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Abstract

Computational approaches in systems biology have become a powerful tool for understand-
ing the fundamental mechanisms of cellular metabolism and regulation. However, the inter-
play between the regulatory and the metabolic system is still poorly understood. In particular,
there is a need for formal mathematical frameworks that allow analyzing metabolism together
with dynamic enzyme resources and regulatory events. Here, we introduce a metabolic-
regulatory network model (MRN) that allows integrating metabolism with transcriptional
regulation, macromolecule production and enzyme resources. Using this model, we show that
the dynamic interplay between these different cellular processes can be formalized by a hybrid
automaton, combining continuous dynamics and discrete control.

Keywords— Computational modeling, metabolism, resource allocation, gene regulation, hybrid au-
tomata

1 Introduction

Computational approaches in systems biology have become a powerful tool for understanding the funda-
mental mechanisms of cellular metabolism and regulation. However, the interplay between the regulatory
and the metabolic system is still poorly understood. In particular, there is a need for formal mathemati-
cal frameworks that allow analyzing metabolism together with dynamic enzyme resources and regulatory
events.

Concerning integrated modeling of metabolism and regulation, there exist approaches such as regula-
tory flux balance analysis (rFBA) [1] and Flexflux [2] that combine Boolean or multi-valued logical rules
for transcriptional regulation with a steady-state stoichiometric model of metabolism. These techniques
iterate flux balance analysis (FBA) by splitting the growth phase into discrete time steps. At each time
step, the updated regulatory states are imposed as bounds on the reaction fluxes while ignoring the costs
for enzyme production. At a different level, there exist methods to predict metabolic resource alloca-
tion considering enzyme-catalytic relationships, either at steady-state (RBA [3], ME models [4]) or in a
dynamic setting (deFBA [5], cFBA [6]). But, regulation is not included in these approaches. Besides
Boolean logic and stoichiometric models, piecewise-linear differential equations [7, 8] and other types of
hybrid systems [9, 10] have also been used to study the dynamics of metabolic-genetic networks. Most
of these studies, however, merely consider metabolism and regulation, and do not combine these with
macromolecule production and enzymatic relationships.

In the present work, we introduce a metabolic-regulatory network model (MRN) extending the self-
replicator system proposed in [11]. Our modeling framework allows integrating metabolism with transcrip-
tional regulation, macromolecule production, enzyme resources, and structural building blocks. Using this
framework, we show that the dynamic interplay between cellular metabolism, macromolecule production
and regulation can be formalized by a hybrid automaton, combining continuous dynamics and discrete
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control. In this formalization, all metabolite concentrations are represented by continuous variables. The
discrete states of the system are composed of all gene expression states for the regulated proteins, which
include regulatory proteins and regulated enzymes. In each discrete state, the continuous variables evolve
according to a system of differential equations that is specific for this state. The guard conditions for the
state transitions depend on the amounts of the molecular species and associated thresholds. To validate
our approach, we present a hybrid automaton for a simplified model of the bacterial diauxic shift.

Our formalization makes it possible to apply hybrid system tools for analyzing metabolic-regulatory
cellular processes. Compared to the approaches mentioned above, this will allow us including regula-
tion, macromolecule production and enzyme resources into the prediction of the dynamics of cellular
metabolism.

2 Constructing the metabolic-regulatory interaction net-
work

In Fig. 1 we show the typical regulatory processes in a cell in response to external/internal signals [12].
Regulatory proteins RP first sense extra- or intracellular signals and transmit these to the gene expression
machinery, which then alters the production of proteins, in particular enzymes E. Changes of enzyme
amounts will affect the metabolite levels which in turn provide feedback as internal signals. Furthermore,
via the process of breaking nutrients into energy and building blocks (catabolism), metabolism influences
the level of signaling by providing the precursors of regulatory proteins.
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Fig. 1: Typical metabolic-regulatory processes in response to external and internal signals.

We formalize the interactions between metabolism and regulation by a metabolic-regulatory network
(MRN) that is given in Fig. 2. Regarding metabolism, N represents the set of external nutrients and
vN is the set of intermediate reactions that convert the nutrients into precursor metabolites M. The
macromolecular production reactions vRP,vQ and vE = vRE ∪ vNRE use the precursors M to build
regulatory proteins RP, non-catalytic macromolecules Q, and enzymes E. To keep the model simple,
the set of enyzmes E contains all catalytic molecules, including transporters and ribosomes. However,
we distinguish beween regulated enzymes RE and non-regulated enyzmes NRE, i.e., E = RE ∪NRE.
Non-catalytic macromolecules, termed as quota compounds Q [13], e.g. DNA and lipids, are included in
the model because they are essential for growth and consume a lot of cellular resources.

In the metabolic part, our network is inspired from the self-replication model by Molenaar et al.
[11]. Compared to FBA-type models of metabolism these authors include metabolic resource allocation.
However, they do not consider regulation. Similar to [1], we focus here on transcriptional regulation, i.e.,
we do not model post-transcriptional modifications.

In the following, we will show how the dynamics of the metabolic-regulatory model, i.e., the interactions
between metabolism and regulation can be naturally described by a hybrid automaton.

3 Hybrid discrete-continuous dynamics

3.1 Continuous variables

Kinetic modeling of metabolic networks by ordinary differential equations (ODEs) has a long history in
systems biology. Based on our metabolic-regulatory network (see Fig. 2), we define the set of molecular
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Fig. 2: Schematic model of the metabolic-regulatory network (MRN). The metabolism is represented by the blue
lines and the gene regulation by the red lines. Additionally, the degradation of macromolecules is shown by grey
lines. We use E to represent all the catalytic macromolecules, which are classified as regulated enzymes RE and
non-regulated enzymes NRE.

species
M = N ∪M ∪RP ∪E ∪Q (1)

as the union of all nutrients, precursors, enzymes (including ribosome), regulatory proteins, and quota
compounds. In a purely continuous modeling approach, the dynamics of the network would be described
by a system of ODEs

Ṁ(t) =
dM
dt

= F (M,K,S, t), (2)

where K is the set of kinetic parameters, S is the stoichiometric matrix, and t denotes time. The function
F represents the kinetic laws that govern the dynamics, which – depending on the molecular species –
could be mass action, Michaelis-Menten, Hill kinetics etc.

3.2 Discrete states

Continuous modeling of gene regulatory networks is known to be very difficult due to the lack of the
necessary kinetic data. Therefore, we adopt a more qualitative approach to include regulation in our
model. It is based on the logical modeling framework pioneered in the 1970’s by L. Glass, S. Kauffman,
R. Thomas et al., see [14] for a recent review. We assume that for each regulated protein p there are two
possible states on and off, describing whether at a particular time t the gene encoding p is expressed or
not.

Formally, for all p ∈ RP ∪ RE, we introduce a Boolean variable p = p(t) ∈ {0, 1} and a logical
function fp : Rn → {0, 1}. Here, the Boolean value 0 corresponds to off and the value 1 to on. Each
function fp is defined as a Boolean combination (using the Boolean operations ¬ (not), ∧ (and), ∨ (or))
of atomic formulae xi ≥ θi, where xi is a real variable and θi is a constant. As an example, consider
f : R2 → {0, 1}, f(x1, x2) = (x1 ≥ 1) ∧ ¬(x2 ≥ 2), for which we get f(1, 1) = 1 and f(1, 2) = 0. Overall,
the regulation of our MRN is then formalized by a system of Boolean equations of the form

p(t) = fp(RP(t),N(t),M(t)), for all p ∈ RP ∪RE. (3)

Here, fp describes how the expression state of the gene encoding the regulated protein p depends on the
current concentations of regulatory proteins, external nutrients, and intermediate metabolites.

3.3 Combining discrete and continuous dynamics in a hybrid automaton

Combining metabolism and regulation in this way leads to a hybrid discrete-continuous system. Here, all
amounts of molecular species are modeled by continuous variables. However, the evolution of regulated
proteins p is controlled by the expression state p of the corresponding genes. Thus, depending on the
discrete state p, there are two different continuous dynamics. The system will jump from one discrete
state to the other if some regulatory event occurs, see Fig. 3 for illustration.

Composing the discrete states together with their continuous dynamics for all regulated proteins
p ∈ RP ∪RE leads to a hybrid automaton

H = (Loc,Edge,Σ, X, Init, Inv, F low, Jump) (4)

with the following components [15, 16]:
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p = on

Ṁp(t) = Fp(M,K,S, t) Ṁp(t) = −kd · Mp(t)

Jump(on, σ, off)

Jump(off, σ′, on) Mp(t) ≥ 0Mp(t) ≥ 0

p = off

Fig. 3: Graphical representation of the continuous evolution in the discrete states p = on and p = off, for
regulated proteins p ∈ RP ∪RE. In the on-state, protein production and degradation is described by the kinetic
law Fp(·), while in the off-state only degradation occurs, with kinetic constant kd.

• Loc is a finite set of discrete states or locations. Here, Loc = {0, 1}RP∪RE consists of all possible
combinations of expression states p ∈ {0, 1} of regulated proteins p ∈ RP ∪RE. In other words,
for a MRN with n regulated proteins, there will be in total 2n discrete states or locations in the
hybrid automaton. However, not all of these have to be reachable from a given initial state.

• Σ is a finite set of events. In our case, these are given by the regulatory rules in Eqn. (3). For
instance, a regulatory event σ can be that the amount of a regulatory protein RPi is larger than a
certain threshold θi, which is expressed mathematically as σ = (RPi ≥ θi).

• Edge ⊆ Loc × Σ × Loc is the set of possible transitions from one location to another, which are
labeled by an event from Σ.

• X is a finite set of real variables. In our case, X =M = N ∪M ∪RP ∪E ∪Q. In each location l,
these continuous variables evolve according to a specific dynamics depending on l, which is specified
by the predicate Flow(l).

• Init, Inv, F low are functions that assign logical predicates to each location l ∈ Loc:

1. Init(l) is a predicate which describes the possible initial values for the continuous variables
when the automaton starts its execution in state l.

2. Inv(l) is a predicate which describes the possible values of the continuous variables when the
control of the automata lies in l.

3. Flow(l) is a predicate which describes the possible continuous evolutions when the control of
the hybrid automaton is in l, for example by a system of ODEs.

• Jump is a function that assigns to each e ∈ Edge a predicate Jump(e) describing when the discrete
change modeled by e is possible and what the possible updates of the continuous variables are when
this change is made.

For a formal specification of the discrete-continous dynamics of the hybrid automaton H we refer to
[15, 16]. In the next section, we explain the main principles by an illustrative example.

4 Biological application

Carbon catabolite repression (CCR) is a common phenomenon in bacteria, especially in Escherichia coli
[17]. While these bacteria are able to grow on two different carbon sources, they do not consume these in
parallel, but one after the other. To model the diauxic shift, we use the metabolic-regulatory network in
Fig. 4, which was built based on the work in [1, 11]. In particular, we introduce a regulatory protein RP
which, in presence of carbon source C1, inhibits the synthesis of transporter T2.

4.1 Metabolic-regulatory network model of the diauxic shift

Starting from the generic model in Fig. 2, we consider two alternative carbon sources C1, C2 and a
regulatory protein RP to build the MRN (see in Fig. 4). The two regulated proteins in our model are
RP and T2, with corresponding Boolean variables RP and T 2. As shown by the red lines, the regulatory
rules are the following: If the external amount of C1 is above the threshold γ, the gene encoding for RP
is activated. If the amount of RP inside the cell is above the threshold α, the gene encoding for T2 is
repressed. More formally:

RP = 1⇔ (C1 ≥ γ) and T 2 = 0⇔ (RP ≥ α) (5)
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Together, these regulations ensure that C1 is the preferred carbon source for the model.
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Fig. 4: A self-replicator model with two regulatory rules. C1, C2 are the two carbon sources. T1, T2 are the
enzymes for converting carbon sources into precursor M . RP is the regulatory protein. R represents the ribosome
catalyzing the production of RP, T1, T2, R with turnover rate kcat1, kcat2, kR, kT1, kT2, kRP and degradation rates
are the corresponding turnover rates. kdR, kdT1, kdT2, kdRP . γ, α are the thresholds of the two regulatory rules.
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Ṙ = kR·M ·R
KR+M
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Fig. 5: Graphical representation of the hybrid automaton Hdiaux.
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4.2 Hybrid automaton model of the diauxic shift

Next we construct the hybrid automaton Hdiaux for the metabolic-regulatory network in Fig. 4. We
get the continuous variables Xdiaux = {C1, C2,M,RP, T1, T2, R} and the discrete locations Locdiaux =
{(RP, T 2) | RP, T 2 ∈ {on, off}}. To specify the dynamics of Hdiaux, we use the graphical representation
in Fig. 5, which is more intuitive than the formal definition according to Eqn. (4).

The four nodes in Fig. 5 correspond to the discrete states or locations. Within each node, we specify
the continuous dynamics of the molecular species by a set of ODEs and some invariants. The arcs represent
the discrete jumps between different states. They are labeled by guards that the system has to satisfy in
order to perform the corresponding transition.

If RP = on, the regulatory protein RP is built from the precursor M , catalyzed by the ribosome R.
Whenever C1 < γ is reached, RP switches to off and RP is degraded with rate kdRP . Similarly, the
enzyme T2 is produced if T2 = on, which is equivalent to RP < α, and degraded if T2 = off. Due to mass
balance, the dynamics of the precursor M also depends on the location and the regulatory control. The
dynamics of the other variables C1, C2, T1, R is not directly controlled by the discrete states, but via the
shared variables depends on them as well.

4.3 Exploring the dynamics of Hdiaux

Given the hybrid automaton Hdiaux, we explore the dynamics of the system for two different initial
amounts of carbon source C1, see Fig. 6 and Fig. 7. In both cases, the kinetic parameters are the same
(see Fig. 6) and the initial state is (RP, T 2) = (on, on). Following [18], we assume that the cell starts
growing with some positive amounts of precursors and ribosomes, but without any enzymes. Thus, the
initial enzyme amounts T1, T2 are set to 0, so that the model first has to produce them before carbon
uptake can start. The only difference between the two simulations is that the initial value C1 is reduced
from C1 = 30 in the first run to C1 = 3 in the second.

For Simulation 1, we can see in Fig. 6 that both RP, T2 initially increase because (RP, T 2) = (on, on).
C1, C2 are consumed very slowly in the beginning, because the model is initialized with T1 = T2 = 0.
When the amount of the regulatory protein RP reaches the threshold 1 and C1 is still larger than 1, T 2

gets inactivated and the system will jump to the location (RP, T 2) = (on, off). Now, the enzyme T2

stops being produced and with T2 getting close to 0, uptake of C2 is not possible anymore. Thus, the
system can only use C1. The location (RP, T 2) = (on, off) therefore indicates a first growth phase on
the preferred carbon source C1. Once the guard condition C1 < 1, RP ≥ 1 is satisfied, the system will
switch to the new state (off, off). This location represents the lag phase during diauxie, in which C1

is exhausted while the utilization of C2 is still repressed. Furthermore, the synthesis of the regulatory
protein RP is inhibited and its amount decreases with the degradation rate kdRP . When the amount of
RP reaches the threshold 1, T2 is turned on again and we get the final state (off, on). Now, the cell can
produce T2 and will consume carbon source C2 until this is finally also exhausted.

(on, off)(on, on) (off, off) (off, on)

RP

Fig. 6: Simulation 1: Start in location (RP, T 2) = (on, on) with initial values (C1, C2, M, RP, T1, T2, R) = (30,
30, 40, 0, 0, 0, 3) and kinetic parameters (kcat1, kcat2, kR, kT1, kT2, kRP , kdR, kdT1, kdT2, kdRP ) = (0.3, 0.2, 0.03,
0.1, 0.1, 0.05, 0.001, 0.001, 0.1, 0.1). All Michaelis constants are assumed to be 1. Discrete state transitions are
indicated by dashed lines, the thresholds are α = γ = 1.
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(on, on) (off, on)

RP

Fig. 7: Simulation 2: Same data as in Simulation 1, except that initial value of C1 = 3. In this case, there is
no lag phase. The model directly jumps from (on, on) to (off, on). since the initial amount of C1 is too small to
inhibit the uptake of C2 via RP .

In Simulation 2, the initial amount of C1 is reduced to 3. Starting again from the location (on, on),
RP and T2 will increase and both carbon sources are assimilated. Due to the smaller initial value of C1

the event C1 < 1 ∧ RP < 1 is triggered first in this case. Hence the system directly jumps to (off, on) by
skipping (on, off) and (off, off). As we can see in Fig. 7, there are no clear carbon switch and lag phase
in this case. The regulatory protein RP does not reach the critical threshold α before C1 is depleted.
From the biological viewpoint, this means that the amount of the preferred carbon C1 is too small to
inhibit the uptake of C2.

Simulations 1 and 2 exhibit just two possible behaviors of Hdiaux. Fig. 5 shows all possible state
transitions during diauxie based on our regulatory rules. Our results reveal that cellular behavior dur-
ing diauxie is very sensitive to the initial conditions, which include the external environment and the
intracellular status. This is consistent with the experimental results that the diauxie has high phenotypic
heterogeneity [19, 20] and that the lag time is controlled by an inheritable epigenetic factor [21]. It also
has been experimentally observed that the longer the cells grow in the preferred carbon source, the longer
the lag phase is [22]. Our Simulation 2 shows there is even no lag phase when the initial amount of C1

is very small. The reason is still unclear. Yet our simulations suggest that when staying longer in the
preferred carbon source, more regulatory proteins will be accumulated. Thus it will take more time to
activate the second carbon source C2.

5 Conclusion

In this paper, we have proposed a new hybrid discrete-continuous modeling framework for metabolic-
regulatory networks that integrates metabolism, transcriptional regulation, macromolecule production
and enzyme resources. As a proof of principle, we have illustrated the approach on a small self-replicator
model and applied it to study the diauxic switch in bacteria.

In our future work, we plan to construct larger and more realistic metabolic-regulatory networks and
to apply existing simulation and analysis tools for hybrid systems in order to further study them. In
particular, we plan to explore optimal control strategies for the hybrid automaton representing our MRN
in continuation of our work on dynamic enzyme-cost flux balance analysis [5].
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