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Abstract	
 
The vast majority of cancer next-generation sequencing data consist of bulk samples composed of mixtures of 
cancer and normal cells. To study tumor evolution, subclonal reconstruction approaches based on machine 
learning are used to separate subpopulation of cancer cells and reconstruct their ancestral relationships. 
However, current approaches are entirely data-driven and agnostic to evolutionary theory. We demonstrate that 
systematic errors occur in subclonal reconstruction if tumor evolution is not accounted for, and that those errors 
increase when multiple samples are taken from the same tumor. To address this issue, we present a novel 
approach for model-based subclonal reconstruction that combines data-driven machine learning with 
evolutionary theory. Using public, synthetic and newly generated data, we show the method is more robust and 
accurate than current techniques in both single-sample and multi-region sequencing data. With careful data 
curation and interpretation, we show how the method allows minimizing the confounding factors that affect 
non-evolutionary methods, leading to a more accurate recovery of the evolutionary history of human tumors.  

Introduction	
 
Cancers evolve through a process of clonal evolution1, inevitably resulting in intra-tumor heterogeneity2. 
Genome sequencing of one or more bulk samples from tumors has become the most common way to study 
intra-tumor heterogeneity and clonal evolution in human malignancies. Concerted efforts are dedicated to the 
identification of cancer (sub)clones3. Whereas a cancer “clone” remains loosely defined, its purest definition is 
that of a group of cells within the tumor that share a common ancestor. However, this implies that any ancestor 
in the phylogenetic tree of a tumor can be identified as the founder of a distinct “clone”. For a cancer composed 
of N cells, by this definition we would expect N-1 clones, most of which have nothing ‘special’ in terms of 
tumor biology. This is why in the field we implicitly identify clones “of interest”, such as those that have 
growth/survival advantage (an ancestor under positive selection), or those that generate metastases (an ancestor 
that first arrives at a given site). It is important to bear in mind these limits in the definition of a clone when we 
attempt to recovery the tumor clonal architecture. 
 
Unsupervised clustering of variant read counts from bulk cancer sequencing data is the established approach to 
resolve the clonal structure of a bulk tumor sample4, with each of the resulting clusters defined as a clone. This 
procedure, called “subclonal reconstruction” (or deconvolution), leverages on variant read counts and associated 
variant allele frequency (VAF) estimates of somatic mutations, which are normalized for copy number status 
(number of alleles at the mutation locus) and tumor purity (proportion of contaminating normal alleles). This 
normalization leads to the computation of the Cancer Cell Fraction (CCF), or the proportion of cancer cells 
bearing a given mutation. Subclonal reconstruction is central to cancer evolution analyses because it allows 
tracing the “life history” of a tumor by reconstructing the underlying clonal ancestral relationships in the form of 
a clone phylogenetic tree (called a “clone tree”)3. 
 
Current methodologies approach subclonal reconstruction with sophisticated machine learning or combinatorial 
optimization algorithms4. The former class of algorithms is predominant, and a large set of methods use 
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Dirichlet Processes clustering3,5,6 or Dirichlet finite mixture models7. These methods are entirely data-driven and 
are usually chosen because of their convenient statistical properties, rather than their adherence to the 
mechanisms of tumor evolution and sampling. Nevertheless, they can be efficient and accurate, as long as the 
underlying assumptions of the statistical method are correct. All current subclonal reconstruction methods 
assume that variant read counts from bulk tumor samples composed of different subclonal populations would 
present as a mixture of Binomial or Beta-Binomial mutational clusters, each corresponding to a clone. 
Biologically, each of these clusters must consist of the mutations present in the founder cell of the clone8. 
However, these clusters are not the only observable patterns in the data: the mutations that occur within each 
clone (intra-clone mutations) are also detectable in the data. Given the size of the human genome, even with 
extremely low mutations rates such as germline mutation rates (e.g. 10-9 nucleotide substitutions per base per 
division9), new mutations are expected at each cell division, and thus large numbers of “passenger” mutations 
inevitably accumulate within a clone. The evolutionary dynamics of this passenger mutation accumulation are 
neutral, giving rise to a power-law distributed “tail” of ever more mutations at ever lower frequency within the 
clone. This has been mathematically demonstrated in theoretical population genetics10-13 and is corroborated by 
genomic data at high resolution8,14. These within-clone neutral tails have not been directly addressed by previous 
methods, potentially confounding the measurement of clonal heterogeneity through the introduction of spurious   
subclones. 
 
Here, we aimed to reconcile data-driven machine learning approaches to clustering VAFs with the insight given 
by theoretical models of tumor evolution. Specifically, we combined Dirichlet mixture models with the set of 
distributions predicted by theoretical population genetics models10-13, producing the first model-based 
unsupervised clustering method for subclonal reconstruction called MOBSTER (MOdel Based cluSTering in 
cancER). MOBSTER can process mutant allelic frequencies to identify and remove neutral tails from the data, so 
that any subclonal reconstruction algorithm can be applied to determine subclone parameters from read counts. 
 
We also expand MOBSTER	to analyze multivariate data from multiple samples of the same tumor. We show that 
unavoidable sampling bias and lineage admixture caused by the spatial structure of the tumor15 produces 
additional confounding factors that need to be considered when interpreting the output of the subclonal 
reconstruction. Rational curation based on understanding how a tumor expands, how its growth is affected by 
stochastic forces such as drift16, and a careful spatial sampling strategy, can be combined with MOBSTER to 
accurately reconstruct the tumor phylogenetic history. 

Results	
	
Mutation,	drift	and	selection	in	clonally	evolving	cancer	cell	populations	
	
Cancers grow from a single cell, and because of this growth process, neutral mutations that occur in the first few 
cell divisions are present at high frequency in the final cancer, irrespective of the action of selection. In addition, 
stochastic fluctuations in population size of cell lineages can also increase the frequency of mutations in the 
absence of selection, this is called genetic drift16. The same is true within (sub)clones: a clone originates as a 
single cell, and neutral mutations that occur early within the clone thereafter are carried to higher frequency by 
the clone’s own growth.  
 
Tremendous insight into the accumulation of mutations in the absence of positive selection has come from the 
study of the Luria-Delbruck model in bacteria17. This has led to well-established population genetics theory 
describing the accumulation of mutations within neutrally growing populations11,12. The same theory applies to 
cancer clones10,13 and can be extended to model positively selected mutations in growing populations8. The 
theory states that we should expect a tail of neutral passenger mutations within a clone (Figure 1A). Neutral tails 
have only recently become evident in the data with the adoption of high-depth whole genome sequencing: lower 
depth sequencing (e.g. < 60x whole-genome sequencing – WGS8) is not sufficient to detect a tail, and exome or 
panel sequencing often assay too few mutations to show a clear VAF spectrum18.  
 
We explored subclonal reconstruction in data containing neutral tails. Figure 1A shows the simplest example of 
a single uniform tumor expansion (i.e. no subclones). The corresponding clone tree has a single “truncal” node 
(Figure 1B). The VAF spectrum for this tumor consists of a clonal cluster at high frequency, corresponding to 
the mutations that are present in all cells in the sample (i.e., in the most recent common ancestor, MRCA, of the 
clone), and a neutral tail of mutations at low VAF originated as the clone expands (Figure 1C). In the case 
where a subclone with selective advantage is present (Figure 1D, E), the data will present as two clusters at high 
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frequency (one clonal and one subclonal) as well as a mixture of two overlapping neutral tails (Figure 1F) – as 
previously reported8. Performing subclonal reconstruction on these data assuming a generative mixture of just 
Binomial or Beta-Binomial distributions will detect several clusters within the neutral tail that are erroneously 
identified as subclones (Figure 1G,H). When these clones are used downstream for phylogenetic 
reconstruction4, the resulting trees (Figure 1I) have a very different structure from the true trees (Figure 1B, E), 
with further high uncertainty for the fits because multiple possible trees can be consistent with the data.  
 
Low depth sequencing data presents additional problems. In lower depth sequencing, neutral tails are under-
sampled and become even more likely to be mistaken for subclones as they lose their characteristic power-law 
shape. Comparison of a neutral tumor at 120x whole-genome to a 40x whole-genome, which shows how a 
“leftover” chunk of a neutral tail is indistinguishable from a subclonal cluster (Figure 1J). We note that these 
noisy subclonal VAF distribution that may represent under-sampled tails are commonly observed in low depth 
sequencing data previously reported3,19. 
 
 

	
 

Figure 1. Cancer evolutionary dynamics with and without selection. (A) A tumor formed by a single clone expands following neutral evolutionary dynamics driven only 
by division, mutation, cell death and genetic drift. (B) The clone tree is represented as a single “truncal” clone. (C) The expected Variant Allele Frequency (VAF) distribution 
is characterized by a clonal cluster containing truncal mutations and a neutral 1/!! tail. (D) A tumor with one subclone under positive selection. The evolutionary forces of 
mutation and neutral drift are still at play within each clone. (E) The clone tree is represented as a truncal clone that gives rise to a selected subclone within it. (F) Here the 
VAF histogram has one extra cluster due to subclonal mutations in the ancestor of the subclone that has risen in frequency due to positive selection. (G,H) Standard subclonal 
deconvolution from read counts of the tumors in panel A and B finds 4 clusters, multiple of which are not true subclones but are the result of clustering neutral tail mutations. 
(I) Inflated estimates of the number of tumor clones propagate errors and uncertainty in downstream evolutionary analysis. In this case, for instance, with 4 estimated clones 
we can fit several alternative phylogenetic trees (clone trees) to the clonal structure. The inferred clone trees will contain non-existing clones as nodes, portraying wrong 
evolutionary tumor histories. (J) Low coverage and low purity affect the ability to observe neutral tails in the data. In this synthetic example, we show how the VAF 
distribution of a neutral tumor with a clear neutral tail at 120x whole-genome sequencing can become difficult to interpret at 40x depth of sequencing. In this example, the 
degenerated tail at 40x may be interpreted as an actual subclone. With such data one is usually not powered to screen off true positive subclonal selection from actual neutral 
mutations. 
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Model-based	clustering	of	variant	allelic	frequencies	
	
The frequency ! of passenger mutations in an expanding population follows a Landau distribution11, which at 
the frequency range detected by current sequencing standards can be approximated by a power law distribution 
!~1/!2 (Figure 2A), as we previously reported10. Subclonal alleles under positive selection, together with their 
hitchhiking passengers, will instead form clusters in the clone-size distribution as they rise in frequency due to 
Darwinian selection20. 
 
Here, we consider VAF corrected for copy number status and tumor purity, with the expected clonal peak of a 
diploid tumor to be located at VAF ≈ 0.5 (which corresponds to a 100% Cancer Cell Fraction - CCF). We can 
model VAFs via Beta distributions21, and read counts with Binomial or Beta-Binomial distributions, depending 
on sequencing over-dispersion3,5,6,21. In MOBSTER we model the evolutionary dynamics of a growing tumor 
containing subclones by combining Beta distributions (expected from subclones under selection) with a power 
law (expected from the neutral tails of each subclone), and cluster VAF values (Figure 2A). After fitting the tail 
structure in the VAF distribution, the tail mutations – as they do not correspond to clones – can be removed, and 
clustering of read counts of remaining data (non-tail mutations) can be done via standard methods (Figure 2B). 
This analysis uses MOBSTER to control for tails while retaining the original variance of the data for the final 
clustering step of read counts. Critically, MOBSTER	always compares in an unbiased way the fit of a mixture of 
subclones augmented with a neutral tail, versus the fit of a mixture of subclones alone. A regularized model 
selection strategy is then used to determine the best model fit to data.  
   
MOBSTER	combines one Pareto Type-I random variable (a type of power-law) with ! Beta random variables; 
the overall model is a univariate finite mixture with ! + 1 components. The likelihood is  
 

! ! !,! =  !!! !! !∗,! + !!ℎ !! !! , !!
!

!!!
 

!

!!!
, 

 
where ! and ℎ are density functions, ! = (!∗,!, !!, . . , !! , !!,… , !!) is a vector of parameters and ! are mixing 
proportions in a standard setting with !×(! + 1) latent variables. The Pareto component follows ! ! !∗,! ∝
 1/!!!! for ! ≥ !∗, and the Beta component follows ℎ ! !! , !! ∝  !!!!!(1 − !)!!!! in [0,1]. A detailed 
derivation of MOBSTER, its relation to other models in the field, and other technical comments are available 
(Online Methods, Supplementary Figure S1). 
 
We can learn the parameters (!, !) of a MOBSTER model via Expectation Maximization with numerical 
maximum likelihood estimates of the Beta parameters. Otherwise, we can adopt a much faster variation that 
exploits analytical moment-matching for Beta mixtures. To perform model selection and identify a 
parsimonious number of clusters (! ≥ 1), we minimize a score derived from the Integrative Classification 
Likelihood (ICL). ICL is an extension of the Bayesian Information Criterion (BIC) that includes the entropy of 
the latent variables to induce separation of the mixture components. In MOBSTER we either require a fit that 
separates all mixture components (subclones plus tail, standard ICL), or one that reduces the overlap among 
subclonal peaks, disregarding the tail (reduced ICL, reICL) 22. 
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MOBSTER	can also fit models without tail (Beta mixtures), so it can choose the best model, with vs without tail, 
through a likelihood ratio test (Supplementary Figures S2 and S3). After tail detection and removal, any 
subclonal reconstruction tool can be used.  
 
In the example of a tumor formed by a single expanding clone (Figure 1A), MOBSTER	fits one Beta cluster of 
truncal mutations (clonal mutations present in all cancer cells) plus a neutral tail (Figure 2C). Similarly, for the 
tumor with one subclone (Figure 1D), MOBSTER	fits two Beta clusters and a tail (Figure 2D). When MOBSTER	
removes tails, subsequent clustering of read counts for non-tail mutations identifies the true clones and their 
clone trees (Figure 2C-D). 
 
 
 
 
Synthetic	validation	of	the	method	and	confounding	factors	in	univariate	analysis	
 
We used synthetic data to validate MOBSTER and to quantify the degree to which neutral tails confound 
subclonal deconvolution (see Online Methods, Supplementary Note 1 and Supplementary Data “Visualizing 
subclonal expansions”, for details). First, we generated ! = 150 tumors evolved with plausible evolutionary 
parameters using a stochastic branching process simulator of tumor growth8. Out of these, 30 cases had no 
subclone (as in Figure 1A) and 120 one subclone (as in Figure 1D). For each tumor we simulated whole-genome 
bulk sequencing of a single biopsy, at high coverage (120x median, Poisson distributed) and perfect purity 
(! = 1; clonal cluster at adjusted VAF 0.5). We measured the predicted number of clones ! (including the 
clonal cluster), as well as the distance between the true and the estimated peaks in the VAF distribution as a 
proxy for fit precision (Supplementary Figure S4). In all tests, we always compare MOBSTER’s fits with and 

Figure 2. Model-based subclonal deconvolution. (A) MOBSTER combines a Pareto Type-I distribution (power law) with ! Beta random variables, in a univariate finite 
mixture with ! + 1 components. The Pareto captures the frequency spectrum of neutral mutant alleles (passengers), and Beta components detect alleles under positive 
selection. The Pareto distribution is predicted by standard theoretical population genetics, which shows that the probability of observing ! mutant alleles in a neutral 
population follows a Landau distribution !Landau  that decays as 1/!!. MOBSTER uses a general formulation for a unique overall power law (with free parameter its 
exponent), and learns the model parameters from data via Expectation Maximization. In the histogram we show clustering assignments for a tumor with one subclone 
(! = 2, 1 subclone). (B) With MOBSTER	we can control the confounding factor of neutral tails: we filter tail mutations from the VAF distribution, and then cluster 
remaining read counts with any other tool for subclonal reconstruction that uses read counts. Clusters detected in this way are more likely to accurately identify groups of 
alleles under positive selection (i.e., true clones). (C, D) In these synthetic examples, when we analyze tumors such as the ones in Figures 1A and 1B and control for 
tails, the number of clusters matches the number of true clones. The true clonal architectures and evolutionary histories of both tumors are therefore recovered.  
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without a tail, and retain the best fit (log ratio test) to compute performance. We carry out several other types of 
tests in order to assess the best model selection strategies, the ability of MOBSTER to detect low-frequency 
subclones, and its ability to distinguish tails from subclones. Adapting the computations by Williams et al.8, we 
also show that several evolutionary parameters of a tumor can be retrieved from MOBSTER’s output; these 
include the tumor mutation rate, the time of emergence of detected subclones and their selective advantage 
coefficient. Thus, MOBSTER is a clustering-based method for subclonal deconvolution that can also extract 
evolutionary dynamics information from the data (Supplementary Figures S4-S7).  
 
By accounting for neutral tails, MOBSTER significantly outperformed standard approaches. This is observed 
with both Dirichlet variational mixture and a Dirichlet Process clustering run downstream MOBSTER (Figure 
3A, B and Supplementary Figure S8); these statistical frameworks are at the core of popular tools like sciClone7, 
pyClone23 and DPclust3. In both methodologies, a parameter ! > 0 tunes the propensity to introduce new 
clusters during the fit3; we tested both point estimates and a Gamma prior for !. Results confirm the importance 
of using stringent values of ! (Figure 3A, B). Controlling for neutral tails with MOBSTER	allowed retrieving the 
correct number of clones in the large majority of cases. Without MOBSTER, clone numbers were overestimated 
by up to a factor 4, with consistent errors. Importantly, stringent control of the clustering parameter ! was 
insufficient to remove the errors, whereas the errors were avoided by explicitly correcting for neutral tails. 
 
We tested for the effect of two key confounders for tail detection: coverage (Figure 3C) and purity 
(Supplementary Figure S5). At 100% tumor purity (no contamination of non-tumor cells) tails could be reliably 
identified only if the median coverage exceeded 100x; progressively higher coverage was required with lower 
purity, as one might expect (e.g., at 120x median coverage purity >80% is required to detect tails consistently). 
Consequently, moderate depth whole-genome sequencing studies19 do not seem sufficiently powered to detect 
neutral tails, or to properly distinguish neutral tails from true subclones, as illustrated in Figure 1L.  
 
In Figure 3D we explicitly compared DPclust, pyClone (with both Binomial and Beta-Binomial distributions) 
and sciClone, in combination with and without MOBSTER. Without MOBSTER, observed error rates for inferred 
clone number were comparable to results for baseline Dirichlet methods (Figure 3A-B). The impact on 
downstream phylogenetic analysis was severe. In particular, the inflated number of clusters detected when we 
do not control for tails generates a large number of trees that can be fit to data using the standard pigeonhole 
principle3,24 (Figure 3E).   
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Confounding	factors	in	subclonal	analysis	of	multi-region	sequencing	data	
	

Figure 3. Caption in the next page 
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We next investigated the influence of neutral tails on subclonal deconvolution from multi-region sequencing 
data. As for the single-sample data, our ultimate goal is to delineate the “important” clones from any other 
ancestor in the phylogenetic tree of a tumor, with specific interest in detecting clones that have experienced 
positive selection. In the single sample case, we have theoretical understanding of the clone size distribution 
under neutral evolution (clone size ~ 1/!!) and so selection is evident as a deviation from this expectation.  
Uncertainty over the spatial structure of a tumor (e.g. the spread and mixing of clones during tumor growth), 
coupled with the constraints and potential sampling-bias inherent to multi-region biopsies (e.g. variable number 
and physical sample size, non-uniform spatial sampling, heterogeneity in tumor content across tumor tissue, etc) 
preclude an analogous simple theoretical understanding of the clone size distribution in spatial multi-region 
data. Nonetheless, in MOBSTER we fit a general power law tail – rather than assuming its exponent to be equal 
to 2 – which gives us flexibility to take into account deviations from strict exponential growth due to spatial 
structure, as well as sampling bias. 
 
In a sequencing dataset of multiple spatially-distinct samples from a tumor, clone identification is performed by 
identifying groups of mutations that are at the same VAF/ CCF in one sample (e.g. represent a cluster in single-
region sequencing data) and which remain clustered together in other samples from the same patient25. 
Differences in the position of the cluster between samples represents differences in the abundance of the clone 
between samples25,26.   
 
We generated synthetic data from spatial simulations of tumor growth under neutrality and positive selection 
(Online Methods) and observed that neutral tails in multi-region sequencing can lead standard methods to 
identify subclones from neutrally evolving ancestors, giving the illusion of numerous (false) selected clones. 
Strikingly, this error grows dramatically with the number of biopsies collected (number of regions). This means 
that, contrary to intuition, more samples generate proportionally more noise than signal for the subclonal 
reconstruction. This unpleasant effect is generated by different sources of spatial sampling bias, and the 
complex way in which passenger mutations from neutral tails spread in physical space within a growing 
neoplasm. We have isolated and identified these confounders, which we called the “hitchhiker mirage”, the 
“ancestor effect” and the “admixing deception” (Figure 4). The first confounder (hitchhiker mirage) is due to 
neutral tails, and can be formally solved using MOBSTER. The others are due to spatial sampling, and require 
careful interpretation of the results, which we discuss below.  
 
The	hitchhiker	mirage	
	
Here we comment on an artifactual effect inherent to multi-region data that we term the hitchhiker mirage. In 
Figure 4A we show the schematic of a tumor with a founder clone (blue) that gives raise to a new positively 
selected subclone (green). Two spatially distinct samples were collected from the tumor, respectively containing 
only the original clone (S1) and the new subclone with selective advantage (S2); see also Supplementary Figure 
S9. Sequencing data from sample S2 would contain the subclonal driver event that gave rise to the new subclone 
(clonal in S2), and both samples contain neutral passengers. The marginal VAF distribution of each sample 
shows the expected neutral tail of passengers (Figure 4B). However, the joint tumor distribution (here 2-sample 
VAF distribution) shows multiple additional clusters of mutations (Figure 4C). The cluster(s) at low frequency 
(Figure 4B-C; red) are due to neutral tails, analogous to the single sample case. The source of the cluster at 
higher frequency (Figure 4C; yellow) is much subtler and relates to passenger mutations that accrued in the 
lineage that went onto form the selected subclone (orange mutations). When the subclone expanded, these 
passenger mutations that had accrued prior to clone growth were present in every cell in the clone, and therefore 

Figure 3. Robustness and accuracy of MOBSTER	versus current approaches. (A,B) We compare subclonal reconstruction that controls for tail with MOBSTER, against 
standard methods. We use a variational fit to a Dirichlet mixture (A) and a Markov Chain Monte Carlo (MCMC) method for a Dirichlet Process (B). These 
methodologies are at the basis of standard approaches like sciClone, pyClone and DPClust. The test uses synthetic data of ! = 150 simulated tumors (! = 120 with one 
subclone, and ! = 30 without subclones), generated from a stochastic branching process of tumor growth. We report the logarithm of the ratio between the number of 
subclones found by the fit (!fit) and the true number of clones (!true); !fit=!true when the ratio approaches 0. We assumed 120x mean coverage and 100% tumor purity 
(i.e., no normal contamination), and tested the performance of the clustering using different values of the mixture concentration parameter !, which tunes the propensity 
at which new cluster are called during the fit. Values ! = 1,10!! are point estimates of the concentration, and we test also a Dirichlet Process where ! is learnt from the 
data using a Gamma prior. In these tests we use ICL for model selection; more extensive tests are available in Supplementary Figures S4-S8. (C) We measure how the 
proportion of mutations assigned to	MOBSTER’s tails changes with coverage, assuming fixed 100% tumor purity. We span coverage values from 40x	to 200x, using a 
subset of ! = 80 tumors from the test in panel A/B. The red dashed line is the median tail size across the test set (ground truth obtained from simulated tumor). It is very 
difficult to fit neutral tails with below 100x	 coverage; a similar effect is observed reducing tumor sample purity (Supplementary Figures S5). (D) Using the same 
! = 150 synthetic tumors we tested a set of popular tools for subclonal deconvolution that exploit the methodologies shown in panel A/B. We compare Binomial 
mixtures from	 DPclust,	 pyClone	 and sciClone, and Beta-Binomial mixtures from	 pyClone. Compared to panels A/B, these tools can implement heuristics to merge 
clusters, or assign mutations to clusters. In this test, to avoid an excess of small subclones, we also remove output clusters with less than 2% of the overall mutational 
burden (! < 0.02). In this test we use a Gamma prior for ! in DPclust and pyClone (default), with prior hyper-parameter (shape) set to 1 (value hardcoded in DPclust). 
sciClone	uses a hardcoded ! parameter. The error without pre-filtering with MOBSTER is dramatic in all cases. (E) Number of phylogenetic trees that can be fit by the 
pigeonhole principle using the output median VAF of each cluster. This number measures the reduction of the uncertainty in a downstream evolutionary analysis when 
we control for tails with MOBSTER.  
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appeared clonal in sample S2 (hitchhiker mutations). However, some of these hitchhiker mutations (orange) 
were also contributed to other lineages that formed other parts of the tumor, at varying frequencies. For 
example, for a series of cell doublings, mutations at cell division 1, 2, 3 … will have frequency 50%, 25%, 
12.5%, 6.25% etc. in the rest of the tumor. When these passengers were also then detected in sample S1, a 
clustering algorithm could “break” the group of subclonal mutations (orange and green) in two clusters with 
different Binomial parameters (Figure 4C). Statistically, this split of orange and green mutations is consistent 
with the fact that these alleles really move differently across biopsies, but the produced groups have little to do 
with the actual evolution of this tumor, and are rather determined by spatial sampling. In particular, the orange 
cluster does not correspond to a real subclone under positive selection; rather it is composed by neutrally 
evolving ancestors that they just happen to end up in S1,	and a slightly different sampling strategy would have 
identified a different ancestor.  
 
Prior removal of neutral tails solves this problem of ‘splitting’ hitchhiking mutations. In the cartoon example 
(Figure 4A), running MOBSTER separately on each sample can identify and remove neutral tail mutations from 
the orange group, so that clustering of the remaining read counts (projected VAF after MOBSTER, Figure 4D) 
correctly identifies only one single cluster/ subclone in the data.	
 
The	ancestor	effect	 	
	
Mutations found at high frequency in a small sample of a larger population can be erroneously associated with 
selection. Just due to spatial structure, cells that are close in space are also likely to be close genetically and tend 
to have a recent common ancestor. We illustrate this in Figure 4E where we assumed a completely neutral tumor 
driven only by clonal drivers; see also Supplementary Figure S9. When we sampled two biopsies S1 and S2, in 
each sample we detected the clonal mutations corresponding to each sample’s most recent common ancestor 
(MRCA). In this case, the simulated tumor was evolving entirely neutrally, and no differentially selected clones 
existed.   
 
Multi-region sampling inevitably resolves the clonal ancestry of the samples (e.g. finds subclones) but these 
again were just arbitrary, neutrally evolving ancestors picked up by the spatial sampling. We illustrate this in 
Figure 4F where the two “clones” private to each biopsy (S1: green; S2: orange) were used to reconstruct the 
clone tree and the cells in the simulation have been virtually stained for the mutations in each identified cluster 
(including the clonal cluster). Hence, in multi-region sequencing data, the identification of clusters (subclones) 
is an inevitable consequence of the repeated sampling process and, most importantly, does not necessarily imply 
underlying subclonal selective forces within the tumor. 
 
The	admixing	deception	
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Sampling bias is particularly problematic when there is some level of admixing of distant lineages within a 
sample. By definition, we can divide the tumor in two ancestral lineages (notionally “left” and “right”) that are 
the decedents of the first branch point of the phylogenetic tree (i.e. the first cancer cell division to produce two 
surviving lineages). This is illustrated for the simplest possible neutral case in Figure 4G, and we note the 
scenario is further complicated when positively selected subclones are present (Supplementary Figure S9). We 
analyze two spatially distinct tumor samples in this simple neutral case. Sample S1 contains cells entirely from 
the left lineage, whereas sample S2 contains, by chance, cells from both left and right lineages. This is bound to 
happen as somewhere in the tumor two distant parts of a phylogeny must meet. Sample S2 contains a large 
proportion of the lineages coming from the right tree (80%, blue), and a minor proportion of the lineages 
coming from the left part of the tree (20%, orange). These two groups of lineages have very distant MRCAs 
despite being spatially close, which causes the detection of subclones that are however entirely due to neutral 
evolution (Figure 4H). Both samples contain the clonal mutations (black), but only sample S1 contains the green 
mutations (ancestor effect). In S2, however, the observed adjusted VAF can split into two subclonal clusters at 
CCF ≈ 80% (adjusted VAF 0.4, blue) and ≈ 20% (adjusted VAF 0.1, orange). There are strong implications 
for our ability to identify the true generative model: the same subclone distribution can also be obtained from a 
tumor with subclones under selection, and distinguishing between admixing and positive selection is therefore 
extremely challenging. 
 

Figure 4. Caption in the next page 
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This confounder needs to be considered because we expect clonal admixture within samples. The admixing 
skews the frequency of the dominant lineage in a sample by a small gap, enough to separate it from the clonal 
mutations (blue cluster is skewed to the left of the black cluster in Figure 4H). We note that a large number of 
state-of-the-art analyses report subclones at high CCF value in a majority of samples19,25-27, and this phenomenon 
can happen also when a single sample is taken. We argue that this “photo finish” effect of apparently multiple 
subclones about to sweep through the population could be also due to the admixing deception. Such clonal 
structures are unlikely to be real also because the dynamics of selection in expanding populations bias the CCF 
of subclones towards 1 or 028, thus indicating that large subclones about to sweep should be rarely detected. 
 
 
 
From	the	tumor	clone	tree	to	its	evolutionary	history	
 
MOBSTER pre-filtering can address the hitchhiker mirage, but there is no systematic way to correct the other two 
types of error. Instead, careful, skeptical, interpretation of the results is needed. In Figures 4I we show a 
hypothetical tree of putative clones recovered after MOBSTER filtering of tail mutations. The tree contains only 
two positively selected clones (A and D). The other clones (B, C and E) are just due to the confounding effects 
discussed above and represent arbitrary ancestors that evolved neutrally. There is nothing “special” about those 
ancestors: they are not phenotypically distinct subpopulations, and they have not experienced subclonal 
selection. Drawing a Muller plot of the evolutionary history of the tumor from this clone tree (Figure 4J) would 
give a misleading picture of the history of subclonal selection in this tumor (contrast with Figure 4K, where the 
true subclonal expansion is represented). This can be more clearly appreciated from the phylogenetic tree of the 
individual cells shown in Figure 4L, where the true subclone is annotated in orange. When we map the “clones” 
from the clone tree into the true cell phylogeny, we can see that clones C, B and E are just random ancestors in 
the phylogeny. If we resampled the tumor again, we would have picked different ancestors every time, obtaining 
a different clone tree. This is also true for the branching structure of the tree, which depends on cluster C. For 
this reason, drawing conclusions from the structure (e.g., linear, branching) or the size (e.g., number of clones) 
of the clone tree without accounting for these confounding factors, can likely lead to false conclusions. 
 

Guidance	for	subclonal	reconstruction	with	MOBSTER	using	multiple	biopsies	
 
We used simulated data from a stochastic spatial branching process model of tumor growth15 to assess the 
confounding factors of spatial sampling discussed above, and to provide a rationale to handle them and interpret 
the data correctly. 
 

Figure 4. Confounding factors in multi-region bulk sequencing. (A) Evolutionary history of a tumor with one subclone. After accumulation of n drivers, the 
first cancer cell gives rise to the tumor (founder clone in blue), with the population evolving neutrally and accumulating passenger mutations (orange), until 
eventually a subclonal driver event occurs triggering a subclonal expansion (green). Both the background clone and the new subclone contain their own neutral 
tails. The subclonal driver event, together with its passenger hitchhiker mutations (orange) will rise in frequency with the subclonal expansion and be part of 
the subclone cluster in the VAF distribution. However, some early hitchhikers are also present elsewhere in the tumor as part of the tail of the founder clone. In 
the simple example of perfect cell doubling, we expect mutations in the first doubling to be in 50% of the cells of the tumor, mutations in the second doubling 
to be in 25% of the cells in the tumor etc. (B) If we take biopsies S1 and S2, we find the founder clone (S1) and a subclonal sweep (S2). The hitchhiker mirage 
is a confounder determined by passengers that hitchhike to the subclonal driver in S2, but diffuse neutrally in S1 (orange). This can be seen in the VAF 
distributions of the two samples where the orange mutations do not travel together in the two samples. (C) The VAF of S1 versus S2 shows that orange 
hitchhikers can generate an extra cluster with Binomial parameters (S1=0.5, S2=0.2), on top of the true green clone with different Binomial parameters (S1=0.5, 
S2 = 0). On top of this, extra clusters can be generated by fitting tail mutations with a Binomial mixture, further inflating the true number of clones (! = 2) and 
suggesting false clonal sweeps. (D) If we remove mutations assigned to a tail (projected VAF) by MOBSTER, we clean up the signal and we can retrieve the 
true clonal architecture. (E) The ancestor effect is due to the fact that, due to spatial structure in the tumor, cells from a spatially localized biopsy will always 
have a more recent common ancestor, compared to other biopsies. Hence, mutations that are observed at high frequency in one biopsy are not necessarily due 
to selection. (F) We simulate the growth of a neutral tumor in 2D, and sample two bulk biopsies (100% purity). Both samples will contain truncal mutations. 
Each biopsy also contains private mutations (green and orange) that are clonal within the sample but are not due to selection. When we generate a virtual 
staining of all cells that harbor the mutations in a cluster, we can see the separation between cells in S1 and S2, and the branched evolutionary structure in the 
clone tree that is not due to selection, but to spatial sampling. (G) The admixing deception happens when there is some level of spatial intermixing in the tumor 
and spatially close cells within a biopsy are genetically distant in the tumor phylogenetic tree. In this example, whereas S1 is a bulk of closely related cells, 
suffering only from the ancestor fallacy, S2 contains a mixture of cell lineages from distinct parts of the phylogenetic tree (here split between right and left side 
of the phylogeny). Even with low levels of intermixing, this is bound to happen as somewhere in the tumor two distant parts of a phylogeny must intermix. 
Again, in this example, no selection is at play. (H) If we sequence these two biopsies, we will find truncal mutations in black and mutations private to S1 in 
green (ancestor fallacy). In S2 we will find a mixture of distant lineages (orange and blue) that look like subclonal clusters (here we neglected neutral tails for 
simplicity). The orange and blue clusters deviate by an offset from the clonal peak that is determined by amount of admixing, which is unknown a priori (see 
the marginal VAF distribution of S2 on the left). (I) All these confounders lead to additional nodes in the estimated clone tree. (J) Translating these nodes into 
phenotypically distinct subpopulations is misleading, as the reasonable representation (K) would be instead much simpler. (L) Phylogenetic tree at the single 
cell level of the tumor in (I) showing that clusters B, C, E and F are arbitrary ancestors identified by the specific bias of the measurement. 
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In Figure 5A we show a simulated example of a 2D neutral tumor for which we perform 100x WGS of two bulk 

Figure 5. MOBSTER performance on multi-region sequencing. (A) Spatial simulation of a tumor without subclones (i.e., neutral) where two samples were 
collected and sequenced at 100x WGS. (B) MOBSTER fit of two monoclonal biopsies shows that tails can be easily removed. (C) A multivariate analysis of non-tail 
mutations with a variational Binomial mixture (Supplementary Note 2) after MOBSTER identifies ! = 3 clusters (one truncal and two private to each biopsy), showing 
the admixing deception (shift of blue and yellow clusters from the 0.5 clonal expectation). The staining of these clusters shows the ancestor effect as well. (D) When 
we do not control for tails we detect ! = 6 clusters and a much more complex evolutionary history; staining of the mutations identified with this clustering shows the 
error. (E) Spatial simulation of a tumor with one subclone under positive selection (blue), and collection of 3 biopsies (one boundary, and two monoclonal). (F) The 
fit of MOBSTER to S1 and S2 is perfect, but in S3 MOBSTER calls an extra subclone due to genetic drift (the true tail deviate from a power law, resulting in a subclonal 
cluster). (G) When we analyze read counts after MOBSTER we detect a clear subclone in S1 against S3. This is correct because the subclone has swept through only S3, 
while it is admixed to its ancestor in S1. In all samples the ancestor fallacy and admixing deception are clearly observable. (H) When we try to detect the actual clones 
under positive selection and their clonal architecture, a sensible and conservative heuristic is to consider only clusters detected in a minimum number of biopsies. We 
note that removing private subclones can underfit, as in the case of a genuine subclone detected in a single biopsy. In these tumors, removing leaf subclones for both 
the neutral case and the subclonal selection case leads to the determination of the true model. (J) Performance of MOBSTER versus standard methods for multi-region 
sequencing analysis, with ! = 559 simulated 2D tumors with a number of biopsies that ranges from 2 to 9. Each tumor contains either 0, 1 or 2 subclones, and we 
measure statistics from the reconstructed clone trees after variational Binomial clustering of read counts after MOBSTER	(see also Supplementary Figure S10). The 
trees are constructed via the pigeonhole principle, whose violations are measured with a score. Here we show the number of possible trees with and without 
MOBSTER. The points in the upper/lower diagonal of the panel show which approach (with/without MOBSTER) give less clone tree fits to the simulated tumor. From 
then number of points in each part of the panel we derive a p-values via standard one-sided Binomial test, which shows that the reduction in the uncertainty of the tree 
estimate with MOBSTER is a statistically significant. (K) The distribution of the pigeonhole violations as one minus the penalty score assigned to each tree; values 
closer to 1 reflect fewer violations (0 penalty). We test for the difference with a one-sided Kolmogorov-Smirnov test. These plots show that with MOBSTER we 
systematically retrieve fewer clonal trees with consistent higher quality, at a rate that is significantly higher (! < 0.001 in both tests). In Supplementary Figure S10 
we plot results by number of biopsies, showing that the error rate without	MOBSTER is dramatic, and increases with the number of samples taken. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2019. ; https://doi.org/10.1101/586560doi: bioRxiv preprint 

https://doi.org/10.1101/586560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

13	
	

samples. MOBSTER can filter out the tails from both samples (Figure 5B). Analysis of the joint adjusted VAF 
distribution shows the relationship between the mutations in the samples (Figure 5C), which cluster into ! = 3 
groups: one clonal cluster (green), and two subclonal clusters due to the ancestor fallacy (one private to S1, and 
one private to S2). Due to the admixing deception, the mean VAFs of these two clusters are slightly shifted 
below the expected clonal peak (≈ 0.5 adjusted VAF). The contamination of mixing lineages is minimal, and 
the second lower-frequency VAF cluster cannot be detected at the resolution of 100x WGS. The effects of 
sampling a MRCA can be clearly appreciated in the virtual staining of the spatial distribution of the mutations 
(we color the cells based on mutational cluster assignments), where we see that a tumor split by sampling into 
two subpopulations misleads subclonal estimation. Clustering without MOBSTER suffers from a much worse 
overfit effect, and detects twice as many clones (! = 6) with two false positive clusters of private tail mutations 
(clusters C1 and C2 in Figure 5D). 
 
In Figure 5E we use the same principles to show that similar errors are present when subclonal selection is 
simulated, and a new subclone emerges within the background (blue staining). Three biopsies of this tumor are 
sampled, and MOBSTER is used to identify and filter out tail mutations (Figure 5F). The VAF distribution for the 
boundary sample S1, which has a clear bump as predicted by theory, is a clear mixture of background and 
selected subclone. Sample S2 is entirely composed of the background clone, and shows intra-sample neutral 
dynamics. Sample S3, instead, shows a small cluster due to sampling bias and genetic drift, which is misleading 
because the biopsy is monoclonal and contains only the selected subclone. Multivariate subclonal reconstruction 
run after MOBSTER detects ! = 5 clusters (Figure 5G). Virtual staining of each cluster clearly shows that 
multiple clusters are the result of neutral drift (C1), ancestor fallacy (C4, C5) and admixing deception (C1, C4 
and C5, which are shifted). This is where informed interpretation of the data needs to take place after subclonal 
reconstruction.  
 
In Figure 5H we show a conservative approach to reason on the output of subclonal reconstruction. In the 
neutral tumor from Figure 5A the true model is a single monoclonal population. The subclonal reconstruction 
identifies ! = 3 clusters, but two of them are just due to sampling two bulks. Being private to each sample they 
cannot be discriminated from the ancestor fallacy. A conservative analysis could then eliminate them, 
recovering the true model. Importantly, the exact same phylogeny could be obtained with two monoclonal 
samples from two distinct clones (e.g. equivalent to S2 and S3 in Figure 5E; see also Supplementary Figure S9). 
In that case, however, it is reasonable to expect the length of the two branches outgoing C1 to be significantly 
different. A longer branch can indicate possible selection, under the assumption that the size of the biopsy 
samples is similar; if this were not the case, biopsy size would act as an extra confounder for branches length 
(larger biopsies have more cells, and therefore less private mutations as their MRCA is further back in time). In 
the non-neutral tumor, a more complex clone tree is recovered because three samples were taken. The true 
model is a founder clone which gives rise to one positively selected subclone. Cluster C2 corresponds to the 
founder clone and contains only truncal mutations. Cluster C3 contains mutations that are in the common 
ancestors of both C5 and C1, but not C4. Importantly, all the leaves are clusters that are private to each sample. 
The most conservative clonal tree is then “linear evolution” of C2 (clonal) to subclone C3, the true tumor 
evolution. We note that the additional power in calling C3 a true subclone comes from the fact that the subclone 
has been observed in multiple biopsies. 
 
We tested the performance of MOBSTER	 against standard subclonal reconstruction with ! = 559 simulated 
tumors, with different subclonal architectures and multi-region sampling. Every simulated tumor contains either 
0, 1 or 2 subclones which grow in 2D from a single initial cell; we simulate collection and sequencing of 2 to 9 
equal-size biopsies at 100x	whole genome, assuming ideal purity (100%) and diploid genomes. In this setting 
we could isolate and measure the effect of the spatial confounders introduced in this section. In each run we 
measured statistics from the clone trees that we can reconstruct processing the output clusters; for read counts 
clustering we used a variational Binomial mixture model akin to sciClone7 (Supplementary Note 2), combined 
with and without MOBSTER.	We are interested in solving confounders that augment the number of trees, and 
measure their effect on the goodness of fit.	We find many less possible alternative trees (! < 0.001, one-sided 
Binomial test) constructed via the standard pigeonhole principle24 when we run MOBSTER, compared to a 
standard method (Figure 5J). This trend is observed in more than 400 cases, in a large number of cases we find 
one tree when we run first MOBSTER	on the data, compared to a number of trees that spans from 5 to about 100 
when we use a standard method. Precisely, in 38% (! = 212) of simulated cases we identify only one tree with 
MOBSTER while several trees without, while in 16% (! = 92) of cases both analyses find only one tree. 
Moreover, when we measure the violations of the pigeonhole principle as a proxy for the goodness of fit, we 
find that trees derived after MOBSTER have median 0 violations (perfect fit), while trees without MOBSTER have 
systematic violations of the principle (Figure 5K). The number of violations with MOBSTER is significantly 
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lower (! < 0.001, one-sided Kolmogorov-Smirnov test). Results expanded by number of biopsies and 
subclones in the simulated tumor confirm this trend, and show that the error rate without	MOBSTER is large, and 
increases with the number of samples taken (Supplementary Figure S10). 
 
This shows that the spatial confounders that we have identified are driving the output of subclonal 
deconvolution, especially when we collect multiple tumor biopsies. By leveraging on the higher precision of 
MOBSTER, combined with a posteriori inspection and curation, it is possible to minimize the effect of these 
confounders, and to focus on clusters likely representing truly selected subclones. 
 
 

Analysis	of	genomic	data	from	human	cancers		
	
We applied MOBSTER to the highest resolution (>100x) whole-genome sequencing data that is available in the 
public domain. As we have shown, purity at this resolution can become a confounder for tail detection, and it is 
crucial to achieve suitable coverage for this type of analysis. We first re-analyzed the breast cancer sample 
PD1420a sequenced at 200x depth by Nik-Zainal et al.3, which has ≈70% tumor purity and ! = 4,643 SNVs in 
a highly confident diploid chromosome 3. Compared to the original analysis which found 3 subclones and in 
agreement with our previous work8, the analysis with MOBSTER unravels that the lowest frequency cluster is 
actually a neutral tail (Figure 6A). This tail is as large as the largest true subclone – i.e., ≈ 1,000 SNVs which 
account for ≈ 20% of the overall mutational burden, compared to the larger subclone that has ≈ 1,100 SNVs. 
sciClone’s analysis of read counts for non-tail mutations confirms ! = 3 Binomial clusters (2 subclones), and 
not 3 subclones as originally proposed3. 
 
Two possible clone trees can be fit to the output clusters (linear and branched evolution), and the branching tree 
matches the tree published in the original analysis, which used phasing to resolve this ambiguity and select the 
branching model3. We note that the extra cluster detected in the original paper could not be attached to the 
tumor clone tree in a unique position, and it rather spreads over multiple leaves of the clone tree (cluster A in 
Figure 3D of Nik-Zainal et al.3). Our analysis with MOBSTER shows that the low frequency “cluster” is not a 
clone, but just the result of neutral within-clone dynamics possibly generating from both of the tumor subclones. 
We measured the evolutionary parameters of this tumor from MOBSTER fits, and found concordant estimates 
with our previous work8. This tumor has a mutation rate ! = 3.5 ∗ 10!! mutations per base pairs per tumor 
doubling. The subclones emerged at times ! = 5.5 (smaller subclone) and ! = 10.4 (larger subclone) when 
estimated in tumor doubling times, and have different selective advantage coefficients ! = 0.3 and ! = 0.66 
respectively – these values quantify how fast the subclone grows compared to the ancestor. 
 
We obtain a similar result when we re-analyze ! = 1,332 SNVs in diploid regions of the primary AML 
Platinum sample, for which Griffith et al. had identified 3 subclones29. This sample is sequenced at 320x whole-
genome with high tumor purity (>90%). Running MOBSTER identifies again ! = 3 clusters, but only 2 
subclones with 103 and 116 SNVs each, and a neutral tail (Figure 6B). The same two subclones were detected 
also by Griffith et al.29, and were confirmed running sciClone, the same tool used in the original paper, after 
MOBSTER (Figure 6D). In this tumor the tail that we fit is much smaller (66 SNVs) compared to the breast 
sample, suggesting possibly lower mutation rate for this tumor. As the breast sample, output clusters can be fit 
to both a linear and a branching clone tree without violating the pigeonhole principle24; to further resolve the 
clonal evolution of this patient other samples have to be used, as in the original analysis which used a whole-
exome relapse sample29. With MOBSTER we simplify the clonal structure of this primary tumour removing one 
spurious low frequency “subclone”, compared to what has been estimated in the original analysis. This 
improves the interpretation of these data: in the original analysis, in fact, it was observed that the only cluster 
without a subclonal driver mutation was the one that we actually identify as tail. As for the breast sample, 
measurement of the evolutionary parameters that we can obtain from the fits, are again concordant with our 
previous work8. This tumor has a much lower mutation rate ! = 9.9 ∗ 10!!", as suggested by the lower 
mutational load in the tumor tail; the subclones emerged at similar times ! = 22 and ! = 27, and have quite 
different selective advantage coefficients ! = 1.3 and ! = 3 respectively, which is why one of the two reaches 
much higher proportions compared to the other.  
 
We then generated new multi-region whole-genome sequencing data at median coverage 100x from multiple 
regions of two colorectal cancers, Set06 (6 regions) and Set07	 (4 regions), previously analyzed at lower 
sequencing depth by Cross et al.30 with standard phylogenetic methods. We analyzed, for each patient, high-
quality SNVs in diploid regions identified across the full genomes of all the patient’s samples, and run the 
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analysis with and without MOBSTER (Online Methods). For Set07 we analyzed ≈ 50,000 SNVs 
(Supplementary Figures S11 and S12) in high-purity samples with ≥ 80% tumor cellularity. The analysis with 
MOBSTER shows no evidence of positive subclonal selection (Figure 6C), corroborated by the lack of any 
subclonal driver alteration. This was consistent with the original findings by Cross et al., showing balanced 
phylogenetic trees and lack of subclonal drivers, supporting neutral subclonal dynamics. The downstream 
analysis with tail mutations filtered out confirmed a simple monoclonal structure for this tumor, which harbors 
driver clonal mutations in APC	 (double hit),	 KRAS,	 SMAD3	 and TP53.	Not surprisingly, the analysis without 
MOBSTER depicts a totally different clonal architecture with a much more complex clone tree (5 clusters, which 
accounts for 4 subclones; Supplementary Figures S13 and S14).  
 
The analysis for Set06 gives very similar results. Using the same strategy adopted for Set07, we could analyze 
≈ 30,000 SNVs (Supplementary Figures S15 and S16) in high-purity samples with ≈ 80% tumor cellularity. 
Consistent with Cross et al., the clone tree harbored only clonal driver mutations in APC,	KRAS,	PIK3CA,	ARID1A	
and TCF7L2.	Also in this case the standard analysis would have identified an inflated clonal architecture with 4 
subclones, and a much more complex clone tree (Supplementary Figures S17 and S18).  By sequencing at 
higher resolution two of the cases previously analyzed by Cross et al.30 and by employing a MOBSTER-based 
analysis, we reach concordant conclusions with the original study even if the adopted methodologies are 
different. The striking difference between the results obtained with and without MOBSTER confirms the 
importance of controlling for tails in a multivariate analysis.  For both patients, a standard method would have 
portrayed totally different evolutionary histories, giving the illusion of positive subclonal selection in these 
patients. Concerning the evolutionary history of Set06 and Set07, we could measure mutation rates per sample 
very precisely from every tail fit; the median estimates per patient was found to be ! = 5.6 ∗ 10!! (mutations 
per base pairs per tumor doubling) for	 Set07, and	! = 4.3 ∗ 10!!	 for Set06. These concordant estimates are 
consistent with the fact that these tumors have comparable mutational load, similar type of clonal architecture 
and related evolutionary trajectories. Notably, orthogonal dN/dS analysis that uses the ratio of non-synonymous 
to synonymous mutations to detect selection31,32 confirms the lack of evidence of positive selection at the 
subclonal level in data from both tumours (Figure 6E, Online Methods). 
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Discussion	
 
Subclonal reconstruction from cancer bulk sequencing data has paved the way for the study of intra-tumor 
heterogeneity (ITH) and evolutionary cancer dynamics3,33. Measurement of subclonal architectures have also 
clinical relevance: subclone multiplicity and other measures of ITH are prognostic biomarkers34-36. Naturally 
therefore, there is a need to ensure that subclonal reconstructions are accurate.    
 
Here we have presented a model-based subclonal reconstruction method that is rooted in theoretical population 
genetics. Subclonal reconstruction is performed exploiting a generative model of the data. This is in contrast to 
purely data-driven approaches that lack an underlying evolutionary model, and here we have showed that this 
evolutionary model-based method outperforms standard data-driven approaches. Moreover, we have identified 
fundamental confounding factors inherent to the subclonal analysis of bulk sequencing data, and we have 
demonstrated that correcting for neutral tumor evolution is necessary for reliable evolutionary analyses.  
 
In general, our analysis shows that extreme care must be taken to infer subclonal architectures from the 
available “bulk” sequencing data, and that in some cases it may not be possible to infer an accurate subclonal 
architecture at all.  Sequencing depth is a key determinant of data quality, and we suggest that only high depth 
sequencing data (>100x) is appropriate to infer subclonal architectures. Subclonal reconstruction from low-depth 
data risks a systematic over-calling of spurious subclones, jeopardizing our attempts to retrieve the correct life 
history of tumors. Various issues arise in multi-region sequencing data that ultimately result from biases that are 
intrinsic to spatial sampling. These issues lead to inflated estimates of positive subclonal selection from VAF 
distributions. Single-cell sequencing is becoming more common, and we note that while it removes the problem 
of admixing of populations37, issues of spatial sampling bias remains, especially if individuals cells are isolated 
from spatially localised bulks38-41. 
 
In general, we have presented the case for the rigorous examination of cancer sequencing data in light of 
quantitative generative models of tumor evolution that describe 1) how cancers grow, 2) how subclones form 
and 3) how spatial sampling strategies affect our estimates. Critically, we should also recognize the intrinsic 
limitations of current data, foremost the systematic confounding factors caused by sampling of complex three-
dimensional tumors. Our analysis represents a step towards a more refined approach to subclonal reconstruction 
in bulk cancer data. 
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Figure 6. Analysis of real genomic data. (A) The PD4120a is a breast carcinoma sample analyzed ~200x WGS. Here we use >4000 SNVs in diploid regions from 
chromosome 3 (which is all diploid) to run MOBSTER	and identify a clear tail plus ! = 3 Beta clusters (2 subclones) that we use to select read counts for sciClone thus 
confirming 3 clones in the data (2 subclones). Notably, sciClone without MOBSTER calls an extra clone instead of the tail. A non-parametric bootstrap procedure is used to 
estimate the 95% confidence intervals for the parameters (tail’s shape and Beta means). Two possible clone trees can be fit to these clusters via the pigeonhole principle 
(linear and branched tree). Compared to the original analysis3, we are able to retrieve a more precise evolutionary history of this tumor.  (B) The AML Platinum is a 
leukemia sample sequenced at 320x WGS. When we analyze >1000 diploid SNVs from this patient, we find a large clonal cluster and two low-frequency subclones 
(! = 3). The tail of this tumor is quite small compared to the one in the breast sample, indicating lower mutation rates. Subsequent analysis with sciClone confirms two 
subclones with the same clustering assignments, and 2 possible clone trees that fit the clusters. Even in this case sciClone without MOBSTER calls an extra clone instead of 
the tail (not shown). (C) We generated new WGS sequencing data at 100x	coverage for 4 biopsies of colorectal cancer patient Set07. We identified reliable diploid regions 
of this tumour, from which we obtained >50,000 SNVs. Median sample purity was >80% and overall ploidy was two (Online Methods). We then analyzed each individual 
biopsy with MOBSTER, identified neutral tails and found a simple monoclonal architecture in each of the four samples. After removal of tail mutations we run the 
variational multivariate Binomial method that is available within MOBSTER on the remaining SNVs (Binomial fit with stringent concentration value ! = 10!!), which finds 
! = 5 clusters. Cluster C1 is the clonal cluster. Clusters C2, C3 and C4 are private to a biopsy, suggesting ancestor effect. Cluster C5 is then removed as it accounts only 
less than 1% of non-tail mutations. The clone tree for this patient depicts thus a perfect neutrally evolving tumor; a comparative analysis without MOBSTER would have 
dramatically inflated the estimate of subclonal selection, depicting a wrong clonal history for this patient (Supplementary Figures S11-S14). In the clonal tree we annotate 
driver SNVs validated by Cross et al. from well-known colorectal driver genes. (D) We generated new WGS sequencing data at 100x	coverage for 6 biopsies of another 
colorectal cancer patient Set06. Also in this case the analysis shows a neutral tumor with no evidence of positive subclonal selection in any of the sequenced regions. With a 
similar analysis we conclude that also this tumor is monoclonal, a finding that the analysis without MOBSTER would have largely missed due to the strong effect of spatial 
and evolutionary confounders in these data. (E) dN/dS analysis for Set06	and Set07 comparing mutations detected as clonal (C1), versus those removed because found in a 
tail by MOBSTER, or because we filter output clusters as explained in panels C and D. For each estimate we report its 95% confidence interval. These values confirm lack of 
evidence for positive selection at the subclonal level, corroborating our analysis.  
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Online	Methods 

 
Model-Based	Clustering	of	Subclonal	Populations	in	Cancer	(MOBSTER)	
 
The subclonal deconvolution problem is popular in the cancer literature42. Given read counts for a list of Single 
Nucleotide Variants (SNVs) detected from bulk sequencing of multiple tumor samples, we want to detect 
clusters of SNVs that represent cancer subpopulations admixed in our samples. We shall call them clones under 
positive selective pressures, and detect them from the frequency of their mutant alleles. 
	
MOBSTER is a mixed method that combines two types of random variables to approach this problem. 
 
The frequency spectrum and the observational process. Kessler and Levin11 have shown that, in the large 
population solution of the stochastic Luria-Delbrück model, the probability of having ! mutants follows a fat-
tail Landau distribution 
 

! ! =  1!" !Landau
!
!" − log !" + ! − 1  . 

 
Here ! is population size, ! the average fraction of birth events and ! a constant. The asymptotic behaviour of 
!Landau can be approximated as 

!Landau(!) ≈
1
!! 

 
which leads to the power-law approximation that has also been derived by others13,43,44 
 

! ! ≈  1!! . 
 
A generative model for this power laws can be constructed with a standard Markovian stochastic birth-death 
process of cell division – sometimes called branching process8. The existence of patterns of neutral evolution is 
thus a consolidated result from Population Genetics arguments that describe the spread of alleles in growing 
populations without recombination, such as cancer16. Very simply, the progeny of each clone accumulates 
neutral passenger mutations until any of their daughter cells acquires a new mutation (SNV just for simplicity) 
that undergoes selection: the power-law spectrum emerges by the frequencies of passengers. When a daughter 
cell undergoes selection, however, the frequency of its variant alleles will grow, eventually becoming detectable 
if selection forces are strong compared to background. In turn, the progeny of this new subclone will start 
dividing, giving rise to another power-law distributed tail.  
 

Availability.	MOBSTER	will	be	hosted	at	
	

https://github.com/caravagn/MOBSTER	
	
The	repository	will	be	made	accessible	over	the	next	months	as	soon	as	 the	preliminary	 implementation	is	turned	
into	 a	 stable	 software	 package,	 accompanied	 by	 a	 manual.	 The	 tool	 will	 include	 documentation	 in	 the	 form	 of	
RMarkdown	vignettes,	as	well	as	data	from	all	case	studies	(simulated	and	patient	derived).		
	
Please	write	to	Giulio	Caravagna	(giulio.caravagna@icr.ac.uk)	to	receive	further	information	on	the	tool	and	its	
availability	(preliminary	versions	etc.).	
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Importantly, the power-law part of the spectrum – i.e., the tail – results from the accumulation of passenger 
mutations in the progeny of any clone. We note that this result – in particular the exponent 2 – refers to the 
overall population structure of the tumor, and that any specific finite sample that we collect and sequence, which 
might also be contaminated by normal cells, might exhibit deviations from this theoretical distribution8. 
Deviations from strict exponential growth due to for example constrained spatial can also cause deviations from 
exponent two43,45. However, we can use this result to create a model-based approach to analyze cancer data.  
 
We assume we work with copy number and purity adjusted frequency values for the variant alleles of ! SNVs. 
With ! ≥ 1 detectable clones, a reasonable model for the frequency spectrum ! of the observed SNVs is a 
random variable that follows 

! ~  !! + !!
!

!!!
 , 

 
where 

• !!  ∝ !!! is a power-law random variable for frequencies of neutral SNVs in the progeny of clone !. 
The generic exponent ! > 0 gives flexibility to accommodate all the confounders described above; 

• !! ∈ [0,1] is a Beta random variable modelling the signal of clone !. In layman terms, !!  models the 
“bump” in the frequency distribution due to the clones. These distributions range in [0,1], rendering 
them suitable to describe allelic frequencies. 

 
This model looks simple, but further observations are required to turn it into a standard mixture-model. First of 
all, the random variables for the tail and the bump of every clone are coupled to capture a joint signal. While the 
overall mixing proportions can be assumed to be independent, this compound random variable requires an extra 
level of mixing within each clone – i.e., to properly capture the proportions of the clone tail, and bump. This 
would require extra parameters to fit the model, but it does not seem particularly necessary because in the end 
we are interested in the information that we derive from the cluster of each clone, which we use to identify 
subpopulations in the frequency spectrum. Precisely, we use the clone’s peak, obtained from the cluster’s mean, 
to assess the phylogenetic history of the tumor. 
 
We can simplify this model and retrieve a simpler formulation by noting that all tails have the same exponent !, 
as they are described by the same theoretical distribution across clones. For this reason, they are multiple copies 
of the same random variable. Thus, we can group them together in a single power-law tail 
 

! ~  ! + !!
!

!!!
 . 

 
Here the random variables have the same meaning as above, but the clone is no longer indexed by !. This model 
has a key advantage over the one where each clone “emits” his own tail. Here the random variables are 
decoupled and allow a simple mixture-model formulation which we will present below.  
 
Before concluding, we observe that given !, the observational model for read counts collected from NGS 
sequencing, is a standard binomial process 
  

!|!,! ~ Bin(!|!, !) 
 
where ! is the coverage (total number of reads), and ! the number of reads harbouring the variant allele; ! is 
then the success probability for ! iid Bernoulli trials. It is important to observe that the frequency spectrum and 
the observational process look at the data from different perspectives: the former is a distribution on allelic 
frequencies, while the latter on read counts. In this observational model we can in principle use Beta-Binomial 
distributions to account for coverage overdispersion. 
 
Relation to other models in the literature. The literature is rich with models that describe the above 
observational process and variation thereof, either with Binomial or Beta-Binomial distributions. We briefly 
discuss those that are more related to our framework. 
 
Bayesian methods that employ Dirichlet Processes for infinite mixture models are a popular generalization of 
the observational process. These semi-parametric/ non-parametric methods can fit an unspecified number of 
clusters ! to the data, simplifying model selection procedures.  pyClone23, DPclust3	and PhyloWGS6 are three 
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popular tools for clonal deconvolution that use this framework. pyClone and DPclust implement Binomial 
mixtures, and pyClone supports also Beta-Binomial ones; in both cases a stick-breaking construction for 
Dirichlet Process priors is adopted46. PhyloWGS, instead, combines Binomial distributions with a tree stick-
breaking construction for the Dirichlet Process priors47. Because of that, PhyloWGS can jointly cluster the input 
SNVs and construct a phylogenetic tree for the detected clones.  
 
An alternative popular approach based on finite mixture models is SciClone7, which supports Binomial, Beta and 
Gaussian mixtures. SciClone fits the models to data via Variational Inference, an information-theoretic approach 
to approximate the posterior distribution over the model's parameters. SciClone is a hybrid tool, as it can cluster 
allelic frequencies via Beta/ Gaussian mixtures, and read counts via Binomial mixtures. We want to note that, 
with Beta distributions, canonical Bayesian modeling leads to intractable priors, even if the conjugate prior 
distribution of the Beta distribution can be found by following the principles of conjugate priors for the 
exponential family. For this reason, Variational Inference of Beta mixtures exploits a Gamma approximation to 
the prior and posterior distributions, originally derived by Mao and Li48. In this approximation we cannot derive 
the so-called expected lower bound, a standard measure to monitor convergence of a fit. 
 
These models are related to MOBSTER's framework: they assume that ! can be approximated by a point-process 
(e.g. a Dirac distribution) centered at the Beta means.  The potential pitfall is clear: by applying the 
observational process to SNVs that include tail(s), the number of clones is overestimated. Clusters will be called 
from tail's SNVs, which is contradictory because we look for clones under selection. To be precise, SciClone 
with Beta distributions models the frequency spectrum as well; however, that method does not include power-
law frequencies, leading to a similar overfit. 
 
Implementation and fit. MOBSTER's implements a statistical model that fits the frequency of the variant allele 
corrected for copy-number status and purity, for ! SNVs.  Thus, we expect the clonal peak to be at roughly 0.5 
VAF, with outliers spreading around 0.5 but below 1. We prefer these values to the so-called Cancer Cell 
Fraction values, which would require truncation above 1 to use Beta distributions3. We stress that, it is important 
to use SNVs in high-confident diploid regions for this type of analysis because miscalled copy number states 
might confound the inference (via artifact clusters of mutations). 
 
MOBSTER can map SNVs to !, the tail, and to any of the !!, the clones. Once one has fit a model to data, tail 
SNVs can be removed, and other methods can be used to fit the observational process on the read counts of the 
remaining SNVs. For this reason, MOBSTER is complementary to the tools mentioned above, as it works 
upstream the observational process. Nonetheless, our method provides also a preliminary indication on the 
possible number of subclones in the tumor. 
 
Distributions and likelihood. The fit uses a pre-specified number of ! + 1 components, where: 

• ! is a Pareto Type-I distribution to capture the power-law tail. For a scale !∗ and shape ! > 0, its 
density is 

!(!| !∗,!) = !! 1
!!!! 

 
for ! > !∗, and 0 otherwise. Notice that the density is 0 for values below the scale parameter, and that 
its support is [0,+∞).  
 

• ! Beta distributions !!,… ,!! to model clonal/subclonal clusters. For a shape ! > 0 and ! > 0 the 
density of a Beta random variable is  

ℎ(!|!, !)  =  !
!!!(1 − !)!!!
B(!, !)  

where   B !, ! = !!!!(1 − !)!!!!
! !" is the beta-function. The support of this distribution is [0, 1], 

the full frequency spectrum.  
 
The overall model uses a Dirichlet prior on the abundance of each clone; thus MOBSTER is a Finite Dirichlet 
Mixture Model with Beta and Pareto distributions.  The model likelihood for a dataset ! =  !! ! = 1,… , !} 
where we assume each !! to be iid, is a combination of two types of densities  
  

! ! !,! =  !!! !! !∗,! + !!ℎ !! !! , !!
!

!!!
 

!

!!!
. 
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We use ! as a shorthand to the model parameters, and ! = [!!… !!!!] for the mixing proportions – a standard 
Dirichlet variable on the (! + 1)-dimensional probability simplex. Notice that, just for notational convenience, 
we are assuming that the first model component is the Pareto random variable (the tail). 
  
Fitting MOBSTER.   The formulation uses ! × (! + 1) latent variables !; the plate notation is in Supplementary 
Figure S1. A variational approach to fitting this mixture is possible: we could use conjugate Gamma priors for 
the Pareto, and we would approximate the posteriors for the Beta components as in sciClone. However, we 
would could only approximate a criterion for convergence of the fit, as explained above.  
 
We prefer to fit the model parameters via Maximum Likelihood Estimation (MLE) through an adaptation of a 
standard Expectation-Maximization approach (EM). This provides a solid alternative and a faster solution 
compared to a Monte Carlo sampling strategy for a Bayesian approach. We perform these standard steps: 
 

• E-step: posterior estimates of the latent variables are defined as usual, once we account for the two 
different distributions involved 
 

!!,! |!  ∝  !!! !! !∗,!                             !!,!  |!  ∝  !!ℎ !! !! , !!       
 

In both cases the normalisation constant !! is the overall density mass for point !! 
 

!! = !!! !! !∗,! + !!ℎ !! !! , !!
!

!!!
 

• M-step: 
o Pareto tail. We begin by noting that the scale !∗ of the Pareto distribution can be set to its 

MLE estimator, the smallest observed frequency !∗ = min!49. This is a constant of the data, 
so we have one less parameter to fit. We fit the Pareto shape !, given !∗; switching to the log-
likelihood and including latent variables its MLE estimator is  

 

!MLE = − !!,!!
!!!

!!,!!
!!! log(!∗/!!)

 

 
o Beta clones. The MLE estimator for Beta distributions has no closed form, but we can 

approximate it numerically. This can slow down the fit; however, we can rely on a recent 
result by Schröder and Rahmann on mixture models of Beta distributions50 concerning the 
alternative Moment-Matching (MM) estimator, which is analytical. MM consists in matching 
! empirical moments of the data ! to the theoretical moments of the distribution, and solving 
for them. Here ! = 2 (so mean and variance); a Beta distribution has mean ! and variance ! 
given by 
 

! = !
! + !                        ! = !"

! + ! ! 1 + ! + !  . 
 
For a Beta, conditioned on the latent variables, the MM estimator is 
 

!!MM =
!!,!!!!!!!
!!!

                       !!MM =
!!,!(!! − !)!!!!!
!!!

 . 
 
Given estimates for !! and !!, we can re-parametrise the Beta as 
 

!!MM =
1 − !!
!!

 − !!!!   !!!                   !!MM = !!(!!!! − 1) . 
 

We remark that MM is not the same as computing the MLE, which computes the zeroes of the derivative of the 
likelihood with respect to the parameters, !ℎ/!!. Thus, the properties of standard EM do not hold when we 
compute updates via MM: we cannot guarantee that the likelihood increases monotonically, because we cannot 
employ Jensen's inequality. It is however shown in ref50 that the differences between the estimators are 
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negligible in most cases. For the sake of precision, Schröder and Rahmann propose to call a fit through the MM 
for Beta distributions the “iterative method of moments”, rather than EM. 
 
In MOBSTER's implementation we provide both a standard EM fit with numerical solution for the MLE of Beta 
distributions, and the faster iterative method of moments. In the former case we monitor convergence of the 
likelihood, as standard. In the latter we use the posterior estimates of ! since the likelihood is not monotonically 
increasing. A theoretical property of this MM approach is that, in each step, before updating the component 
weights, the expectation of the estimated density equates the sample mean. In particular, this is true at a 
stationary point; a proof of this is in Lemma 1 of Schröder and Rahmann50.  
 
Initial conditions. As standard in EM approaches and variations thereof, we compute the fit with several 
random initial conditions. We provide two heuristics to compute the initial condition of the fit (Supplementary 
Figure S1). 
 

● Peak detection. A simple peak detection heuristics in the frequency range [0.1, 1] is applied to VAF 
values binned with size 0.01. To detect ! initial peaks we perform kmeans clustering of each peak’s !-
coordinate, and store their centres. If there are ! < ! peaks to cluster, we sample ! − ! random values 
in (0, 1) for the remaining peaks. We use the centres of these clusters as mean of ! Beta distributions 
with random variance in [10!!, 0.25]; we sample variance values until the corresponding Beta 
parameters ! and ! are positive.  For the tail, ! is randomly sampled in the interval [0.01, 5]. These 
values provide wide ranges of different initial distributions. 
 

● Randomized. This procedure is as above, but we sample at random the Beta means and variances.	
 
Experimental results show that peak detection is a more robust initialization method; the random counterpart 
sometimes leads to Beta distributions with mean approaching one, a region of parameter values where the 
likelihood becomes less stable, leading to numerical difficulties. 
  
Clustering assignments and model selection. We do not want the fit to be biased towards tails, as we would 
miss low-frequency subclones that hide in the tail. Besides, simulations suggest limits to the detectability of 
tails. Thus, in general, given the quality of currently available NGS data, we cannot be a priori sure that the data 
supports the existence of a tail. 
 
For this reason, in MOBSTER we can “turn off” the Pareto component of the mixture and fit just ! Beta. Hence 
we can perform model selection for ! considering both models with and without a tail. This induces a statistical 
competition and allows us to select the model that best explains the data.   
 
In MOBSTER we first compute the negative log-likelihood NLL =  − log ! ! !,!), which we use to derive AIC 
and BIC scores 

 
BIC = 2NLL + ! log n           AIC = 2NLL + 2 !  . 

 
These criteria favor simpler fits by penalizing a model for the number of its parameters |!|. A model with ! 
Beta distributions and one tail has  

! = 3! + 2 
 

that break down as: ! + 1 for the Dirichlet mixture !,  2! for the Beta(s) and 1 for the Pareto tail (!). When we 
run the fit without tail, the model has ! = 3! − 1 parameters. Fewer parameters reduce the penalty of these 
scores, thus favoring fits without a tail. 
 
In MOBSTER	we want to drive the fit to select separate clusters, i.e., fits with few overlapping components. We 
achieve that by using two types of entropy terms. In one case we compute, from the output latent variables, the 
entropy H(!) 

H ! = !!,!
!

!!!
log !!,!

!!!

!!!
 

 
which leads to the standard Integrative Classification Likelihood 
 

ICL = BIC + H(!) 
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approximated through the BIC22. We also introduce a variation to the ICL, which we call reICL, a reduced-entropy 
criterion where we use the entropy of mutations that are not assigned to a tail (Supplementary Figure S1). This 
is defined as 
 

reICL = BIC + H(!) 
 
where ! are the latent variables for the set of mutations {x|1 ≠ argmax !!,.}, re-normalized. Notice that ! is 
defined from the hard clustering assignments that we use to assign mutations to clusters.  
 
Entropy terms in ICL and reICL help to fit separate clusters because overlapping mixture components have higher 
entropy/ penalty. This happens since the uniform distribution has maximum entropy, which is when we cannot 
confidently assign mutations to clusters. By definition, ICL will prefer fits with a clear separation among tail and 
Beta components, while reICL will only require separation of the Beta components. This modification to the ICL 
seems reasonable: the tail overlaps to all subclonal clusters by definition, which in turn leads to excessive 
entropy penalization in standard ICL. For this reason, ICL will be more stringent in calling tails than reICL. See 
also Supplementary Figure S1 for a graphical explanation.  
 
Notice that, because we are using NLL, we seek to minimize these scores. In the next sections we investigate 
also the different model-selection strategies. The default score for model selection in MOBSTER is reICL, which 
seems to provide a clean signal to identify the Beta components while retaining the tail structure. 
 
Simulation	of	cell	tumor	populations	(1D	and	2D)	
 
We used two different simulators that use a stochastic branching process to simulate the growing population of a 
tumor. We have previously described the principle of both simulators and any additional modifications are 
described below. The code and scripts used to generate the synthetic sequencing data are released with the 
software material of this paper. We also provide an animation of tumor subclonal expansions as Supplementary 
Data (“Visualising subclonal expansions”). That simple animation shows how subclones emerge from low 
frequency up to their subclonal sweep (i.e., when they are detectable etc), how the VAF distribution changes 
over time, and how the fit of MOBSTER changes accordingly. 
 
A non-spatial simulator51 was used to generate the data we used to measure the performance of MOBSTER in a 
univariate setting (Figure 3). The method allows the simulation of variant allelic frequencies (over time) of 
mutations accumulating during the growth of a tumor with a known clonal structure. The following smaller 
modifications were made. Instead of a Poisson distributed coverage !! of a mutant allele !!, an over-dispersed 
beta-binomial distribution was used. Given the averaging sequencing depth ! and a constant dispersion 
parameter ! = 0.08, per-allele coverage !! values were determined as  
 

!!~Bin ! = !
! , !!  

with ! = 0.6 and 
 

!!~Beta ! = !
! − 1 ,! = ! − 1 (! − 1)  

 
Variant allele frequencies values were assumed to be Binomial distributed, with the known fraction of mutated 
tumor cells in the population (!), given normal contamination (1 − !) and constant ploidy (! = 2) 
 

VAF~Bin ! = !! , ! =
!"

!" + 2 − 2! ∗ 1!!
 

 
For the non-spatial simulations we simulated, similar to results from ref51, one ancestral population, with a 
single mutant subclone. The evolutionary parameters were set as follows, and kept constant through 
simulations: the tumor mutation rate ! = 16 (in mutations per cell doubling), the death rate ! = 0.2, the total 
number of reactions !end ≈ 1.8 ∗ 10! (!!"##$ ≈ 1 ∗ 10!), average sequencing depth (! = 120 for a 120x 
simulated coverage) and number of clonal mutations !clonal = 500. Nine random simulations for various 
subclone birth rates   
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{!subclone =1+0.1i | i=1,…,13} 
 
and number reactions prior to initiation of a subclonal expansion 
 

{!subclone=2!  | i=4,…,14} 
 
 
were produced. All simulations in which the subclone accumulated less than 50 mutations prior to its 
transformation (i.e. less than 4-5 divisions) were removed and three datasets with specific fraction of mutated 
cells in the population (!subclone) were generated by randomly selecting from the remaining simulations as 
follows: 
 

• 20 effectively neutral cases where: !subclone < 5%; 
• 20 effectively neutral cases where: !subclone > 90%; 
• 110 cases with a detectable subclone: 20% < !subclone < 80%. 

 
These cases represent tumors with small subclones (almost undetectable), tumors where the subclone has swept 
through the overall population and cases where the subclone is detectable within the VAF spectrum. 
 
To analyze the influence of sequencing depth as well as sample purity two additional datasets with variable 
purity (! = {0.3,0.6,0.7,0.9}) or variable depth (! = {40,60,80,100,200}) and otherwise identical parameters 
were created. 
 
A second simulator model described in ref15 was used to generate several synthetic multi-region sequencing 
datasets to test the behavior of MOBSTER in a multivariate setting and to assess confounders (Figures 4 and 5). 
In brief, birth and death (reaction rates: !! and !!) of cells on 2D square lattice were simulated via the Gillespie 
algorithm52. A cell selected to die was removed from the lattice. Daughter cell created during birth were either 
placed on a random empty neighboring grid point (Moore neighborhood) or if no empty adjacent grid point 
existed, on a neighboring grid point that was freed by pushing adjacent cells into a random direction (v) up to a 
given distance (!!). The number of additional mutations introduced into the genome of a daughter cell was 
drawn from a Poisson distribution with mean given by the mutation rate (!!). New subpopulations (!) were 
inserted at given time point (!!) by modification of a random member of a selected subpopulation. Simulation of 
next-generation sequencing for each bulk sample (squares on the lattice) was done as described above for the 
non-spatial simulator. 
 
We crated synthetic datasets in which 2-9 samples were taken from ten synthetic tumors with one (! = 50), two 
(! = 10) or three (! = 10) subpopulations with increasing fitness (birth rates). Simulations were ended when 
any of its cells reached the edge of the 800×800 2D lattice (≈ 5×10! cells). Time points at which a new 
subpopulation was introduced (!clone  = {0,4,6.7}) and corresponding birth rates (! = {1,1.6,2.4}) were chosen 
to allow coexistence of each subpopulation at a approximately equal abundance at the end of the simulation. The 
remaining parameters were kept constant: ! = 10, !clonal = 100, ! = 100,! = 0 and ! = 100. Bulk samples 
of about 10,000 cells (100×100) were taken along the outer perimeter with an equal angular distance relative to 
the centre between them.  
 
MOBSTER’s	analysis	of	synthetic	data	
  
We used synthetic data for ! = 150 non-spatial (i.e., 1D) tumors to measure how tails confound subclonal 
deconvolution (30 cases of neutral tumors with 0 subclones, 120 with one subclone). All tests have been carried 
out for various configurations of simulated mean coverage, and purity; we consider the ideal performance at 
120x	mean coverage with perfect tumor cellularity (purity 100%). Input sequencing datasets have been created 
as described in the previous section. To run MOBSTER we adjust the observed allelic frequency. Simulated 
mutations have no coy number associated, and we consider all simulated mutations to occur in diploid genome 
regions. We remark that copy number events are another confounder that acts in these analyses, as the shape of 
the adjusted VAF distribution depends on the correction by copy number status of each mutation. However, 
since here we are interested in the identification of subclonal populations from the VAF per se, we omit to 
include other confounders due to noisy copy number estimates in our analyses.  The formula for the standard 
adjustment of allelic frequencies reads as 
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! = 1
2 ∗

! ∗ [ ! +! − 2 ∗ ! + 2]
! ∗ !  , 

 
where V is the raw VAF in the data (ratio between depth of reads with the mutant allele, over overall depth at 
the mutant locus), m and M the minor and major copy number of the mutation, p is sample purity, and c are the 
copies of the mutant allele. This is half the value of the Cancer Cell Fractions, and thus the clonal peak is 
expected at 0.5 instead of 1, which allows using Beta distributions that range in [0,1] for clonal peaks. This 
value might be properly called the adjusted VAF for a diploid mutation in the tumor; in our simulated tumors 
! = ! = ! = ! = 1, and thus ! = !/! as expected (adjustment for purity). Example fits with simulated data 
are shown and commented in Supplementary Figures S2 and S3. 
 
In Supplementary Note 1 we explain all the parameters that we have adopted in these simulations, which we 
used to analyze several output metrics for clustering precision and sensitivity. In particular, we measured: 
 

1. The number k of clusters that fit the data, finding MOBSTER highly accurate. Genuine errors of the tool 
are often due to particular idiosyncrasies of the data. This is expected, as this clustering problem is very 
difficult: by construction tails and clone’s peaks overlap (mixtures overlap), and hence a weak signal of 
selection might be difficult to detect from the VAF spectrum (Supplementary Figure S4).  
 

2. The confidence in the prediction of a tail, via log odds between competing statistical models, and found 
that when MOBSTER fits a tail to the data, the odds ratio is much higher (i.e., there is more evidence 
towards that model, Supplementary Figure S4). This shows that a tail improves the fit of the data, from 
a statistical point of view. 

 
3. The fit precision from the rates of true positives and false negatives, and from the Euclidean distance 

between each predicted and its closest true peak. We found very good rates and lower distance for 
MOBSTER, which both decreased when we fit a tail (Supplementary Figure S4). 

 
4. The effect of coverage (40x,	60x,	80x,	100x,	120x	and 200x) and purity (0.3, 0.5, 0.7 and 0.9) on the 

inference of the clonal structure, and found limits to the ability to detect tails with coverage below 
100x/	120x at very high purity (>0.9); Supplementary Figure S5.  

 
5. MOBSTER’s ability to call subclones with different size – number of SNVs – and peak position, and the 

power to distinguish small subclones from tails. We found that MOBSTER can fit both the subclone and 
the tail for a wide range of parameter values, but that the overlap of tails and subclones complicates the 
inference, as we might expect (Supplementary Figure S6). 

 
6. The lack of bias in the method. This is assessed showing that, in tumors without tail, MOBSTER 

correctly identifies a small subclone via a Beta component, if its peak is above the minimum value for 
detectability (Supplementary Figure S6). 

 
7. The effect of model selection strategies via BIC, ICL and reICL. We found ICL and reICL to be more 

suitable to properly balance the number of clones in the data. This is expected because BIC does not 
account for the mixtures overlap, which is an issue in this particular clustering problem, while ICL and 
reICL do so by using the entropy of the latent variables. Because ICL is more stringent in calling tails, 
we used that to draw these conclusions about MOBSTER’s performance (Supplementary Figures S7). 

 
See Supplementary Note 1 for a detailed description of all the simulated tumors and data to support these 
conclusions. We also compared the effect of using MOBSTER before analyzing read counts for non-tail 
mutations, as opposed to a direct analysis as commonly done in the field. We tested 
 

1. Two core statistical methodologies for clonal deconvolution (Dirichlet Processes with Monte Carlo 
sampling, and Binomial Finite Mixtures fit via variational methods). The multivariate variational 
method with Binomial distributions has been implemented in MOBSTER (Supplementary Note 2). 
 

2. Popular tools for the problem based on the above methodologies, as described in the Main Text. 
 
We have observed that the overfit happens at the core of the statistical methodology, leading to systematic errors 
without MOBSTER. We have also assessed the role of a parameter which largely affects the number of output 
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clones predicted by this method: the concentration ! > 0, for which we scanned point estimates 
(1, 10!!, 10!!, 10!!), and a Bayesian Gamma distributed ! ∼  Γ(0.01, 0.01). The error in all these tests is very 
large (overfit) without MOBSTER. For tumors without subclones and high concentration we call ! =  4 Binomial 
clusters (3 subclones), where there should be 0. The error persists but is diminished for lower !, and the trend is 
the same regardless the number of subclones, which suggests that MOBSTER improves the analysis. The full set 
of results, which extend the ones showed in the Main Text, is in Supplementary Figure S8. 
 
For multivariate analyses we used the spatial 2D simulator described above (simulated tumors with 0, 1 and 2 
subclones). We randomly sampled from 2 to 9 biopsies of the same simulated tumor, located evenly spread 
across the simulated tumor so that some biopsies might fall on the overlap between two geographically distinct 
subclones, while others might be monoclonal. For this test we wanted to focus on spatial confounders, and then 
fixed the mean sequencing coverage to 100x, with purity 1 for all samples. We compared the fits from a 
multivariate variational Binomial clustering method on read counts of all data, and on the subset that passed 
MOBSTER’s analysis. The latter is computed running MOBSTER first on each simulated biopsy, and calling “tail 
mutation” any SNVs detected at least once in the tail of a sample. In this way we avoid calling clones in tails, 
and the observed performance is genuinely reflective of the effects of sampling a spatially heterogeneous tumor.  
 
To aid the explanation of the confounders discussed in the Main Text, we used a “virtual staining” method: to 
stain for a set of SNVs, we color all cells that have one or more such SNVs. Each cell is colored by its true 
clone’s color, thus clonal SNVs provide a representation of the simulated diffusion of clones in space, while 
private subclonal mutations represent wedges of such plot. With these plots, it is also straightforward to 
assemble the clone tree for complex scenarios by nesting staining plots; see for instance Supplementary Figure 
S9 for an example tumor with 2 subclones. We focused the analysis of these simulations to estimate the clone 
tree that we can infer with and without MOBSTER. This seems particularly important as the overfit of clones due 
to spatial confounders and neutral tails can largely increase the number of possible trees. The results discussed 
in the Main Text are confirmed even if we divide tests by number of biopsies and subclones simulated 
(Supplementary Figure S10, all the points lay in the upper diagonal of the plot). The larger number of trees 
follows from the larger number of clones fit by these two methods; without MOBSTER, extra low-frequency 
clusters of subclonal mutations can be positioned in different branches of the clone trees, thus increasing the 
uncertainty over the generative model.  
 
The strategy that we propose in order to minimize the effect of these confounders is heuristic. When for each 
Binomial cluster we have computed its parameter (peak) for each sample, we retain only those that have value 
above a threshold x in at least y biopsies (for instance ! = 0.05 in ! ≥ 2 biopsies). This is an intuitive heuristic 
which imposes a certain amount of empirical evidence to call a subclone; the parameters x and y should be set 
based on the study and the data under scrutiny. With this method, MOBSTER results are more confident and less 
noisy than the ones that we can obtain without. The median error reaches 0% (top score) as measured in 
violations of the pigeonhole principle according to the clone trees generated by REVOLVER, a previously 
published method for clone tree inference from cancer cell fractions and subclonal deconvolution outputs24. 
Briefly, from the output clusters the method computes all possible clone trees that fit each sample 
independently, and assemble the detected edges in a graph. Then, it scans the graph to detect all possible 
spanning trees rooted in the clonal cluster, and ranks trees using a scoring method for the number of violations 
of the pigeonhole principle (perfect score 1 has 0 violations). A violation for a sample is when, in a branch x 
towards y and z, the observed adjusted VAF (here ½ * CCF) of x is lower than that of y plus z. Interestingly, we 
observe that the strategy that we propose to identify clones is less effective without MOBSTER because tail 
mutations that spread across samples tend to form clusters that co-occur in all samples, and thus no reasonable 
value of y can identify them. These analyses suggest that evolutionary interpretations derived from the structure 
of clone trees should take into account the effects of tumor spatial sampling bias. In general, these analyses also 
highlight that mutations that derive from neutral processes should be removed with MOBSTER; otherwise one 
calls clusters of alleles that do not reflect true forces of positive selection.  
 
We also used MOBSTER	 fits	 to measure quantitative evolutionary parameters of tumor growth. We could do 
adapting the computations originally carried out in Williams et al. via similar principles8. When we fit a tail 
with MOBSTER we can measure the tumor mutation rate ! scaled by the probability of lineage survival ! 
 

!
! =

!
1
!min −

1
!max
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where !min is the minimum VAF and !max is the maximum, and ! is the number of mutations between !min and 
!max. The ranges of the VAF distribution can be taken from the posterior assignments of the latent variables that 
map mutations to the tail (if any), to avoid outliers we use the mutations within certain empirical quantiles (for 
instance, 2% and 98%). The time unit of this rate are tumor-doubling times, and the conversion to rate per base 
pairs can be computed dividing this value by number of sequenced nucleotides; for a whole diploid genome this 
conversion factor would be 3 ∗ 10!. With the mutation rate and the fit parameters of each subclone we can 
calculate the time the subclone emerges, and its selection intensity. Selection ! > 0 is defined as the relative 
growth rates of host tumor cell populations versus the subclone. See our earlier work for a detailed explanation 
of the formulas to derive the selection coefficient and emergence time for a subclones8. 
 
Analysis	of	patient	derived	data	
 
We obtained WGS mutation calls for the breast cancer sample PD4120a and the AML Platinum sample from 
our earlier manuscript8; originally these two samples have been discussed in two separate publications (cfr3 and 
cfr29). For PD4120a we used SNVs from a highly confident diploid chromosome (chr3), for Platinum we used 
whole genome data, consistently with previous works8. Both datasets are the highest-resolution single-sample 
WGS studies available so far in the public domain (200x	and	320x); comparatively, samples from large-scale 
studies unlikely hit the minimum limit (>100x) suggested in our study to detect reliable subclonal structures. For 
both datasets we used only annotated SNVs with adjusted VAF above 0.05%, and run MOBSTER and sciClone 
with default parameters. From the clusters we computed manually the possible clonal trees via the pigeonhole 
principle.	 MOBSTER analyses these tumors in about 5 minutes on a standard multicore high-performance 
computing environment (parallel implementation). 
 
We measured the evolutionary parameters for both the breast and AML patients, and found estimates that are in 
agreement with the analysis by Williams et al., which used Approximate Bayesian Computation to fit a 
stochastic branching process of tumor growth8. The parameters identified are reported in the Main Text.  
 
For Set07	and Set06, a colorectal carcinoma whole-genome sequenced at median coverage 100x, we adopted 
the same pipeline described in Cross et al.30 . Notice that the original analysis referred to these two patients as 
“carcinoma 6” and “carcinoma 7”. Compared to the original analysis of these patients, these new data have 
higher resolution (100x versus ≈40x). Briefly, we used Mutect and CloneHD to call somatic mutations and copy 
number segments across all samples (copy number calls were also double checked with Sequenza, data not 
shown); sample purity was estimated from clonal diploid mutations. The purity of most samples is around 80%; 
for Set07 values per sample are 0.88, 0.88, 0.88 and 0.80, for Set06 they are 0.66, 0.72, 0.80, 0.80, 0.80, and 
0.80. To use MOBSTER we computed copy number and purity adjusted allelic frequencies. Reliable diploid 
regions are called from segments with minor and major copy number equal 1, excluding 10 megabases around 
the centromere of each chromosome (Supplementary Figure S11 and S15); this cleans the signal in centromere 
areas that are difficult to align. We retained SNVs and adjusted the observed VAF of each sample, and checked 
quality of the calls; to reduce false positive calls and contamination from germline mutations, we retained only 
putative somatic mutations called privately to each one of the patients that we analyzed (to implement this filter, 
we also used data from a third adenoma sample available in Cross et al.30). Then, we imposed other filters on the 
data, removing all SNVs with adjusted VAF below a 5% cutoff adjusted for sample purity, and removed those 
with VAF above 0.7 (70%) as they correspond from miscalled diploid segments. These filters altogether identify 
good quality reliable somatic mutation calls; besides, by using a whole-genome sequencing protocol, after the 
filter we still retain a substantial number of SNVs to perform subclonal deconvolution (≈ 80,000 in total, 
≈ 50,000 for	Set07 and ≈ 30,000 for Set06). In Supplementary Figure S12 (Set07) and S16 (Set06) we show 
several views of the data distributions for VAF values and coverage in all the sequenced samples.   
 
From the remaining SNVs, we run MOBSTER with default parameter and ICL model selection, which is more 
stringent in calling tails and subclones. Each run of MOBSTER converged on a solution with 0 subclones 
(! = 1) and subclonal mutations assigned to a very evident power law tail. The tails fit for these data are very 
large and suggest the lack of positive selection at the subclonal level, for these colorectal cancers. This 
observation is also in line with the preliminary analysis of these patients (Figure 2 in Cross et al.30) which used 
lower resolution data (mixed whole genome and whole exome) and sample trees – a classical type of 
phylogenetic tree with tumor samples as leafs of the tree – to show that there was no evidence of positive 
subclonal selection in these tumors. We used another method, based on different premises, to assess how likely 
that there is no subclone under positive selection under the tail of these tumors. We used the dN/dS method from 
the dndscv	tool by Martincorena et al. 31 to estimate the ratio of non-synonymous to synonymous substitutions 
in these tumors; we computed the dnds value for both patients independently, and pooling the data of both 
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patients altogether (as usually done in these analyses). We have split mutations to compute the dnds statistics 
into two groups: the first group are those that are called clonal by the Binomial clustering after MOBSTER, which 
in both cases are those assigned to cluster C1. The remaining mutations are assigned to the other group; these 
are then the union of the mutations that are assigned at least once to a tail by MOBSTER (tail mutations), and the 
ones that we remove with our heuristic to prioritize subclones from Binomial clustering after MOBSTER. The 
presence of possible positive selection is reported by estimated values strictly greater than 1 (dnds > 1); neutral 
mutations should have dnds ~1, and mutations under negative (or purifying) selection show dnds values below 
1. For each estimate, the method returns both a point estimate of the dnds value, as well as a 95% confidence 
interval. In order to achieve statistical power for this analysis we used all the genes available in each patient, 
because there are no enough mutations in cancer genes with just 2 patients. For pooled data and clonal 
mutations we find a value above one (dnds = 1.55; CI [0.91, 2.65]) as expected, which breaks down as (dnds = 
1.78; CI [0.87,3.6]) for Set_07 and (dnds = 1.29; CI [0.58, 2.8]) for	Set_06.	This analysis confirms the lack of 
evidence of positive subclonal selection; in fact for the remaining mutations we find a pooled dnds value below 
or almost equal to 1, and with narrow confidence intervals (pooled dnds = 0.85; CI [0.70, 1.02]; Set_07	dnds = 
0.95; CI [0.76, 1.20] and Set_06	 dnds = 0.68; CI [0.50, 0.92]). Interestingly, the observation of negative 
selection forces, hereby suggested by dnds values below 1, has been recently linked to power-law neutral 
dynamics for the clone size distribution53. Summarizing, this analysis provides further evidence that joint 
analysis with MOBSTER, as well as our heuristics should not have discarded possible subclones from the 
available data. However, a remark for this analysis and its results is important. Usually to achieve statistical 
significance with these analysis one needs to pool together data from several patients to reduce the size of 
confidence intervals. In this case with just 2 patients, even when we pool together all data we do not have many 
coding mutations and the upper value of the confidence interval contains 1 – precisely, the value is 1.02 for 
pooled dnds of non-clonal mutations. However, the trend of the results suggests that the values are quite far off 
from being above 1 and, on top of this, the confidence interval of the dnds value for Set_06	alone is included 
below 1. We also not that  similar values of point estimates and confidence intervals are obtained also with the 
dnds method by Zapata et al.32, which uses slightly different computations to estimate the dnds statistics (data 
not shown). We also checked for the presence of somatic driver mutations in the VAF spectrum, and found only 
the same set of driver events already identified by Cross et al.30. These are somatic mutations (SNVs and indels) 
in well-known colorectal driver genes (via Cosmic): for patient Set_07 we find mutations in APC	(p.R787X and 
p.R1432X),	KRAS	(p.G12D),	SMAD3 (p.Y42X) and TP53	(p.E159X), while for patient Set_06 we find mutations 
in APC	(p.R216X),	KRAS	(p.G12V),	PIK3CA	(p.C420R),	ARID1A	(p.W1453X)	and TCF7L2	(indel). Some of these 
mutations are not SNVs, or happen to be found in non-diploid regions (see also30); for such mutations we use the 
model fits to map, a posteriori, the mutations to the clusters detected by our analysis. A remark is due for the 
presence of the PIK3CA mutation, which is annotated as driver in the trunk of the tree of Set_06. Cross et al have 
annotated that mutation originally as clonal30; in our data we find that to be part of the clonal cluster in 5 out of 
6 samples, and tail in one other (in Set6_42). For this reason, in our analysis the mutation is actually removed 
from the successive Binomial clustering step. Nonetheless, that mutation in Set6_42	has adjusted VAF ~30%, 
which places the mutation slightly below the point of crossing of the tail and the clonal cluster. This is also 
reflected by the posterior latent variables that we use to assign the mutation to the tail (~80% probability) and 
the clonal cluster (~20% probability). The mutation is clearly clonal in all the other biopsies (adjusted VAF > 
40%). However, the purity of Set6_42	is well below the purity of the other five samples (~66% versus ~80%), 
which makes it possible that this reduced VAF is also due to excessive contamination of normal tissue in this 
sample, and consequent higher noise in the sequencing data. For this reason, we preferred to annotate this 
mutation as clonal in this tumour. It should be evident that this discrepancy does not affect our analysis, and that 
our conclusions are not driven by this difference. In particular, in the dnds analysis – which is the only one that 
might be affected by this clonal/ subclonal classification – we have assigned the PIK3CA	mutation to the set of 
tail mutations as reflected by our analysis. This ensures that we do not to bias the reported dnds statistic in favor 
of neutrality, which is a key point of our analysis. 
 
To compute the final clusters we used MOBSTER’s variational Binomial method on the raw read counts of non-
tail mutations. The output clusters have been filtered as suggested in the Main Text, imposing a minimum 
number of observations (2) for each subclonal cluster above a minimum VAF value (subclonal peak 0.02). In 
both patients we find – as expected – private subclonal mutations in each biopsy sample, and a very small 
subclonal cluster (which is called C5 in both analyses). This cluster contains mutations that are clonal in some 
of the available biopsies, and thus cannot be excluded by our heuristic. However, we still decide to remove this 
cluster because its size is largely below what a standard analysis would have considered suitable (usually, 5% of 
tumor size); precisely, the amount of mutations assigned to this cluster account for ≈1% of the tumor load in 
Set_07 and ≈ 2% in Set_06 (Figure 6), after MOBSTER’s tail removal – which means that with respect to the 
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original tumor size this cluster would have had much smaller (≪ 1%) because in both cases tail mutations 
account for ≈ 80% of the tumor mass.  
 
From the clusters we computed the possible clone trees, measuring their violations of the pigeonhole principle 
with the same method implemented in REVOLVER24 as done for the multivariate simulations described above. 
The same procedure has been repeated omitting to run MOBSTER, which would be the standard method’s 
analysis for these tumors. Notably, MOBSTER is very fast: the analysis of each patient takes about 20 minutes 
(parallel implementation of MOBSTER fits, the variational Binomial mixture and clone tree generation). The 
output trees are shown in Supplementary Figures S14 for Set07, and in Supplementary Figure S18 for Set06. In 
both cases, we find a much more complex clonal history when we do not use MOBSTER, because the 
confounders due to neutral evolution are not accounted for. In particular, fake small subclonal clusters confound 
the construction of the clone tree, as they can be attached to different internal nodes leading to potential 
violations of the pigeonhole principle. This is consistent with results from simulations in the multivariate 
setting, as we have described above. In many cases, we have to allow for violations of the principle otherwise, 
without MOBSTER, we never find a tree to fit the data; in other words, the best tree has at least one violation. 
With MOBSTER, instead, the output trees can be trivially constructed because there are only 2 clusters that we 
prioritize – if we neglect C5, the clonal architecture would contain no edge at all, because the predicted tumor is 
monoclonal. 
 
Beyond the structure of the clone trees, we are interested in how the clusters are assembled and the SNVs 
organized. This is fundamental, as clustering assignments are a proxy for the putative genotype of each clone in 
the tumor. For this reason, we have mapped the clusters that we obtain with MOBSTER to the ones that we obtain 
without, and viceversa. So doing, we could see how the mutations that one analysis assigns to a cluster (say to 
cluster x), are assigned by the other analysis. Ideally, if the two analyses were perfectly concordant, every 
cluster should map to only one other cluster. Otherwise, the analyses are not clustering the data in the same way, 
and we can try to investigate why. Very interestingly, from these mappings we can observe that tail mutations, 
when we do not use MOBSTER, spread to all clusters (i.e., they are assigned ubiquitously across clusters). This 
has profound implications and means that the confounder of neutral mutations has strong effects that drive the 
outputs of subclonal deconvolution. Some clusters, in fact, are just driven by tail mutation as we might expect 
but the most striking effect is that tail mutations largely contribute to each one of the output clusters. From a 
data point of view, this can be explained observing that genuine tail mutations largely overlap (i.e., they are 
found at the same values of VAF) with non-tail clusters. For this reason, the statistical signal that determines 
each cluster cannot be decoupled in tail vs non-tail mutations unless one uses specific tools like MOBSTER. From 
these plots we also see explicitly that the clonal cluster determined without MOBSTER contains tail SNVs that 
are clonal in some biopsy, but subclonal in others. This suggests a complex scenario of intra-tumor spatial 
heterogeneity for these samples, and the effect of spatial sampling bias when we attempt a reconstruction 
without MOBSTER.  
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