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Abstract

Characterizing the mode – the way, manner, or pattern – of evolution in tumours is important

for clinical forecasting and optimizing cancer treatment. DNA sequencing studies have inferred

various modes, including branching, punctuated and neutral evolution, but it is unclear why a

particular pattern predominates in any given tumour.1,2 Here we propose that differences in tu-

mour architecture alone can explain the variety of observed patterns. We examine this hypothesis

using spatially explicit population genetic models and demonstrate that, within biologically rel-

evant parameter ranges, human tumours are expected to exhibit four distinct onco-evolutionary

modes (oncoevotypes): rapid clonal expansion (predicted in leukaemia); progressive diversifi-

cation (in colorectal adenomas and early-stage colorectal carcinomas); branching evolution (in

invasive glandular tumours); and effectively almost neutral evolution (in certain non-glandular

and poorly differentiated solid tumours). We thus provide a simple, mechanistic explanation

for a wide range of empirical observations. Oncoevotypes are governed by the mode of cell dis-

persal and the range of cell-cell interaction, which we show are essential factors in accurately

characterizing, forecasting and controlling tumour evolution.

A tumour is a product of somatic evolution in which mutation, selection, genetic drift, and cell dispersal

generate a patchwork of cell subpopulations (clones) with varying degrees of aggressiveness and treatment

sensitivity.3 A primary goal of modern cancer research is to characterize this evolutionary process, to enable

precise, patient-specific prognostic forecasts and to optimize targeted therapy regimens. However, studies

revealing the evolutionary features of particular cancers raise as many questions as they answer. Why do different

tumour types exhibit different modes of evolution1,2, 4–8? What conditions sustain the frequently observed

pattern of branching evolution, in which clones diverge and evolve in parallel1,9? And why do some pan-cancer

analyses indicate that many tumours evolve neutrally,10 whereas others support extensive selection11?

Factors proposed as contributing to tumour evolution include microenvironmental heterogeneity, niche con-

struction, and positive ecological interactions between clones.3,12,13 However, because such factors have not

been well characterized across human cancer types, it remains unclear how they might relate to evolutionary

modes. On the other hand, it is well established that tumours exhibit a wide range of architectures (Figure 1),

the evolutionary effects of which have not been systematically examined. Because gene flow is among the prin-

ciple forces that shape the genetic makeup of a population, we hypothesized that different tumour structures
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Figure 1: Representative regions from histopathological slides from human tumours exemplifying four different

kinds of tissue structure and modes of cell dispersal. a, Acute myeloid leukaemia, M2 subtype, bone marrow

smear. b, Early stage colon cancer (patient TCGA-A6-2684, slide 01Z-00-DX1). c, Non-small cell lung cancer

(patient TCGA-44-6147, slide 01Z-00-DX1). d, Hepatocellular carcinoma (patient TCGA-CC-5258, slide 01Z-

00-DX1). Image a is courtesy of Cleo-Aron Weis; images b, c and d were retrieved from The Cancer Genome

Atlas at https://portal.gdc.cancer.gov, with brightness and contrast adjusted linearly for better visibility. Scale

bars are 100 µm. Dotted curves outline exemplary tumour glands (b and c).

might result in different tumour evolutionary modes. To test this hypothesis, we developed a way to formulate

multiple classes of mathematical models, each tailored to a different class of tumour, within a single general

framework, and we implemented this framework as a stochastic computer program.

Our approach is built on basic tenets of cancer evolutionary theory.3 Simulated tumours arise from a

single cell that has acquired a fitness-enhancing mutation. Each time a tumour cell divides, its daughter cells

can acquire passenger mutations, which have no fitness effect, and more rarely driver mutations, which confer

a fitness advantage. In solid tumours, we assume that cells compete with one another for space and other

resources. Whereas previous studies have assumed that tumours grow into empty space, our model also allows

us to simulate the invasion of normal tissue that is a defining feature of malignancy. To recapitulate different

tumour architectures, we vary parameters of gland size and the mode of cell dispersal, while keeping constant

the driver mutation rate and the distribution of driver mutation-induced fitness effects. All tumours take a

similar amount of time to grow from one cell to one million cells, corresponding to several years in real time.

Our first case is a non-spatial model that has been proposed as appropriate to leukaemia,14 a tumour type

in which mutated stem cells in semi-solid bone marrow produce cancer cells that mix and proliferate in the

bloodstream. In the absence of spatial constraints, rapid clonal expansions can result from driver mutations that

increase the cell division rate by as little as a few percent. For plausible parameter values, the vast majority of

cells at the end of the simulation share the same set of driver mutations (Figure 2a-d). These dynamics indeed

resemble those of blood cancers such as chronic myeloid leukaemia, which are the least spatially structured of

human tumours, and in which cell proliferation is driven by a single change to the genome.15

In our second model, consistent with the biology of colorectal adenomas and early-stage colorectal carcino-

mas,17 and in common with previous studies,5,18 we simulate a tumour that consists of large glands and that

grows via gland fission (bifurcation). Although the driver mutation rate and the fitness effect are exactly the

same as in the previous case, the addition of spatial structure dramatically alters the evolutionary mode. The

organization of cells into glands limits the extent to which driver mutations can spread through the population.

As the tumour grows larger, selective sweeps become progressively localized, leading to a fan-like driver phy-

logenetic tree and ever greater spatial diversity, with different combinations of driver mutations predominating

even in neighbouring glands (Figure 2e-h). This pattern is maintained even if cells are able to acquire drivers

that directly increase the gland fission rate, because such mutations rarely spread within glands (Supplementary

figure 1a).

Our third case corresponds to a glandular (acinar) tumour that grows by tumour budding and invasion of

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/586735doi: bioRxiv preprint 

https://doi.org/10.1101/586735
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

Generation Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

1

10

100

0 561
Generation

0 429
0

0.5

1

0 429

a

Generation
0 1059

Generation
0 952

Generation0 943

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100
b

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100c

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100d

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 670

0

0.5

0

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 804

0

0.5

0

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 931

0

0.5

0

670

804

931

0

28

●30
32

0 1

75
46 106

172

186

100

246

349
245

233

385

118

408

459

527

536

812
758

833

788

637
734

979
100

3
113

5
107

0

126
1

127
2

127
7

630

109
7

117
3

107
2

125
9

136
2

175
5

104
8

153
7

155
8

186
4

196
0

205
4

106
3

490

667

916

978

102
0

131
1

133
1

139
1

159
4

141
6154

8
147

2
176

7

179
1

208
1

181
2

183
2

183
9203

1

203
8

200
4

238
9

232
0

235
4

252
8

307
7

291
7

323
4

0

99
163

859
510

936

213
2

0 836

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

non-spatial

gland fission

invasive glandular

boundary growth

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

Generation Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

1

10

100

0 561
Generation

0 429
0

0.5

1

0 429

a

Generation
0 1059

Generation
0 952

Generation0 943

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100
b

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100c

D
iv

er
si

ty
 o

f 
dr

iv
er

 m
ut

at
io

ns

1

10

100d

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 670

0

0.5

0

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 804

0

0.5

0

Generation

M
ut

at
io

n 
fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Generation
0 931

0

0.5

0

670

804

931

0

28

●30
32

0 1

75
46 10
6

17
2

18
6

10
0

24
6

34
9

24
5

23
3

38
5

11
8

40
8

45
9

52
7

53
6

81
2

75
8

83
3

78
8

63
7

73
4

97
9

10
03

11
35

10
70

12
61

12
72

12
77

63
0

10
97

11
73

10
72

12
59

13
62

17
55

10
48

15
37

15
58

18
64

19
60

20
54

10
63

49
0

66
7

91
6

97
8

10
20

13
11

13
31

13
91

15
94

14
1615

48
14
72

17
67

17
91

20
81

18
12

18
32

18
3920

31

20
38

20
04

23
89

23
20

23
54

25
28

30
77

29
17

32
34

0

99
16
3

85
9

51
0

93
6

21
32

0 83
6

clonal
expansion

progressive
diversification

branching

almost
neutral

a

b

c

d

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

a b c d

e f g h

non-spatial gland fission invasive glandular boundary growth

b

f

j

n

a

e

i

m

c

g

k

o

d

h

l

p

Figure 2: Four oncoevotypes predicted by our model. a, Dynamics of driver mutation diversity in 20 stochastic

simulations of a non-spatial branching process (initial death rate 0.98, relative to initial division rate). Diversity

corresponds to the number of clones that have distinct combinations of driver mutations. A generation is defined

as the expected cell cycle time of the initial tumour cell. Black curves correspond to the individual simulations

illustrated in subsequent panels (having metrics closest to the medians of sets of 100 replicates). b, Muller

plots of clonal dynamics over time, for a non-spatial branching process. Colours represent clones with distinct

combinations of driver mutations (the original clone is grey-brown; subsequent clones are coloured using a

recycled palette of 26 colours). Descendant clones are shown emerging from inside their parents. c, Final clone

proportions. d, Driver phylogenetic trees. Node size corresponds to clone population size at the final time

point and the founding clone is coloured red. Only clones whose descendants represent at least 1% of the final

population are shown. e-h, Results of a model of tumour growth via gland fission (8,192 cells per gland).

In the spatial plot (g), each pixel corresponds to a patch of cells, corresponding to a tumour gland, coloured

according to the most abundant clone within the patch. i-l, Results of a model in which tumour cells invade

normal tissue at the tumour boundary (512 cells per gland). m-p, Results of a boundary-growth model of a

non-glandular tumour. In all cases, the driver mutation rate is 10−5 per cell division, and the mean of the

exponential distribution of driver fitness effects is 10%. Other parameter values are listed in Supplementary

Tables 1 and 2. Muller plots were drawn using the ggmuller R package.16
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Oncoevotype
Driver

diversity

Drivers

per cell
Role of selection

Associated tumour

characteristics

Selective

sweeps
Low Low Strong Little spatial structure

Progressive

diversification
High High Strong only at the local level Gland fission

Deep

branching
Intermediate Intermediate

Strong, but constrained by

clonal interference and/or

microenvironmental factors

Glandular; tumour

budding; infiltration

Effectively

almost neutral
Low Low Weak

Expansive growth;

rapid growth

Table 1: Properties of four archetypal oncoevotypes during initial tumour growth.

normal tissue. At later stages, solid tumours of many types – including most well-differentiated adenocarcino-

mas and squamous cell carcinomas of multiple primary sites – assume such a structure. To parameterize an

appropriate model, we used semi-automated analysis of histopathological slides (Supplementary figure 2) and

found that each gland of an invasive, acinar tumour can contain between a few hundred and a few thousand

cells (Supplementary Table 3). In contrast to the fission case, simulated invasive glandular tumours typically

exhibit stepwise increases in driver diversity and a phylogeny with multiple long branches (Figure 2i-l). Be-

cause competition between tumour cells and normal cells amplifies selection, even small increases in cell fitness

can spark rapid clonal expansions. Nevertheless, even if cells are able to invade neighbouring glands within

the tumour bulk (Supplementary figure 1b), clonal interference inhibits selective sweeps. The result is a zonal

tumour, with large regions sharing the same combination of driver mutations. Branching evolution has indeed

been associated with invasive glandular morphology in numerous cancer types.1,2

Our fourth and final model represents a tumour with no glandular structure and with growth confined to

its boundary. Tumour types such as hepatocellular carcinoma, undifferentiated carcinomas of multiple primary

sites, and some benign tumours frequently comprise a dense mass of cells with a well-delineated boundary around

each tumour nodule. Accordingly, the boundary growth model has been proposed as particularly appropriate

for simulating the evolution of hepatocellular carcinoma nodules.7,19 The spatial structure of this model favours

genetic drift, rather than selection. For our fixed parameter values, tumour evolution in the boundary-growth

case is effectively almost neutral (Figure 2m-p), and mutations can spread only by “surfing” on a wave of

population expansion.20–22 Selection is only slightly more prominent when cells can compete with neighbours

within the tumour mass (Supplementary figure 1c). Such suppression of selection in the boundary-growth model

is consistent with evidence of effectively neutral evolution in hepatocellular carcinoma,7 as well as the existence

of large, non-glandular benign tumours that only rarely progress to malignancy.

For any given tumour architecture, the evolutionary mode is predicted to shift towards the effectively neutral

case when the mutation rate is lower, the driver fitness effect is smaller, or initial tumour growth is very rapid,

relative to the cell division rate. Our framework also implies that a change in tumour architecture during cancer

progression will lead to a change in oncoevotype. For example, in contrast to the “big bang” model of colorectal

cancer,4,5 we predict ongoing selection in colorectal adenomas (whose growth is driven by gland fission), enabling

multiple driver mutations to reach high frequencies. After an invasive subclone of the adenoma gives rise to a

carcinoma, we predict a transition to either branching evolution or – because the invasion begins with a highly

transformed, rapidly expanding subclone – effectively neutral evolution. This explanation is broadly consistent

with recent multi-region sequencing studies,6,23 while also agreeing with results of comparative genomic analysis,

which indicate that colorectal cancers evolve subject to strong positive selection and have more driver mutations

per cell than most other cancer types.11

Overall, our models demonstrate that variation in the range of cell-cell interaction and the mode of cell

4
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Figure 3: Oncoevotypes distinguished in terms of summary metrics and mutation frequencies. a, Evolutionary

metrics of four example models with different spatial structures and different modes of cell dispersal but identical

driver mutation rates and identical driver mutation effects (100 stochastic simulations per model). Neutral

counterparts of the four models are represented together as an additional group. Black points correspond to

kidney tumour (ccRCC) data, labelled with patient codes.9 b-e, Mutant allele frequency distributions predicted

by our model for simulations with only neutral mutations (blue points) or both neutral and driver mutations

(red points). Cumulative mutant allele count is plotted against inverse mutant allele frequency (1/f), restricted

to mutations with frequencies between 0.1 and 0.5. Each distribution represents combined data from 100

simulations. Parameter values for the four models are the same as in Figure 2.

dispersal is sufficient to generate distinct tumour evolutionary modes or oncoevotypes (Table 1). These onco-

evotypes can moreover be clearly distinguished using two simple, intuitive measures. The first metric is the

diversity of driver mutations, which roughly corresponds to the breadth of the driver phylogenetic tree (as in the

final column of Figure 2). The second metric is the mean number of driver mutations per cell, which represents

the depth of the driver phylogenetic tree. In terms of these evolutionary metrics, the four oncoevotypes discussed

above form four distinct clusters (Figure 3a). Neutral counterparts of these four models – which have identical

parameter values, except that drivers have no phenotypic effect – cluster together, near the boundary-growth

model.

Few studies have examined tumour evolutionary trajectories in sufficient detail to enable quantitative com-

parison with our model results. The most remarkable example is a recent multi-centre study of clear cell renal

cell carcinoma (ccRCC) that involved multi-region, deep sequencing of 101 tumours, targeting a panel of more

than 100 putative driver genes.9 This data set is ideally suited for generating driver phylogenetic trees that

are readily comparable to those predicted by our modelling. We focus on five cases of ccRCC for which driver

frequencies were reported in the original publication, and which are representative of the larger cohort in ex-

hibiting branching evolution, with between three and nineteen driver mutations per tumour. Since ccRCC is

typically an invasive glandular tumour, our framework predicts that ccRCC should exhibit branching evolution.

Indeed, we find that the evolutionary metrics and driver phylogenetic tree structures of the five ccRCC tumours

are highly consistent with the predicted oncoevotype (Figure 3a; Supplementary figure 3). This result is robust

to varying gland size within plausible ranges (Supplementary figures 1d and 4a).

Because researchers and clinicians seldom have access to multi-regional sequencing data, nor the longitudinal

data needed to track how tumour clone sizes change over time, tumour phylogenies and evolutionary parameters

are more usually inferred from mutation frequencies measured from a single biopsy sample at a single time

point. Moreover, current cancer sequencing technologies are neither sensitive enough to detect the majority of
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low frequency mutations, nor precise enough to distinguish between high frequency and clonal (100% frequency)

mutations. Accordingly, the most relevant part of the mutation frequency distribution for practical purposes

is in the intermediate frequency range. One way to examine differences between distributions within this

intermediate range is to plot the cumulative mutation count (the number of mutations present at or above

frequency f) versus the inverse mutation frequency (1/f). In a neutral non-spatial model, this graph is a

straight line (Figure 3d, blue points). The most compelling evidence for widespread neutral evolution in human

cancers is based on the observation that the transformed mutation frequency distributions of many tumours are

also approximately linear.10

Our population genetic modelling indicates that tumour architecture has important effects on tumour muta-

tion frequency distributions (Figure 3e-g; Supplementary figure 5). In particular, when the cumulative mutation

count is plotted against the inverse mutation frequency, the curve for the neutral model is no longer linear. On

the contrary, the average non-neutral model curve can be closer to a straight line than the average neutral

model curve. It follows that methods using mutation frequencies to infer selection in solid tumours will yield

incorrect conclusions if they fail to account for effects of population structure. Inappropriate choice of null

model can therefore explain otherwise contradictory findings regarding the prevalence of neutral evolution in

human cancers.11,24

In summary, we have found that differences in the range of cell-cell interaction and the mode of cell dispersal

can explain the spectrum of evolutionary modes observed in human tumours. Whereas previous mathemati-

cal modelling studies have focussed on fitness effects of driver mutations,5,10,18,25,26 our perspective instead

emphasizes the importance of population structure and gene flow in tumour evolution. It follows that tumour

architecture determines how well biopsy samples reflect intra-tumour heterogeneity. Oncologists typically base

treatment decisions on the presence or absence of particular mutations in cells taken from only a small region

of a solid tumour. In general, our models predict that biopsies will be most representative of non-glandular

tumours with well-delineated boundaries, such as hepatocellular carcinoma nodules, and least representative of

tumours that grow via glandular fission, such as early-stage colorectal carcinomas (Figure 2). Tumour types

with structures that promote diversification are predicted to be the least responsive to targeted therapies unless

truncal mutations can be reliably identified and targeted.

In clear cell renal cell carcinoma, separate studies have found that tumour architecture27,28 and evolution-

ary trajectory9 are predictors of cancer progression and survival. Evolutionary mode also correlates with both

tumour architecture and clinical outcome in childhood cancers.8 By mechanistically connecting tumour ar-

chitecture to oncoevotype, our work provides the blueprint for a new generation of patient-specific models for

forecasting tumour progression and for optimizing treatment regimens that exploit evolutionary dynamics.29,30

Data availability

Raw output files from the computational models are available on request.

Code availability

Computational modelling code is available in an online repository.31
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Methods

Previous mathematical models of tumour population genetics

Many previous studies of tumour population genetics have used non-spatial branching processes,14,25 in which

cancer clones grow exponentially without interacting. Among spatial models, a popular option is the Eden

growth model (or boundary-growth model), in which cells are located on a regular grid with a maximum of

one cell per site, and a cell can divide only if an unoccupied neighbouring site is available to receive the new

daughter cell.19,32 Other methods with one cell per site include the voter model19,33,34 (in which cells can

invade neighbouring occupied sites) and the spatial branching process (in which cells budge each other to make

space to divide). Further mathematical models have been designed to recapitulate glandular tumour structure

by allowing each grid site or “deme” to contain multiple cells and by simulating tumour growth via deme fission

throughout the tumour5 or only at the tumour boundary.18 A class of model in which cancer cells are organized

into demes and disperse into empty space has also been proposed.22,35 Supplementary Table 4 summarizes

selected studies representing the state of the art of stochastic modelling of tumour population genetics.

Our main methodological innovations are to implement all of these distinct model structures, as well as

models of invasive tumours, within a common framework, and to combine them with methods for tracking

driver and passenger mutations at single-cell resolution. The result is a highly flexible framework for modelling

tumour population genetics that can be used to examine consequences of variation not only in mutation rates

and selection coefficients, but also in factors that control gene flow.31

Computational model structure

Simulated tumours in our models are made up of patches of interacting cells located on a regular grid of sites.

In keeping with the population genetics literature, we refer to these patches as demes. All demes within a

model have the same carrying capacity, which can be set to any positive integer. Each cell belongs to both a

deme and a genotype. If two cells belong to the same deme and the same genotype then they are identical in

every respect, and hence the model state is recorded in terms of such subpopulations rather than in terms of

individual cells. For the sake of simplicity, computational efficiency, and mathematical tractability, we assume

that cells within a deme form a well-mixed population. The well-mixed assumption is consistent with previous

mathematical models of tumour evolution5,18,22,35 and with experimental evidence in the case of stem cells

within colonic crypts.36

Initial conditions

A simulation begins with a single tumour cell located in a deme at the centre of the grid. If the model is

parametrized to include normal cells then these are initially distributed throughout the grid such that each

deme’s population size is equal to its carrying capacity. Otherwise, if normal cells are absent, then the demes

surrounding the tumour are initially unoccupied.

Stopping condition

The simulation stops when the number of tumour cells reaches a threshold value. Because we are interested only

in tumours that reach a large size, if the tumour cell population succumbs to stochastic extinction then results

are discarded and the simulation is restarted (with a different seed for the pseudo-random number generator).
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Within-deme dynamics

Tumour cells undergo stochastic division, death, dispersal, and mutation events, whereas normal cells undergo

only division and death. The within-deme death rate is density-dependent. When the deme population size is

less than or equal to the carrying capacity, the death rate takes a fixed value d0 that is less than the initial

division rate. When the deme population size exceeds carrying capacity, the death rate takes a different fixed

value d1 that is much greater than the largest attainable division rate. Hence all genotypes grow approximately

exponentially until the carrying capacity is attained, after which point the within-deme dynamics resemble a

birth-death Moran process – a standard, well characterized model of population genetics.

In all spatially structured simulations we set d0 = 0 to prevent demes becoming empty. For the well-mixed

model, we set d0 > 0 and dispersal rate equal to zero, so that all cells always belong to a single deme (with

carrying capacity greater than the maximum tumour population size).

Mutation

When a cell divides, each daughter cell inherits its parent’s genotype plus a number of additional mutations,

drawn from a Poisson distribution. Each mutation is unique, consistent with the infinite-sites assumption of

canonical population genetics models. Whereas some previous studies have examined the effects of only a single

driver mutation (Supplementary Table 4), in our model there is no limit on the number of mutations a cell can

acquire. Most mutations are passenger mutations with no phenotypic effect. The remainder are drivers, each

of which increases the cell division or dispersal rate.

The program records the immediate ancestor of each clone (defined in terms of driver mutations) and the

matrix of hamming distances between clones (that is, how many driver mutations are not shared by each pair

of clones), which together allow us to reconstruct driver phylogenetic trees. To improve efficiency, the distance

matrix excludes clones that failed to grow to more than ten cells and failed to produce any other clone before

becoming extinct.

Driver mutation effects

Whereas previous models have typically assumed that the effects of driver mutations combine multiplicatively,

this can potentially result in implausible trait values (especially in the case of division rate if the rate of acquiring

drivers scales with the division rate). To remain biologically realistic, our model invokes diminishing returns

epistasis. Specifically, the effect of a driver is to multiply the trait value r by a factor of 1 + s(1 − r/m), where

s > 0 is the mutation effect and m is an upper bound. Nevertheless, because we set m to be much larger than the

initial value of r, the combined effect of drivers in all models in the current study is approximately multiplicative.

For each mutation, the value of the selection coefficient s is drawn from an exponential distribution.

Dispersal

Depending on model parametrization, dispersal occurs via either invasion or deme fission (Supplementary Ta-

ble 1). In the case of invasion, the dispersal rate corresponds to the probability that a cell newly created

by a division event will immediately attempt to invade a neighbouring deme. This particular formulation en-

sures consistency with a standard population genetics model known as the spatial Moran process. Because the

dispersal rate is a probability, all values greater than or equal to 1 are equivalent. The destination deme is

chosen uniformly at random from the four nearest neighbours (Von Neumann neighbourhood). Invasion can be

restricted to the tumour boundary, in which case the probability that a deme can be invaded is N/K, where N

is the number of tumour cells in the deme and K is the carrying capacity. If a cell fails in an invasion attempt

then it remains in its original deme. If invasion is not restricted to the tumour boundary then invasion attempts

are always successful.

In fission models, a deme can undergo fission only if its population size is greater than or equal to carrying

capacity. As with invasion, deme fission immediately follows cell division (so that results for the different

dispersal types are readily comparable). The probability that a deme will attempt fission is equal to the sum of

the dispersal rates of its constituent cells. Deme fission involves moving half of the cells from the original deme

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/586735doi: bioRxiv preprint 

https://doi.org/10.1101/586735
http://creativecommons.org/licenses/by-nc-nd/4.0/


into a new deme, which is placed beside the original deme. If the dividing deme contains an odd number of cells

then the split is necessarily unequal, in which case each deme has a 50% chance of receiving the larger share.

Genotypes are redistributed between the two demes without bias according to a multinomial distribution. Cell

division rate has only a minor effect on deme fission rate because a deme created by fission takes only a single

cell generation to attain carrying capacity.

If fission is restricted to the tumour boundary then the new deme’s assigned location is chosen uniformly at

random from the four nearest neighbours, and if the assigned location already contains tumour cells then the

fission attempt fails. If fission is allowed throughout the tumour then an angle is chosen uniformly at random,

and demes are budged along a straight line at that angle to make space for the new deme beside the original

deme.

Our particular method of cell dispersal is chosen to enable comparison between our results and those of

previous studies and to facilitate mathematical analysis. In particular, when the deme carrying capacity is

set to 1, our model approximates an Eden growth model (if fission is restricted to the tumour boundary, or if

dispersal is restricted to the tumour boundary and normal cells are absent), a voter model (if invasion is allowed

throughout the tumour), or a spatial branching process (if fission is allowed throughout).

To fairly compare different spatial structures and modes of cell dispersal, we set dispersal rates in each case

such that the time taken for a tumour to grow from one cell to one million cells is approximately the same as in

the neutral Eden growth model with maximal dispersal rate. This means that, across models, the cell dispersal

rate decreases with increasing deme size. Given that tumour cell cycle times are of the order of a few days, the

timespans of several hundred cell generations in our models realistically correspond to several years of tumour

growth.

Two versus three dimensions

We chose to conduct our study in two dimensions for two main reasons. First, the effects of deme carrying

capacity on evolutionary dynamics are qualitatively similar in two and three dimensions, yet a two-dimensional

model is simpler, easier to analyse, and easier to visualize. Second, we aimed to create a method that is

readily reproducible using modest computational resources and yet can represent the long-term evolution of a

reasonably large tumour at single-cell resolution.

One million cells in two dimensions corresponds to a cross-section of a three-dimensional tumour with many

more than one million cells. Therefore, compared to a three-dimensional model, a two-dimensional model can

provide richer insight into how evolutionary dynamics change over time. Developing an approximate, coarse-

grained analogue of our model that can efficiently simulate the population dynamics of very large tumours with

different spatial structures in three dimensions is an important direction for future research.

Implementation

The program implements Gillespie’s exact stochastic simulation algorithm37 for statistically correct simulation

of cell events. The order of event selection is 1. deme, 2. cell type (normal or tumour), 3. genotype, and 4.

event type. At each stage, the probability of selecting an item (deme, cell type, genotype or event type) is

proportional to the sum of event rates for that item, within the previous item.

Diversity metric

To measure diversity of driver mutation combinations, we use the inverse Simpson index defined asD = 1/
∑
i p

2
i ,

where pi is the frequency of the ith combination of driver mutations. For example, if the population comprises

k types of equal size then pi = 1/k for every value of i, and so D = 1/(k × 1/k2) = k. Furthermore, in the

hypothetical case where each clone is replaced by α daughter clones with equal frequencies, we have D = 2α(n−1),

where n is the average number of drivers per cell.

Our diversity metric fulfils the same purpose as the intratumour heterogeneity (ITH) measure used in the

TRACERx Renal study,9 and indeed the two metrics are strongly correlated across our models (Spearman’s

ρ = 0.93). Our metric has three main advantages compared to ITH: first, D is a continuous variable; second,
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D is robust to methodological differences that affect ability to detect low frequency mutations; third, D is not

directly dependent on our second evolutionary metric (the number of driver mutations per cell).

Histopathological slide analysis

We estimated the number of cells per gland in well-differentiated adenocarcinomas – one of the most abundant

types of human cancer across primary sites – using semi-automated analysis of histopathological slides selected at

random for three patients with advanced colorectal cancer, a tumour type with pronounced stromal infiltration

and spatially separated glands.38 We delineated a total of 41 clearly separated glands in whole-slide images

from the three patients and counted the cells in each gland with digital pathology software39 (Supplementary

figure 2).

In cross section, the number of cells per gland ranged from 14 to 1,563, with 68% of cases between 50

and 500 cells (Supplementary Table 3). It is therefore reasonable to assume that each gland of an invasive,

acinar tumour can contain between a few hundred and a few thousand interacting cells. This range of values

is, moreover, remarkably consistent with results of a recent study that used a very different method to infer the

number of cells in tumour-originating niches. Across a range of tissue types, the latter study concluded that

cells typically interact in communities of 300-1,900 cells.40
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Model Gland size Mode of cell dispersal

Non-spatial
Effectively

infinite
Not applicable

Gland fission 8,192
Glands bifurcate, such that each daughter gland inherits

half of the original gland’s population of cells

Invasive glandular 512
Individual cells invade neighbouring tissue and compete

with normal cells

Boundary growth 1 New cells are added to the edge of the tumour

Supplementary Table 1. Characteristics of our four main models.

Parameter Value(s)

Deme carrying capacity, K 1, 32, 512, 2048, 8192

Driver mutation rate per cell division 10−5

Passenger mutation rate per cell division 0.1

Normal cell relative division rate 0.9

Mean value of driver effect on cell division rate 0.1

Maximum relative cell division rate 10

Maximum relative dispersal rate 10

Dispersal rate Conditional

Supplementary Table 2. Parameter values used in this study. Mutation rate is measured per cell division;

division and dispersal rates are relative to the rates of the initial tumour cell. The effect of a driver mutation

with effect size s is to multiply the trait value r by a factor of 1 + s(1 − r/m), where m is the maximum limit.

Dispersal rates are set such that tumours typically take between 500 and 1,000 cell generations to grow from

one to one million cells, corresponding to several years of human tumour growth.
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Supplementary figure 1: Additional evolutionary modes predicted by our model. First column: Dynamics of

driver mutation diversity in 20 stochastic simulations. Diversity corresponds to the number of clones that

have distinct combinations of driver mutations. A generation is defined as the expected cell cycle time of the

initial tumour cell. Black curves correspond to the individual simulations illustrated in subsequent columns.

These particular simulations are those with metrics closest to the medians of sets of 100 replicates. Second

column: Muller plots of clonal dynamics over time. Colours represent clones with distinct combinations of

driver mutations (the original clone is grey-brown; subsequent clones are coloured using a recycled palette of

26 colours). Descendant clones are shown emerging from inside their parents. Third column: Final clone

proportions (for the non-spatial model) or spatial arrangement (for spatial models). For spatial models, each

pixel corresponds to a patch of cells, corresponding to a tumour gland, coloured according to the most abundant

clone within the patch. Fourth column: Driver phylogenetic trees. Node size corresponds to clone population

size at the final time point and the founding clone is coloured red. Only clones whose descendants represent at

least 1% of the final population are shown. Final column: Evolutionary metrics. Black points correspond to

kidney tumour (ccRCC) data, labelled with patient codes (from ref 9). a, A model of tumour growth via gland

fission (8,192 cells per gland), in which cells can acquire driver mutations that increase their contribution to

the gland fission rate (with an average effect size of 50%), in addition to drivers that increase the cell division

rate. b, A model in which tumour cells invade normal tissue at the tumour boundary and can also invade

neighbouring glands within the tumour (512 cells per gland). c, A boundary-growth model of a non-glandular

tumour in which cells invade neighbouring sites within the tumour. d, A model in which tumour cells invade

normal tissue at the tumour boundary only (2,048 cells per gland). e, A model of tumour growth via gland

fission (2,048 cells per gland). Other parameter values are listed in Supplementary Tables 1 and 2.
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Supplementary figure 2: Quantification of tumour cell numbers per gland in representative patients. For three

colorectal cancer patients with different sizes of tumour glands, multiple glands were manually outlined and the

number of cells in each gland was counted automatically. a, Patient TCGA-5M-AAT6, slide 01A-01-TS1. b,

Patient TCGA-5M-AATA, slide 01A-03-TS3. c, Patient TCGA-A6-2675, slide 01A-01-BS1. d-f, Resulting cell

masks obtained with QuPath.

K153 K255 K448 K252 K136

a

b

Supplementary figure 3: a, Driver phylogenetic trees for five clear cell renal cell carcinomas, labelled with

patient codes. Data was obtained from data set S2 of ref 9. Clone frequencies are estimated as the proportion

of regions in which the corresponding combination of driver mutations was detected. b, Driver phylogenetic

trees resulting from an evolutionary model with tumour invasion of normal tissue at the tumour boundary (512

cells per gland; only clones whose descendants represent at least 1% of the final population are shown). Node

size corresponds to clone population size. The founding clone is coloured red.
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a b

Supplementary figure 4: Variation in evolutionary metrics depending on gland size (100 stochastic simula-

tions per model). a, Models of invasive glandular tumours. b, Models of tumours growing via gland fission.

Black points correspond to kidney tumour (ccRCC) data, labelled with patient codes.9 Apart from gland size,

parameter values are the same as in Figure 2.
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Supplementary figure 5: Mutation frequency distributions for simulated tumours. a-d, Complete mutation fre-

quency distributions for models with only neutral mutations (blue points) or both neutral and driver mutations

(red points). Each distribution represents combined data from 100 simulations of each of the four model types

of Figures 2 and 3. To clarify the shape of the distributions, especially at high frequencies, the x-axes are trans-

formed as logit(x) = log(x/(1 − x)), which is approximately equal to log x when x is much less than 1. Dashed

lines indicate analytical predictions for an exponentially-growing population acquiring only neutral mutations

(negative slope) and a population of constant size acquiring both neutral and highly beneficial mutations (pos-

itive slope41). e-h, Mutation frequency versus timing of mutation for the specific model instances of Figure 2.

Point colour corresponds to clone (as in Figure 2), and size corresponds to the division rate of cells within

the clone. Driver mutations are typically preceded by a string of hitchhiking passenger mutations with similar

frequencies. This figure format is inspired by Figure 2 of ref 4. i-l, Mutation frequency distributions for the

specific model instances of Figure 2, with linear axes. Results are shown for a non-spatial branching process (a,

e, i); tumour growth via gland fission (b, f, j); tumour invasion of normal tissue (c, g, k); and a boundary-growth

model (d, h, l). Parameter values are the same as in Figures 2 and 3.
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Image ROI Area NumCells Cell density
Distance to

nearest ROI

TCGA-5M-AAT6-01A-01-TS1 ROI 1 4208 57 0.014 15

TCGA-5M-AAT6-01A-01-TS1 ROI 2 52263 588 0.011 0

TCGA-5M-AAT6-01A-01-TS1 ROI 3 1338 16 0.012 10

TCGA-5M-AAT6-01A-01-TS1 ROI 4 7961 98 0.012 0

TCGA-5M-AAT6-01A-01-TS1 ROI 5 19037 242 0.013 16

TCGA-5M-AAT6-01A-01-TS1 ROI 6 9832 131 0.013 12

TCGA-5M-AAT6-01A-01-TS1 ROI 7 56932 623 0.011 10

TCGA-5M-AAT6-01A-01-TS1 ROI 8 8733 121 0.014 0

TCGA-5M-AAT6-01A-01-TS1 ROI 9 33297 398 0.012 0

TCGA-5M-AAT6-01A-01-TS1 ROI 10 19531 241 0.012 0

TCGA-5M-AAT6-01A-01-TS1 ROI 11 78047 880 0.011 0

TCGA-5M-AAT6-01A-01-TS1 ROI 12 53567 635 0.012 0

TCGA-5M-AAT6-01A-01-TS1 ROI 13 3500 46 0.013 0

TCGA-5M-AAT6-01A-01-TS1 ROI 14 6479 83 0.013 0

TCGA-5M-AAT6-01A-01-TS1 ROI 15 3247 39 0.012 0

TCGA-5M-AAT6-01A-01-TS1 ROI 16 199 14 0.070 0

TCGA-5M-AATA-01A-03-TS3 ROI 1 99027 931 0.009 16

TCGA-5M-AATA-01A-03-TS3 ROI 2 33920 327 0.010 41

TCGA-5M-AATA-01A-03-TS3 ROI 3 106350 1056 0.010 15

TCGA-5M-AATA-01A-03-TS3 ROI 4 44068 481 0.011 0

TCGA-5M-AATA-01A-03-TS3 ROI 5 28618 298 0.010 18

TCGA-5M-AATA-01A-03-TS3 ROI 6 23754 234 0.010 0

TCGA-5M-AATA-01A-03-TS3 ROI 7 4586 53 0.012 3

TCGA-5M-AATA-01A-03-TS3 ROI 8 81337 816 0.010 0

TCGA-5M-AATA-01A-03-TS3 ROI 9 28697 249 0.009 0

TCGA-5M-AATA-01A-03-TS3 ROI 10 194330 1563 0.008 15

TCGA-5M-AATA-01A-03-TS3 ROI 11 10123 75 0.007 57

TCGA-5M-AATA-01A-03-TS3 ROI 12 88288 844 0.010 82

TCGA-A6-2675-01A-01-BS1 ROI 1 12145 136 0.011 12

TCGA-A6-2675-01A-01-BS1 ROI 2 6088 81 0.013 20

TCGA-A6-2675-01A-01-BS1 ROI 3 39183 404 0.010 19

TCGA-A6-2675-01A-01-BS1 ROI 4 27550 255 0.009 19

TCGA-A6-2675-01A-01-BS1 ROI 5 22363 217 0.010 13

TCGA-A6-2675-01A-01-BS1 ROI 6 23806 202 0.008 31

TCGA-A6-2675-01A-01-BS1 ROI 7 25506 238 0.009 0

TCGA-A6-2675-01A-01-BS1 ROI 8 26024 267 0.010 0

TCGA-A6-2675-01A-01-BS1 ROI 9 6718 74 0.011 0

TCGA-A6-2675-01A-01-BS1 ROI 10 9945 121 0.012 0

TCGA-A6-2675-01A-01-BS1 ROI 11 22183 220 0.010 0

TCGA-A6-2675-01A-01-BS1 ROI 12 38561 318 0.008 0

TCGA-A6-2675-01A-01-BS1 ROI 13 39801 306 0.008 0

Supplementary Table 3. Semi-automated quantification of tumour cell numbers per gland in histological images:

raw measurements. For each region of interest (ROI) in three representative colorectal cancer patients, we

measured the area of each tumour gland (in µm2), the number of cells per gland (NumCells), the cell density

in cells/mm2 and the distance to the nearest ROI (in µm).
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Study Model type
Cells

per deme

Within-deme

selection?

Between-deme

selection?

Maximum

acquired

drivers

Exterior

Bozic

et al. 201025
Branching

process

Not

applicable

Not

applicable

Not

applicable
Unlimited Void

Waclaw

et al. 201519

Eden model,

voter model,

or similar

1 No Yes Unlimited Void

Sottoriva

et al. 20155
Deme fission 10,000 No Yes 1 Void

Sun & Hu

et al. 201718
Deme fission

(edge only)

1,000

or 10,000
Yes No 1 Void

Current study
Any of

the above

Any

number
Yes Yes Unlimited

Tissue

or void

Supplementary Table 4. Comparison of selected models of tumour population genetics.
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