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Abstract

The availability of bacterial pangenome data grows exponentially, requiring efficient new methods
of analysis. Currently popular approaches for the fast comparison of genomes have the drawback of
not  being  based  on  explicit  evolutionary  models  of  diversification.  Making  sense  of  bacterial
genome evolution, and notably in the accessory genome, requires however to take into account the
complex processes by which the genomes evolve. Here we present the  Pantagruel bioinformatic
software  pipeline,  which  enables  the  construction  of  a  complete  bacterial  pangenome database
geared towards the inference of gene evolution scenarios using gene tree/species tree reconciliation.
Pantagruel is a modular pipeline that combines state-of-the-art external software with unique new
methods. It can be executed with no supervision to perform a standard pangenome analysis, or be
configured by advanced users to integrate methods of choice. A relational database underlies its data
structure, allowing efficient retrieval of the large-scale data generated by integrative analyses of
pangenome  evolutionary  history.  From  the  reconstructed  gene  evolution  scenarios,  two  main
outputs are derived: firstly the gene tree-aware assignation of orthology, allowing the fine analysis
of gene gain and loss history over the species phylogeny, and secondly a network of gene-to-gene
association based on correlated events in scenarios of gene evolution, leading to the definition of
co-evolved  gene  modules.  Pantagruel is  available  as  an  open  source  software  package  at
https://github.com/flass/pantagruel.
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Introduction

In recent years, increasing attention has been given to the study of bacterial pangenomes, in
the hope of unravelling the genetic determinants of the complex phenotypic diversity of prokaryotic
species (Vernikos et al. 2015). Such analysis is necessary to better understand how different strains
are adapted to their environment – and even predict what are the set of environmental conditions in
which they would strive.

However, the pattern of genomic gene content diversity is too complex to be deciphered at
once: it is the result of a mixture of evolutionary processes by which genes propagate within and
across genome lineages, including vertical descent (i.e. clonal replication of the gene along with the
rest of the cell’s genome), homologous recombination of related gene alleles (between members of
the  same  population  or  different  but  co-occurring  populations  (Didelot  et  al.  2010),  and  most
importantly, horizontal gene transfer (HGT) – the event of introduction of a new gene (or allele)
into a distant genetic background (Ochman et al. 2000). All these gene flow events occur at rates
that are likely to vary from one cellular lineage to another, as well as between gene lineages.

As a result, the distribution of so-called accessory genes in strain genomes is neither clearly
reflecting their vertical history of descent, nor completely dissociated from it (Konstantinidis &
Tiedje 2005). This hinders efforts to identify lineage-specific genes involved in the adaptation of
species  to  their  ecological  niche  (Kumar  et  al.  2015),  or  conversely  to  pinpoint  phenotype-
associated genes using genome-wide association study approaches, where traits are supposed to be
distributed independently of the non-causative genetic background (Earle et al.  2016; Collins &
Didelot 2018). One consequence is that standard practice in microbial comparative genomics tends
to ignore the accessory component of genomes, or to only consider the pattern of gene occurrence,
disregarding the pattern of allelic variation, and the phylogenetic information it contains on the gene
evolution.

There  is  therefore  a  need  to  develop  a  unifying  framework  for  the  study  of  microbial
pangenome  evolution.  A  central  component  is  gene  tree/species  tree  reconciliation  methods
(Szöllősi et al. 2015), that perform the comparison of the phylogenetic history of a gene, whether
core or accessory, to the history of a reference tree. Here, the aim of the reference tree is not to
reflect the clonal genealogy (Didelot et al. 2010) but rather to provide a common referential for the
identification of events by which all genes propagate and diversify. Reconciliation methods thus
deliver scenarios of gene family evolution, that depict the way genes evolved in and out of the
frame of the reference tree. Once interpreted in the context of this unifying common frame, the
phylogenetic tree of a gene is annotated with events of speciation, duplication, horizontal transfer or
loss, that can for instance be compared with the history of mutational events along the same tree,
thus  allowing  one  to  associate  change in  the  gene  sequence  to  events  of  dissemination  across
species.

This framework notably allows us to compare gene histories, and to identify segments of
their  past  during  which  they  co-evolved.  This  approach  can  document  conserved  associations
between genes that  go back much earlier  than the most recent  common ancestor of a  clade of
genomes that all  contain these genes.  For instance,  the association between genes present  on a
plasmid carried by a particular clone most likely pre-dates its acquisition by the founder cell. Long-
term co-evolution patterns can document selective pressures that constrained these associations,
either because of epistatic interactions or through co-selection of genes in linkage. Co-occurrence

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2019. ; https://doi.org/10.1101/586495doi: bioRxiv preprint 

https://doi.org/10.1101/586495
http://creativecommons.org/licenses/by-nd/4.0/


patterns  can  similarly  be  interpreted  as  signatures  of  constrained  co-segregation  of  genes  in  a
population. However, the strength of association between physically linked genes can be inflated by
recent events of selfish dissemination of a mobile genetic element (MGE) vector, or by strong but
transitory  selective  regimes,  like  the  selection  of  antibiotic  resistance  genes  during  antibiotic
treatment.  Recent  co-acquisition  of  genes  thus  cannot  be  interpreted  confidently  as  a  sign  of
epistasis.  By  contrast,  associations  are  unlikely  to  result  from contingent  causes  if  they  were
conserved  over  long  periods  of  time  during  which  purifying  selection  acted  on  the  genomes.
Moreover, genes that remain associated via events of co-transfer – which are unlikely under neutral
conditions, due to random sampling of transferred genes and frequent genome rearrangements or
gene losses – reflect the effect of strong selection for maintained gene linkage (Lassalle et al. 2017).
This indicates that long-term co-conservation patterns are relevant signatures of selection that can
be applied to study the evolution of accessory genes.

We  introduce  the  bioinformatic  software  pipeline  Pantagruel,  a  modular  suite  for  the
building  of  a  complete  bacterial  pangenome  database,  including  a  reference  species  tree,
homologous gene family alignments,  gene trees and most importantly,  gene evolution scenarios
inferred using gene tree/species tree reconciliation. Pantagruel is implemented as a script that will
deploy modules executing the various methods and third party-software as required. These modules
can  be  used  automatically  in  order  for  the  integral  building  of  a  pangenome  database,  or
independently by advanced users who desire to analyse intermediate output and/or to provide their
own intermediary input files. Throughout the computations, results are gathered into a relational
database which provides a naturally scalable interface for interconnecting the different aspects of
the dataset and studying their patterns of association.

Methods

The package  Pantagruel provides an automated tool for the construction of a pangenome
database from a large genome dataset and the application of phylogenetic reconciliation methods to
all gene families in the pangenome. This is achieved through a parallelized workflow, which can be
broken down into the ten main tasks described below.

User interface
The Pantagruel interface relies on a single command-line executable pantagruel that can

execute subprograms, or tasks, that are to be executed in order:  init followed by tasks 0 to 9.
The  init task sets up the parameters for the rest of the pipeline execution. Parameter values are
passed on using command-line options and are stored in an environment file, a shell script defining
environment  variables  that  will  be  loaded  at  the  beginning  of  every  subsequent  task.  The
environment file can be modified manually between tasks to adjust parameters, even though this is
not recommended as it may create issues due to dependencies between tasks.

General usage is described using the  h option and in more detail on the code repository
web page https://github.com/flass/pantagruel.

Pipeline Tasks 

A summary of the procedure used in each successive task of the pipeline is described below,
while a detailed version is provided in the Supplementary Material. A schematic representation of
the workflow is provided in Figure 1 (tasks init and 0-5) and Figure 2 (tasks 6-9).
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0) Fetching of public genome assembly data and annotation of custom genome assemblies
Input genomic data can be provided in several ways: either as a list of NCBI Assembly

accession  numbers  to  be  automatically  downloaded  from the  NCBI  FTP site,  or  directly  as  a
collection of genome assembly files (Figure 1). The preferred format for assemblies is a full set of
files as can be downloaded from NCBI Assembly database (RefSeq format), including genomic
FASTA (contigs), genomic GFF (annotation), but also coding sequences (CDS) and protein FASTA
files. Alternatively, input can simply consist of genome assembly contig files (FASTA), for instance
when  using  newly  sequenced  genomes.  Unless  a  custom  genome  annotation  is  provided  in  a
specific format mimicking the NCBI Assembly format (see manual), genome annotation will be
automatically made using Prokka (Seemann 2014). In the latter case, it is also possible to provide a
custom set of genome assemblies to serve as references for a sequence similarity search leading the
functional annotation of CDSs. Practically, annotation and sequence files analogous to the NCBI
Assembly format are generated from the submitted contigs, including the extraction of all coding
sequences (CDSs) and their translation into corresponding protein sequences. 

1) Building a homologous sequence database
All predicted protein-coding amino acid sequences are extracted from the genome assembly

dataset  and clustered into homologous gene families  –  which may include multiple  copies  per
genome – using MMSeqs2 (Steinegger & Söding 2017). 

2) Aligning homologous sequences
Homologous amino acid sequences are aligned with ClustalOmega (Sievers et al. 2011), and

codon  alignments  are  generated  by  reverse-translating  the  protein  alignments  into  their  coding
sequences using PAL2NAL (Suyama et al. 2006).

3) Initiating SQL database
A relational database is set up, using a SQLite engine which is easily portable and avoids

reliance on a client/server system requiring special administration rights. The database schema is
designed to gather all data from further steps, and facilitate their exploration through SQL language
database query. 

4) Functional annotation of proteins with biological ontologies
Proteins are systematically analysed using the battery of functional annotation tools gathered

in InterProScan (Jones et al. 2014). InterPro domain annotation is translated into Gene Ontology
(GO) terms and KEGG, BioCyc and Reactome metabolic pathway terms (Ashburner et al. 2000),
providing unified frameworks for the functional analysis of further results.

5) Estimating the reference tree
The reference tree is estimated from the concatenate of core genome gene alignments. The

set of strictly core genes can be small when genome datasets are large and/or diverse, which would
lead the derived tree to not be representative of the whole genome history. It is possible to relax the
definition of this reference set to a pseudo-core gene set, defined as all gene families that are present
in exactly one copy in almost  all  genomes in the dataset  (e.g.  95%). Based on a concatenated
alignment of these genes, a maximum-likelihood reference phylogeny is inferred using RAxML
(Stamatakis 2014) under the GTRCATI model (25 site categories), and branch support are estimated
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based on parametric bootstraps. The tree root is inferred using the maximum ancestor deviation
(MAD) technique (Tria et al. 2017). LSD (To et al. 2016) is used to generate an ultrametric version
of the reference tree (dated in arbitrary units).

In order to correct for the bias in sampling of the phylogenetic diversity of the dataset and
decrease the computational complexity associated with large phylogenies, we delineate clusters of
very similar genomes, hereafter called populations, based on the (non-ultrametric) reference tree.
We  consider  populations  that  can  be  nested,  reflecting  the  recent  emergence  and  evolution  of
bacterial clones from one another. Thus, while most often populations cover monophyletic sets of
genomes, they are sometimes paraphyletic.  The population delineation criterion relies on strong
support of the stem branch and a long enough stem branch relative to the length of branches within
the cluster; values of parameters can be modified through command line options.

6) Estimating gene phylogenies
Gene diversification patterns result from several evolutionary processes, namely long-term

diversification within genome lineages (subject to natural selection) and short-term dissemination
within a meta-population formed of several genome lineages (likely subject to no selection or only
transient episodes). The short-term diversification process likely involves phenomena in violation of
the assumptions of phylogenetic methods (e.g. recurrent homologous recombination amongst highly
similar  sequences),  and  its  common  features  with  the  long-term  diversification  process  (e.g.
occurrence of HGT) may present widely different parameter values (e.g. higher HGT rate observed
over recent rather than ancient diversification; (Didelot et al. 2009, 2012)). Thus, the respective
parts of gene sequence evolution that result from these two separate processes have to be identified,
so that diversification can be modelled and analysed separately, under a phylogenetic framework
and a population genetic framework, respectively.

Therefore,  gene trees  are  estimated in  several  steps,  with two objectives:  (1)  separating
recent vs. ancient diversification for separate analysis; and (2) decreasing the complexity of data
given as input to parameter-heavy phylogenetic inference methods.

In short, trees are first estimated with RAxML (Stamatakis 2014). Clades of gene sequences
with low topological support (including groups of identical sequences) are iteratively collapsed,
leaving only one representative leaf per clade. For each collapsed clade (CC), the frequency of each
represented population (i.e. the count of leaves belonging to each population) is recorded for further
population genetic modelling. A collapsed CDS alignment is generated to reflect the collapsed tree,
and from this alignment a Bayesian sample of the topology of each ‘backbone’ gene trees is then
obtained using MrBayes (Ronquist & Huelsenbeck 2003).

With  the  objective  of  performing gene  tree/species  tree  reconciliation,  all  leaves  in  the
collapsed gene  trees  need to  have  a  unique  identity  in  the  reference  tree.  A procedure  is  thus
required to define which identity will be given to the leaf left to represent a CC. Closely related
gene sequences occurring in genomes belonging to separate populations suggest they were recently
exchanged by HGT between populations. In other words, these genes are assumed to be segregating
in a meta-population formed of several populations, between which exchanges are possible despite
their distant relationships. Under this assumption, it can be further considered that the gene was
originally fixed in one ancestral population from which it diffused to other populations through
HGT. We thus use a simple heuristic based on their occurrence profile to infer the population (as
defined in task 5) where these sequences originated: the most densely represented population is the
most likely ancestor. This inferred ancestral population is then used to relabel the leaf representing
the  CC.  In  certain  cases,  clusters  of  gene  sequences  belonging  to  monophyletic  groups  of
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populations suggest some sequences within the CC likely evolved vertically; in that case a subtree
of population is grafted to the gene tree in place of the leaf representing the CC. These leaf re-
labelling or replacement operations are made on each tree of the Bayesian sample, thus preserving
the diversity of topologies in the samples. Records of these operations are stored in the relational
database initiated in task 3. 

7) Gene tree/species tree reconciliation
Dated gene tree/species tree reconciliation is conducted for each gene family to infer their

scenarios  of  evolution,  with  events  of  gene  duplication,  transfer  and  loss  (DTL)  using  ALE
(Szöllősi, Tannier, et al. 2013). Gene DTL event rate parameters are set free and estimated by a
maximum-likelihood  (ML)  approach,  and  then  1,000  gene  family  evolution  scenarios  and
associated  reconciliations  are  sampled using a  Bayesian approach (Szöllősi,  Rosikiewicz,  et  al.
2013). The output of ALE is then parsed to export inferred events to the relational database initiated
in task 3, allowing to relate events involving CCs to their original constituent gene sequences. 

8) Inference of orthology from evolution scenarios
Using reconciliation data, we can define groups based on a formal criterion of orthology, i.e.

common descent from an ancestor by means of speciation only (Doyon et al. 2011), rather than a
proxy criterion such as bidirectional best hits (BBH) in a similarity search (Wolf & Koonin 2012;
Dalquen & Dessimoz 2013).  This means that any event of HGT or duplication annotated on a
reconciled gene tree branch induces the subtree beneath to constitute a new orthology group (OG).
However, this strict criterion tends to atomize families where most gene tree branches are annotated
with transfer events even though each taxon is only represented once, for instance due to sparse
taxonomic representation of the gene or to homologous recombination events. To account for this,
we relaxed our OG definition and used a heuristic mixing the formal orthology criterion and the
unicopy criterion (Bigot et al. 2013), where transfer events that do not increase the number of gene
copies in a genome are ignored. We used a similar approach to differentiate additive and replacing
gene transfer events in a previous study (Lassalle et al. 2017) where it provided an evolutionary
sound, yet conservative way of describing the structure of diversity within gene families. A last
hurdle in  the definition of OGs from reconciled gene trees is  that  trees from a sample are not
guaranteed to have the same topology, nor the same events associated with them. We therefore ran
the orthology classification algorithm on each reconciliation in a sample. A network was then built
that connects genes which were classified in the same OG in at least 50% of the sample; connected
components of this graph provided the final OGs, as a consensus of the orthology structure inferred
in every reconciliation of the sample.

9) Quantification of gene co-evolution
The inferred event profiles of all genes in the pangenome are compared, quantifying their

similarity with a score defined as the sum of joint event probabilities (SJEP). This score is obtained
for a pair of gene lineages g and h by computing the sum for all events e of the probability that e
affected both g and h (see Suppl. Material). The SJEP score thus describes the average number of
evolutionary events in common during the history of two genes. Pairs of genes with a significant
SJEP score  resided  together  in  ancestral  genomes,  notably  for  a  number  of  ancestors  on  the
reference tree at least equal to that score – possibly more if we consider that genes may be acquired
in a same genome through independent events, for instance one by speciation and the other by
transfer. Within the resulting matrix of pairwise SJEP scores, entries with high values were used to
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build a network of associations. The tightest hubs in this network reveal co-evolving gene modules,
whereas  connection  between  such  hubs  highlight  recurring  associations  between  modules,  for
instance between the large core genome gene module and smaller accessory gene modules.

The specificity of the SJEP score is that it describes a pairwise association between gene
lineages,  and  can  therefore  detect  localized  co-evolution  in  a  pair  of  gene  trees,  without  the
assumption that co-evolution must have involved the whole gene family. This allows a much more
sensitive detection of gene associations, but introduce the problem of high-dimensionality of testing
the association for  the many combinations  of  gene lineages that  can be enumerated within the
dataset. For example, in a dataset of 1,000 genomes made of 5,000 genes, the number of pairwise
comparisons is of the order of 1013. This computational challenge is addressed by an efficient use of
relational  database  (SQL)  queries  in  the  search  of  significant  matches  between  gene  lineage
evolutionary scenarios  and by imposing filters  on the probability  of  events  that  are  supporting
lineage matches (> 0.1), and on the co-evolution scores to report (> 1.0).

Even with  these  filters,  the  resulting  network can  be  very  dense.  This  potentially  large
number of association links is however redundant. In this gene lineage network representation, gene
lineages from a same gene family are not independent as they share a significant fraction of their
ancestral history. This may result in repeat association of closely related genes to the same set of
genes.  Redundant  many-to-many  relationships  between  two  groups  of  close  homologs  can  be
simplified into a simple link between those groups. 

For this reason, we aimed to group genes from a homologous gene family into sub-clusters.
We define subgroups based on the orthology relationship (see task 8), as it ensures a fairly close
relatedness between members and limits the size of a group to the size of the genome dataset. For
each pair  of  OGs, we filter  association links  between member gene lineages to  those with the
highest score for each member gene lineage (best lineage hit) and report the mean of these best
lineage hit scores as the OG-OG association score.

Software implementation

Pantagruel is implemented as a master shell script commanding the task routines, written
mostly in bash language. Each task script may itself call third-party programs or utility programs
originally developed for Pantagruel-specific procedures, including phylogenetic tree manipulation
and database query and dynamic management; these utility programs are mostly written in Python
2.7, as well as in R, bash and SQL languages. This script can easily be used to run the whole
pipeline  using  a  command-line  interface.  The  full  package  is  available  on  GitHub  at
https://github.com/flass/pantagruel.

 Pantagruel was designed to run on a Linux server computer, and has been successfully
tested on virtual  machines 8 parallel  cores,  and 64 GB memory,  as made available  by the UK
Medical  Research  Council  Cloud  Infrastructure  for  Microbial  Bioinformatics  (MRC  CLIMB)
(Connor et al. 2016). 

A script  is  also  provided  to  automatically  install  the  dependencies.  This  script  is  fully
compatible with Debian-type Linux operating systems such as Ubuntu; it may also be used on other
Linux or Unix systems but some manual steps may be required for complete installation.

Computationally intensive pipeline tasks such as gene tree estimation and gene tree/species
tree reconciliation (tasks 6 and 7, respectively) spawn many independent computation jobs (one per
gene family) that naturally lend themselves to parallelization. For these tasks, specific scripts are
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provided to execute them on a high-performance computer (HPC) cluster to speed-up the execution;
only PBS/Torque job submission systems are supported so far.

In addition, another version of the package is in development using the Bistro framework
(https://github.com/pveber/bistro), to provide a pre-compiled, self-contained Docker image that can
be deployed on pretty much any platform, including swarms of virtual machines (VMs).

Discussion

Pantagruel  is  a  comprehensive  pipeline  for  the  evolutionary  analysis  of  bacterial
pangenome datasets. A central component is the use of reconciliation methods (Szöllősi et al. 2015)
to compare the phylogeny of a given gene with that of the genome as a whole. State-of-the-art
reconciliation techniques are however too computationally expensive to be applied to hundreds of
genomes each containing thousands of genes. We therefore implemented within  Pantagruel new
ways to simplify the input  data to ease the computation of reconciliations with limited loss of
information. Clades that cluster very similar gene sequences and show little internal topological
support are separated from the well supported part of the gene tree (Figure 2). The absence of
phylogenetic  information within those clades,  and the possibility  of homologous recombination
having occurred between such closely related sequences, justify that their relationships should not
be considered under a phylogenetic model. Instead, the closely related sequence clusters indicate
recent gene sharing, where population genetics and ecological modelling approaches would be more
appropriate.  Notably,  combining  the  information  of  population  distribution  in  all  such  closely
related sequence clusters into a network would allow to identify meta-populations within which
closely related populations preferentially exchange genes (Ansari & Didelot 2014). We also use this
information to infer the identity of the recent ancestors at the stem of these rake clades, which can
be  annotated  on  the  tree  backbone  and  fed  back  to  the  reconciliation  method.  Thanks  to  this
separation  of  data,  the  phylogenetic  reconciliation  inference  problem is  largely  simplified  and
solutions concerning the well resolved parts of gene phylogenies are found to be more precise. We
observed that this way, the reconciliation software achieved large speed-ups, but also could simply
be run on gene families in which the initial complexity otherwise led to systematic excess memory
use and termination.  Pantagruel  thus allows the practical use of reconciliation methods (we used
ALE but in principle other methods could be used) on large-scale pangenome datasets. 

Methods  for  statistical  testing  of  gene  lineage  association  will  be  developed  using
simulation-based approaches as previously used for phylogenetically-correct testing of phenotype-
genotype  associations  in  clonal  microbes  (Collins  &  Didelot  2018).  This  will  be  based  on
simulations  of  genome  evolution  under  a  similar  DTL model  that  accounts  for  gene  linkage
evolution.  Simulation  could  be  provided  by  pangenome  tree  simulators  such  as  FwdTreeSim
(https://github.com/flass/FwdTreeSim) or Zombi (Davin et  al.  2018).  Development of analytical
solutions to evaluate the likelihood of observing co-evolving pairs under a neutral model is also
envisaged, notably using a linear algebra framework (Behdenna et al. 2016). 
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Figures

Figure 1: Schematic view of Pantagruel workflow for pipeline tasks init and 0 to 5.

(init) user-defined parameters given via command-line options are stored into a configuration file
that will direct the operations throughout the pipeline.  (0) Input data are assembled from variable
sources: annotated genome assemblies (formatted as) obtained from NCBI Assembly database; an
assembly accession list for annotated genomes to be downloaded from NCBI Assembly FTP; or
user-provided contigs of custom assemblies, which will be annotated by Prokka. (1) All proteins are
extracted from annotated assemblies, and clustered into homologous families using MMSeqs.  (2)
Protein  family  sequences  are  aligned  with  ClustalOmega,  and  reverse-translated  into  CDS
alignments with PAL2NAL. (3) A SQLite database is set up and loaded with data covering organism
and genome assembly metadata,  protein/CDS annotation and family clustering.  (4) Proteins are
uniformly annotated with functional domains using InterProScan, and these annotations are linked
to Gene Ontology and metabolic pathway ontology terms; all annotation and ontologies are loaded
into the SQLite database.  (5) Core gene families are concatenated and used to infer a reference
species tree with RAxML. Population of closely related genomes are delineated based on the tree
topology.
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Figure 2: Schematic view of Pantagruel workflow for pipeline tasks 6 to 9.

(6) From each gene family alignments, a rapid maximum-likelihood gene tree is estimated on the
full alignment using RAxML. Clades of closely-related sequences with low topological supports
within the subtree are collapsed. Alignments restricted to the sequence representative of collapsed
clades  (CCs)  are  used  to  perform  a  Bayesian  sample  of  topologies  of  each  gene  tree  using
MyBayes. CCs also defin tight clusters of similar sequences; the occurrence of CC cluster in the
species populations (defined in task 5) is tabulated for further population genetics analyses. (7)
Collapsed gene tree samples are reconciled with the reference species tree (from task 5) using ALE
to infer reconciled gene trees annotated with events of horizontal transfer, duplication and loss of
genes, as well as gene evolution scenarios placing these events in the reference species tree.  (8)
Based on the reconciled gene trees, groups of orthologs are defined within each homologous family,
based  on  the  gene  tree  topology  and  their  common  descent  via  events  of  speciation  only.
Phylogenetic profiles of occurrence of these ortholog groups are then used toinfer sets of clade-
specific genes for all clades in the reference tree. (9) Evolution scenarios are compared for all pairs
of gene lineages, evaluating the extant of their co-evolution by exploring the reconciled gene tree
from the gene tip  to  its  root  and summing the  joint  probability  of  common events.  These co-
evolution scores are used to build a gene association network.
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