (e.g. ATR and AKAP9 ); and36

subnetworks with genes that are part of DNA repair (RAD51 and XPC ) and transcription37
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elongation (CCNT2 ) pathways. We found a positive association between polygenic risk for38

rheumatoid arthritis and absolute fraction of infiltrating CD8 T cells. Overall, we identified39

multiple germline genetic features associated with specific tumor-immune phenotypes across40

cancer, and developed a framework for probing inherited features that contribute to variation41

in immune infiltration.42

INTRODUCTION43

Immune checkpoint blockade (ICB) therapies have emerged as impactful treatments for a va-44

riety of cancers. The discovery of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and45

programmed cell death protein 1 (PD-1) as important modulators of the adaptive immune sys-46

tem (Tivol et al., 1995; Fife et al., 2009) led to the development of ICB therapies, which target47

these specific pathways. Antagonism of PD-1 and CTLA4, negative regulators of T cell activity,48

stimulates the host immune system to recognize and kill tumor cells. While these therapeutic49

strategies are effective in a wide variety of cancers, they elicit variable clinical response (Ribas50

and Wolchok, 2018; Keenan et al., 2019).51

52

Tumor-intrinsic features correlated with ICB clinical activity, such as mutational load and mi-53

crosatellite instability, have been characterized extensively (Snyder et al., 2014; Gentles et al.,54

2015; Rizvi et al., 2015; Rooney et al., 2015; Van Allen et al., 2015; Giannakis et al., 2016; Miao55

and Allen, 2016; Charoentong et al., 2017; Miao et al., 2018; Samstein et al., 2019). Numerous56

lines of evidence indicate that selective response to ICB is also driven by the composition of57

the tumor microenvironment (TME), particularly the immune infiltration patterns in the TME58

(Tumeh et al., 2014; Thorsson et al., 2018). Thorsson et al. (2018) conducted an immunogenomic59

analysis of over 10,000 tumor samples spanning 33 cancer types compiled by The Cancer Genome60

Atlas (TCGA), reported specific driver mutations (in genes such as NRAS and CASP8 ) cor-61

related with leukocyte levels, and demonstrated the prognostic and therapeutic implications of62

the TME composition.63

64

Germline determinants of immune infiltration in solid tumors remain incompletely character-65

ized, although germline features associated with immune traits have been found (Orrù et al.,66

2013; Roederer et al., 2015; Astle et al., 2016). Astle et al. (2016) found that common autosomal67

genotypes explain up to 21% of variance in white blood cell indices in a GWA study of 170,00068

participants. Recently, Lim et al. (2018) uncovered 103 germline SNPs associated with immune69

cell abundance in the TME in 12 different cancer types. However the study overlooked potential70

confounding due to population structure, and did not offer insight into how individuals variants71

interact through genes or pathways to affect immune infiltration patterns.72

73

Here, we analyze germline variants and test for association with immune infiltration in solid74

tumors in a pan-cancer meta-analysis of 30 TCGA cancer cohorts across different genomic75

scales. We identified SNPs, genes, and networks that modulate immune infiltration, as well as76

an association between polygenic risk for autoimmune diseases and immune infiltration.77
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RESULTS78

Overview of Association Analyses79

In order to characterize how host genetics affect immune infiltration in solid tumors, we analyzed80

the association between germline variants and 17 phenotypes describing the immune component81

of the tumor microenvironment across 30 TCGA cancer cohorts (Figure 1A). We conducted82

QTL studies of the 17 molecular phenotypes, and aggregated SNP-level signals across genes83

and networks with gene and network-level tests of association. In addition, we asked whether84

polygenic risk of autoimmune diseases are associated with immune infiltration measures.85

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/586081doi: bioRxiv preprint 

https://doi.org/10.1101/586081


4

Figure 1. Association study approach and GWAS results: (A) Schematic showing the
type and size of dataset after quality control for association studies. Association studies are
done at three genomic scales across all 17 phenotypes. (B) Manhattan plot for GWAS meta-
analysis for the follicular helper T cell phenotype. Positions along the chromosomes are on the x
axis, and − log10-transformed p-values are on the y axis. Every autosome is represented, but for
visualization some are unlabeled. The red line indicates genome-wide significance (p < 5×10−8).

SNP-level Association with Follicular Helper T Cell Phenotype86

Genome-wide association (GWA) studies of 5788 patients across 17 immune infiltration pheno-87

types reveal two associations at genome-wide significance (p < 5 × 10−8). rs3366, a variant in88
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the 3’ UTR of SIK1 (effect size = 0.1550, minor allele frequency = 18.42%, p = 2.99× 10−9), is89

associated with the absolute fraction of follicular helper T (TFH) cells in bulk tumor (Figure 1B).90

This SNP currently has no published associations in the GWAS catalog (McMahon et al., 2018).91

Although the biological role of SIK1 in TFH cells is unknown, there is evidence of differential92

expression of SIK1 in this cell type (Newman et al., 2015).93

94

rs4819959 is associated with the T helper 17 cells (Th17) signature (effect size = -0.1682, p =95

1.71−16). However, this variant is a known eQTL of IL17RA in 31 tissues in GTEx (Carithers96

and Moore, 2015), meaning the observed association is likely a byproduct of the Th17 signature97

phenotype definition (gene expression of three genes including IL17RA (Thorsson et al., 2018;98

Bindea et al., 2013)).99

Gene-level Association Studies Reveal 77 Candidate Genes100

We then performed gene-level tests of association with immune infiltration patterns using PEGA-101

SUS (Nakka et al., 2016). We found 87 candidate gene-phenotype relationships (p < 2.9× 10−5
102

after Bonferroni correction for 1703 independent haplotype blocks in the autosomes (Berisa103

and Pickrell, 2016)), compromising 77 unique genes across 17 phenotypes. We annotated these104

candidate genes based on: (1) expressed at mean transcripts per million (TPM) > 1 in either105

bulk tumor or immune cell populations from the Database of Immune Cell Expression, Expres-106

sion quantitative trait loci, and Epigenomics (Schmiedel et al., 2018), (2) previously published107

GWAS hits in the GWAS catalog (McMahon et al., 2018), focusing on traits related to cancer,108

immunity, or autoimmunity, and (3) evidence for promoting oncogenic transformation via mu-109

tations according to the Cancer Gene Census (Futreal et al., 2004). The results are summarized110

in Figure 2A; full results can be found in Table S1.111

112

We focused on candidate genes expressed in bulk tumor or immune cells, with 65 out of the113

77 unique genes satisfying these criteria. Out of the 65 genes, we observed 10 unique gene114

candidates that contain reported GWAS hits in a related trait. Six out of ten genes (AKAP9,115

CDK14, COL21A1, GPATCH1, MASTL, SBF2 ) contain SNPs associated with different can-116

cers, such as breast carcinoma, small cell lung carcinoma, and colorectal cancer. Five out of 10117

genes (COL21A1, IL17RA, KIAA1109, PXK, SIK1 ) contain SNPs associated with immune or118

autoimmune traits, such as allergies, Crohn’s disease, and systemic lupus erythematosus. We119

refer to genes with no published GWAS hits in traits related to cancer, immunity, or autoim-120

munity as novel candidate genes.121

122

Six novel candidate genes were associated (p < 2.28× 10−5) with the CD8 T cell phenotype, an123

established effector cell in the antitumor activity of the immune system (Figure 2B). TCF12 is124

one of the candidate genes associated with the CD8 T cell phenotype, and it codes for a tran-125

scription factor called HEB. HEB regulates lineage-specific transcriptional profiles of CD4+CD8+126

thymocytes (Futreal et al., 2004).127

128

Two of the novel candidate genes (ATR and EML4 ), both associated with the leukocyte frac-129

tion phenotype, have been previously implicated in cancer pathogenesis according to the Cancer130
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Figure 2. Summary of candidate genes results: (A) Gene-level association testing iden-
tified 77 unique candidate genes, after Bonferroni correction for number of haplotype blocks in
the autosomes. Out of the 77 genes, 65 genes are expressed at mean TPM > 1 in either bulk
tumor samples or immune cells from healthy donors. Ten of the genes had published GWAS hits
in traits related to cancer, immunity, or autoimmunity. The other 55 genes are designated as
novel candidate genes. For the novel genes, the two boxes contain candidate genes that represent
the two Gene Ontology (GO) terms with the most members. For the 10 previously-associated
candidates, the two boxes contain candidate genes with published GWAS hits in cancer or im-
mune/autoimmune traits. Genes are colored according to the phenotype category for which
they are most significant. Genes significant for multiple phenotypes are denoted with a colored
asterisk. (B) Manhattan plot for gene-level association analysis for the CD8 T cell phenotype.
Each point represents a gene. Positions along the chromosomes are on the x axis, and − log10-
transformed p-values are on the y axis. The red line indicates Bonferroni-corrected significance
(p < 2.9× 10−5).

Gene Census (Futreal et al., 2004). ATR is inactivated via somatic missense mutations, and131

reported germline mutations predispose an individual to cancer (Tanaka et al., 2012).132

133

Finally, we find that several immune-related phenotypes share candidate genes. For example,134

ZFP91 is associated with Th17 cells, lymphocytes, and macrophages phenotypes. This gene135

activates the NF-κB pathway by stabilizing the NF-κB inducing kinase, and therefore plays an136

important role in mounting an immune response (Jin et al., 2010).137

Genes in DNA Repair and Transcription Elongation Pathways Correlated with138

Leukocyte Fraction139

We then used network propagation to identify gene subnetworks enriched for genes with low gene-140

level p-values whose protein products are topologically connected on a protein-protein interaction141
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Figure 3. Altered subnetworks in leukocyte fraction phenotype: Two statistically sig-
nificant (p < 0.05) altered subnetworks associated with the leukocyte fraction phenotype in the
iRefIndex 15 interaction network. Each rectangle represents a gene, and is colored according
to the − log10-transformed PEGASUS gene p-value. Two genes are connected if their protein
products interact in the iRefIndex 15 interaction network. Underlined genes are significantly
associated genes from gene-level analysis. (A) Two candidate genes, ATR and HSPA2, are part
of a larger subnetwork involved in DNA repair. Genes involved in DNA repair are indicated by
*. In addition, genes involved in metabolism are indicated by §. (B) A subnetwork containing
important members of the nucleotide excision repair and transcription elongation pathway, in-
dicated by # and † respectively. CCNT2 and GTF2H4 are marginally significant (p< 0.00018).
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network. Network analysis using Hierarchical HotNet (Reyna et al., 2018) was applied to each142

of the 17 phenotypes. We found statistically significant subnetworks for the leukocyte fraction143

phenotype (p < 10−3) with the iRefIndex 15 interaction network; two of these subnetworks144

are highlighted in Figure 3. The second largest connected subgraph includes two candidate145

genes: ATR and HSPA2 (p < 2.8 × 10−5). These genes are connected via SYCP2, which is146

involved in meiosis (Yang et al., 2006). Although not significant in our gene-level analysis,147

somatic mutations in SYCP2 were previously reported to lower regulatory T cell to CD8 T cell148

ratios in head and neck cancers (Siemers et al., 2017). Other biologically relevant genes in this149

subnetwork include FANCM, RAD51, PRIM1, and TOPBP1, which participate in DNA repair150

pathways. Components of the subnetwork shown in Figure 3B are involved in the transcription151

elongation pathway (CCNT2, LEO1, CD3EAP, GRF2H4, and IWS1 ) and nucleotide excision152

repair pathway (XPC, GTF2H4, COPS4, and COPS5 ). None of the genes in this subnetwork153

had significant gene-level p-values, and were only discovered through network analysis.154

Autoimmune Disease Polygenic Risk Associated With Immune Infiltration155

Patterns156

Lastly, we explored how the pre-existing state of an individual’s immune system may impact157

phenotypes of interest by investigating if common variants that affect the risk for autoimmune158

diseases are also correlated with immune infiltration (Figure 4A). We calculated polygenic risk159

scores (PRS) for five autoimmune disorders: rheumatoid arthritis, inflammatory bowel disease,160

celiac disease, systemic lupus erythematosus, and multiple sclerosis. These diseases were cho-161

sen based on availability of summary statistics in large, well-powered published GWA studies162

(Dubois et al., 2010; Sawcer et al., 2011; Anderson et al., 2011; Okada et al., 2013; Bentham163

et al., 2015). When computing PRS, we used the pruning and thresholding technique (Purcell164

et al., 2009), and based our scores on SNPs with GWA p-values of 0.001 or smaller (see Method165

Details: Polygenic Risk Score Analysis).166

167

We identified statistically significant associations (p < 0.0029, Bonferroni corrected for number168

of immune infiltration phenotypes, 17) between PRS for rheumatoid arthritis and three immune169

infiltration phenotypes: lymphocytes, CD8 T cells, and macrophages (Figure 4B). The effect170

sizes are: CD8 T cells effect size = 0.0088, lymphocytes effect size = 0.0091, and macrophages171

effect size = -0.0073. It is important to note that the lymphocytes phenotype is defined as172

the sum of 12 cell types, one of which is amount of CD8 T cells (Thorsson et al., 2018). To173

test whether the lymphocyte and CD8 T cell hits were independent, we subtracted the amount174

of CD8 T cells from lymphocytes and repeated the analysis. In this reanalysis, we no longer175

observed a significant association between PRS of rheumatoid arthritis and this phenotype (p176

= 0.0092), demonstrating that the association signal of the lymphocytes phenotype is driven by177

the CD8 T cells phenotype.178

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/586081doi: bioRxiv preprint 

https://doi.org/10.1101/586081


9

Figure 4. Polygenic risk score associations with immune infiltration(A) Workflow for
calculating polygenic risk scores of autoimmune disorders based on published GWAS summary
statistics, followed by regression of the 17 immune infiltration phenotypes of interest onto the
polygenic risk scores. (B) Bar plot showing the strength of association between 17 immune
infiltration phenotypes and the polygenic risk score for rheumatoid arthritis. The phenotypes are
on the x axis, and − log10-transformed p-values are on the y axis. Each bar is colored according
to the phenotype category. The red line indicates the Bonferroni-corrected significance value
(p= 0.0029)

DISCUSSION179

The abundance and composition of immune cell populations in the tumor microenvironment are180

known to affect response to immune checkpoint blockade. Here, we presented the first pan-cancer181

germline analysis of immune infiltration in solid tumors, demonstrating that host genetics are182

associated with phenotypes describing the immune component of the tumor microenvironment.183

Through integrative analysis of DNA-seq, RNA-seq, and DNA methylation data, we identified184

features at multiple genomic scales (SNP-level, gene-level, and pathway-level) that are corre-185

lated with amount of infiltrating follicular helper T cells (TFH) and fraction of leukocytes in186

bulk tumor, among other phenotypes.187

188

We found evidence for only one SNP-level association; rs3366 is associated with the amount of189

TFH cells. The associated locus is in the 3’ UTR of SIK1, a gene that is differentially expressed190
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in TFH cells, among others, compared to other immune cells (Newman et al., 2015). The sparsity191

of results from our GWA analysis is not surprising as the GWA framework is underpowered to192

detect SNP-level associations in complex traits (McClellan and King, 2010; Stranger et al., 2011).193

194

By aggregating SNP-level signals and testing for phenotype associations at the gene and pathway195

levels, we uncovered multiple genes and pathways that are associated with immune infiltration196

patterns. Out of 77 unique candidate genes, six were previously identified in GWA studies on197

autoimmune disorders or immune-related traits; these results suggest host genomic factors that198

cause variation or disease in the immune system also affect immune infiltration of tumors. We199

found an additional five genes containing SNPs significant in cancer GWA studies; these genes200

may be affecting cancer risk by altering the innate anti-tumor immune response. There is evi-201

dence that non-genic cancer-risk SNPs are enriched in immune response processes, and therefore202

may affect immune function (Fagny et al., 2018).203

204

Our gene-level analysis also identified ATR as a novel candidate gene associated with leukocyte205

fraction. Germline and somatic mutations in ATR have been reported to play a role in tumori-206

genesis (Tanaka et al., 2012; Harsha et al., 2016). Somatic ATR mutations have also been shown207

to modulate the tumor microenvironment in melanomas, recruiting macrophages and blocking208

T cell recruitment (Chen et al., 2017).209

210

ATR and interacting genes are found to be associated with the leukocyte fraction phenotype in211

our network propagation analysis. Significantly associated subnetworks contain genes involved212

in important pathways such as DNA repair, nucleotide excision repair, and transcription elonga-213

tion. Somatic mutations in genes involved in DNA repair, such as ATR and RAD51 associated214

with leukocyte fraction in our network analyses, can increase the neoantigen load in the TME215

and affect response to immunotherapy (Mouw et al., 2017; Knijnenburg et al., 2018). In addi-216

tion, defective transcription elongation is known to confer resistance to immunotherapy despite217

increased levels of infiltrating T cells (Modur et al., 2018).218

219

Finally, we showed that the polygenic risk score for rheumatoid arthritis is correlated with220

amount of CD8 T cells, suggesting a shared genetic etiology between rheumatoid arthritis and221

cytotoxic immune response to solid tumors. In the synovial compartment of rheumatic joints,222

40% of T cells are CD8 T cells (McInnes, 2003). Past studies have found associations between223

rheumatoid arthritis and MHC class I polymorphisms (Raychaudhuri et al., 2012) as well as be-224

tween amount of CD8 T cells in synovial fluid and disease activity (Cho et al., 2012), suggesting225

a potential role for CD8 T cells in the development and progression of rheumatoid arthritis.226

227

While we implemented many quality control filters of genotype and phenotype data to remove228

confounders in our analyses, replication is necessary. We were unable to conduct a replication229

analysis; replication studies are currently not feasible due to a lack of a large, independent, pan-230

cancer cohort with matched germline and gene expression data. The TCGA dataset provided231

a unique opportunity to conduct integrative association analyses that leverage germline data,232

which have largely been under-appreciated (besides investigation of predisposition germline vari-233

ants in cancer (Kim et al., 2013; Palles et al., 2012; Huang et al., 2018)).234
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235

We note that 16 out of 17 phenotypes we studied here were based on bulk RNA-seq data, and236

six of those 16 were derived using a deconvolution method CIBERSORT (Newman et al., 2015).237

CIBERSORT has several limitations, including reliance on the fidelity of a reference expression238

panel for deconvolution, and not being explicitly tested on RNA-seq data during development239

(Newman et al., 2015). Ideally, future studies will integrate germline and somatic variation240

with orthogonal measures of immune infiltration patterns (such as flow cytometry based mea-241

surements), but such study design does not currently exist to validate the results presented here.242

243

Future studies incorporating other immune cell populations known to affect response to im-244

munotherapy (such as amount of neutrophils or CD4 T cells) and joint analysis of germline245

variants and somatic mutations will further understanding of predictors of response to immune246

checkpoint blockade. And ultimately experimental investigations are needed to determine the247

biological mechanisms driving the reported associations.248

249

In conclusion, we reported germline variation in SNPs, genes, and pathways associated with250

immune infiltration patterns. These results highlight the important yet previously overlooked251

role that inherited variants play in determining the immune composition of the TME, a crucial252

step towards understanding predictors of response to immune checkpoint blockade therapies.253
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METHODS254

Sample Inclusion Criteria255

The Cancer Genome Atlas (TCGA) dataset consists of tumor and matched normal samples from256

over 11,000 patients. The Genomic Data Commons (GDC) legacy archive contains germline257

data for 11,440 samples from 10,776 unique participants. Samples with the following TCGA258

project IDs: DLBC, LAML, LCML, MISC, and THYM were excluded as they represent uniden-259

tified cancer or cancers derived from immune cells. Samples indicated as problematic by either260

GDC-issued or TCGA-issued annotations were removed. The reasons for exclusion ranged from261

mismatched genotypes in tumor and normal samples to incorrect barcodes on aliquots. Strict262

genetic ancestry filtering was applied to account for population structure.263

Raw Germline Variant Data264

Germline variants were derived from the Affymetrix SNP6.0 microarray. Raw CEL files for the265

TCGA cohort were downloaded from FireCloud (https://software.broadinstitute.org/firecloud/)266

and the Genomic Data Commons (GDC) legacy archive (https://portal.gdc.cancer.gov/legacy-267

archive). Probesets with non-unique mapping in the genome or not mapping to the location268

provided by Affymetrix (NetAffx Annotation Release 35) were removed.269

Germline Variant Calling270

Genotypes calls from the CEL files were made using Birdseed (Korn et al., 2008) in batches;271

samples from the same TCGA batch were included in the same run. Because Birdseed recom-272

mends more than 50 samples in each run, batches with less than 50 samples were combined with273

samples from temporally adjacent batches. Genotype calls with Birdseed confidence scores more274

than 0.1 were removed.275

276

Samples with autosomal SNP missingness> 2% or unexpected sex chromosome genotypes (males277

with missing Y chromosome calls or females with Y chromosome calls) were removed. Partici-278

pants with more than two replicate samples were removed. Participants with replicate samples279

with > 1% discordance among genotype calls were removed. Among these samples, SNPs with280

missingness > 5%, sex effect (Fisher’s exact p < 10−20), or batch effect (each batch versus all281

others, Fisher’s exact p < 10−12) were removed. Several participants had two replicate samples282

remaining after the filtering process. SNPs with > 2% replicate discordance were removed. For283

each participant, the sample with the higher genotype missingness was removed and discordant284

genotypes were excluded.285

286

We imputed genotypes with the Michigan Imputation Server (Das et al., 2016), using data from287

the Haplotype Reference Consortium (McCarthy et al., 2016) as the reference panel. Loci with288

imputation quality R2 < 0.8 were excluded.289

290

To prepare the genotype data for association studies, the following additional quality control291

steps were taken using plink (Chang et al., 2015):292
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1. SNPs with minor allele frequency < 1% were removed.293

2. SNPs not in Hardy Weinberg equilibrium (p < 10−6) were removed.294

3. Related individuals (IBD π̂ > 0.185) were removed.295

4. Samples with missing GDC demographic data (sex and birth year) were removed.296

The final genotype data consists of 7,070,031 variants and 5788 samples.297

Genetic Ancestry Calculation and Inclusion Criteria298

Strict ancestry filtering was applied to samples using two techniques: (1) project TCGA samples299

onto a ten-dimensional principal component (PC)-space derived from PCA all individuals in the300

1000 Genomes Project (Auton et al., 2015), and retain only TCGA samples whose five nearest301

1000 Genome neighbors were labelled as ”European” and whose mean distance to those neighbors302

was < 0.1. (2) Run supervised Admixture (Alexander et al., 2009) with K set to 3 — using303

the Utah Residents with Northern and Western European Ancestry (CEU), Yoruba in Ibadan,304

Nigeria (YRI), and Han Chinese in Beijing, China (CHB) + Japanese in Tokyo, Japan (JPT)305

populations as reference data — and keep TCGA samples with greater than 90% membership306

in the CEU cluster.307

Phenotype Data308

CIBERSORT-derived fraction of 22 types of immune cells, immune gene expression signatures,309

and leukocyte fraction from methylation analysis were downloaded from Thorsson et al. (2018).310

Cytolytic activity immune signature was added from Rooney et al. (2015). Twenty phenotypes311

with more than 10% zero-values were excluded, with 17 phenotype remaining. Within each312

cancer cohort, a rank-based inverse normal transformation was applied to each phenotype. The313

transformed value of phenotype j for the ith subject in cohort k is:314

Yijk = φ−1
(rijk − 0.5

Njk

)
, (1)

where rijk is the rank of the ith case in non-null observations in phenotype j in cohort k, Njk is315

the number of non-null observations of phenotype j in cohort k, and φ−1 is the probit function.316

SNP-level and Gene-level Association Studies317

Genome-wide association (GWA) studies were conducted for 17 phenotypes within each cancer-318

specific cohort using plink (Chang et al., 2015). The first ten genetic PCs, age, and sex were319

included in the regression analysis as covariates. We then used METAL (Willer et al., 2010)320

with a sample size weighting scheme to perform a pan-cancer meta-analysis for each phenotype.321

The effect sizes of significant SNPs (p < 5 × 10−8) were calculated using an inverse-variance322

weighting scheme.323

324
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These GWA SNP-level summary statistics were then used as input to the gene-level association325

test method PEGASUS (Nakka et al., 2016). Gene-level p-values are reported for genes with326

at least one SNP in the gene boundary ± 50kb window (17,563 autosomal genes). Genes with327

p-values less than 2.9× 10−5 (Bonferroni corrected for number of independent haplotype blocks328

in the autosomes, 1703 (Berisa and Pickrell, 2016)) were reported as significant.329

Network Analysis330

We performed network analysis with Hierarchical HotNet Reyna et al. (2018), on the log trans-331

formed p-values (− log10(p)) from gene-level association testing to identify significantly altered332

subnetworks. For our analysis, we used the following interaction networks, which were the most333

recent versions available as of February 23, 2018.334

• HINT+HI (Das and Yu, 2012; Rolland et al., 2014): HINT binary + HINT co-complex +335

HuRI HI336

• iRefIndex 15.0 (Razick et al., 2008)337

• ReactomeFI 2016 (Fabregat et al., 2018)338

For the ReactomeFI network, we considered the set of interactions with a confidence score of339

0.75 (out of 1) or larger. For each network, we restricted our attention to the largest connected340

subgraph of the network.341

342

To reduce the influence of genes for which we have low confidence of association with a phenotype,343

we assigned p-values of 1 to genes with p-values of p > 0.1 and ran Hierarchical HotNet (103344

permutations) on these thresholded gene scores. This provides sparser, more interpretable, and345

higher confidence networks. Similar p-value thresholds were applied in similar network analyses346

(Nakka et al., 2016).347

Polygenic Risk Score Analysis348

We downloaded the summary statistics from GWA studies of five autoimmune traits: celiac dis-349

ease (Dubois et al., 2010); multiple sclerosis (Sawcer et al., 2011); ulcerative colitis (Anderson350

et al., 2011); rheumatoid arthritis (Okada et al., 2013); systemic lupus erythematosus (Bentham351

et al., 2015). Records with missing odds ratio, p-values, and risk alleles were excluded from352

analysis. For each autoimmune disease, we extracted SNPs at various p-value thresholds (p353

= 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 5 × 10−8) that overlapped with our genotype354

data, excluding ambiguous and mismatched variants. At each threshold, the SNPs were further355

filtered via LD-clumping, with a 250kb window and an r2 threshold of 0.1 (Table S2). PRSice356

(Lewis et al., 2014) was used to calculate the polygenic risk score for each autoimmune trait for357

each sample by summing over the log odds ratio of the selected SNPs, weighted by allele dosage358

of risk alleles.359

360
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The polygenic risk score for each disease was first regressed against each of the 17 immune361

infiltration phenotypes within each cancer cohort, using the first 10 PCs, age, and sex as covari-362

ates. The reported results are from an sample size based meta-analysis of all cancer cohorts.363

Effect sizes of significant associations (Bonferroni corrected for number of immune infiltration364

phenotypes tested) were calculated using an inverse-variance weighted analysis.365
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Orrù, V., Steri, M., Sole, G., Sidore, C., Virdis, F., Dei, M., Lai, S., Zoledziewska, M., Busonero,488

F., Mulas, A. and et al. (2013). Genetic Variants Regulating Immune Cell Levels in Health489

and Disease. Cell 155, 242 – 256.490

Palles, C., Cazier, J.-B., Howarth, K. M., Domingo, E., Jones, A. M., Broderick, P., Kemp, Z.,491

Spain, S. L., Guarino, E., Salguero, I. and et al. (2012). Germline mutations affecting the492

proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcino-493

mas. Nature Genetics 45, 136.494

Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F.,495

Sklar, P., Purcell (Leader), S. M., Stone, J. L., Sullivan, P. F. and et al. (2009). Common496

polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460,497

748.498

Raychaudhuri, S., Sandor, C., Stahl, E. A., Freudenberg, J., Lee, H.-S., Jia, X., Alfredsson, L.,499

Padyukov, L., Klareskog, L., Worthington, J. and et al. (2012). Five amino acids in three HLA500

proteins explain most of the association between MHC and seropositive rheumatoid arthritis.501

Nature Genetics 44, 291.502

Razick, S., Magklaras, G. and Donaldson, I. M. (2008). iRefIndex: a consolidated protein503

interaction database with provenance. BMC bioinformatics 9, 405.504

Reyna, M. A., Leiserson, M. D. M. and Raphael, B. J. (2018). Hierarchical HotNet: identifying505

hierarchies of altered subnetworks. Bioinformatics (Oxford, England) 34, i972–i980.506

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/586081doi: bioRxiv preprint 

https://doi.org/10.1101/586081


19

Ribas, A. and Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science507

359, 1350–1355.508

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W.,509

Yuan, J., Wong, P., Ho, T. S. and et al. (2015). Mutational landscape determines sensitivity510

to PD-1 blockade in non–small cell lung cancer. Science 348, 124–128.511

Roederer, M., Quaye, L., Mangino, M., Beddall, M., Mahnke, Y., Chattopadhyay, P., Tosi, I.,512

Napolitano, L., TerranovaBarberio, M., Menni, C. and et al. (2015). The Genetic Architecture513

of the Human Immune System: A Bioresource for Autoimmunity and Disease Pathogenesis.514

Cell 161, 387 – 403.515
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