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Abstract

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and
inform downstream experiments, ultimately paving the way for regulatory network re-engineering. Network
inference from transcriptional time series data requires accurate, interpretable, and efficient determination
of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from
Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene
network from transcriptional time series data. BETS uses elastic net regression and stability selection from
bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling effi-
cient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark,
the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of
similar performance but additionally infers whether the causal effects are activating or inhibitory. We apply
BETS to transcriptional time series data of 2,768 differentially-expressed genes from A549 cells exposed to
glucocorticoids over a period of 12 hours. We identify a network of 2, 768 genes and 31,945 directed edges
(FDR < 0.2). We validate inferred causal network edges using two external data sources: overexpression
experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in pri-
mary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is freely available as an open
source software package at https://github.com/lujonathanh/BETS|
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1 1. Introduction

2 The recent availability of gene expression measurements over time has enabled the search for interpretable
s statistical models of gene regulatory dynamics [I]. These time series data present a unique opportunity to
+ use the coordinated transcriptional response to environmental exposure to infer causal relationships between
s genes. However, there are several challenges to overcome in the analysis of time series transcriptomic data.
s These data are generally high-dimensional: the number of quantified gene transcripts—approximately 20,000
7 in human samples—often dramatically exceeds the number of available time points and samples. Many
s classical statistical assumptions fail to hold in this high-dimensional regime [2 [3]. Moreover, the large
o number of gene transcripts poses a computational burden, as the number of possible edges in a gene network
10 grows quadratically. Finally, a transcriptional time series often has a small number of time points, and
u  those time points are often not uniformly spaced; furthermore, because transcriptional time series data often
1 quantify transcription post exposure, the time series is not stationary, and genes respond to the exposure
13 and return to baseline at different rates [4] [5].

14 In this work, we develop an approach that uses the gene transcriptional time series following glucocorticoid
15 (GC) exposure to build a directed gene network [6]. GCs play an essential role in regulating stress response,
1 and are widely used as anti-inflammatory and immunosuppresive medication [6} [7]. Despite clinical benefits,
v prolonged exposure to GCs has been linked to increased risk for type 2 diabetes mellitus (T2DM) [§] and
18 obesity [9]. Here, we develop a method to accurately, interpretably, and efficiently infer a directed gene
19 network using transcriptional time series data. We focus our analysis of this network on immune-related
2 genes, metabolism-related genes, and transcription factors (TFs) to study the inferred coordinated response
a1 of these systems to GCs.

2 Our method, Bootstrap Elastic net inference from Time Series (BETS), uses vector autoregression with
23 elastic net regularization to accurately infer directed edges between genes. Stability selection, which assesses
2 the robustness of an edge to perturbations in the data, leads to improvements over baseline vector autoregres-
s sion methods in this high-dimensional context [3]. Furthermore, BETS is biologically interpretable because
% estimated coefficients provide the direction (sign) and effect size of the causal relationship between a pair of
a7 genes. Finally, BETS’s parallelization enables efficient inference of networks with millions of possible edges
28 in a computationally tractable way.

2 We use the causal network inferred by BETS on the GC time series data to study the relationships between
s TFs, immune genes, and metabolic genes. We validate our network using two approaches: ten measurements
a  of the same GC system with a specific TF overexpressed, and an expression quantitative trait loci (eQTL)
» study [10]. Although our framework is motivated by transcriptional response to GC exposure, our approaches
33 are general, and BETS is applicable to inferring directed networks from arbitrary transcriptional time series.

1 2. Related Work

35 Several methods have been developed to estimate directed gene networks from transcriptional time series
% data (Figure [111, 02, 13| 14, 15, 16 17, 18] [19]. These methods estimate directed networks in which the
s directed edges between nodes—representing genes—indicate a cause-effect relationship between genes, i.e.,
s perturbing expression of the causal gene would lead to changes in expression of the effect gene [20]. We
5o briefly overview these methods; for detailed discussion, see Supplemental Information. Here, we take ¢’ to
« be the causal gene and g to be the effect gene, and quantify support for a causal edge ¢’ — ¢ in the data.

a Mutual information (MI) methods assess the MI between the expression of ¢’ at the previous time point
» and the expression of g at the current time point (Figure ) [211, 22, 23], 24], 25], 26]. A causal edge ¢’ — g
ss  is included in the network if the MI of the two genes across time exceeds a threshold.
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. Granger causality methods determine if including the expression of ¢’ at the previous time point improves
s our ability to predict the expression of g at the current time point above using the expression of g at the
s previous time point [27]. A common way to implement Granger causality is through a vector autoregression
« (VAR) model, which assumes a linear relationship between all genes’ expression at the previous time point
« and the expression of g at the current time point. A causal edge ¢’ — ¢ is included in the network when ¢’
w0 has a statistically significant coefficient in the VAR.

50 Ordinary differential equations (ODEs) fit the derivative of the expression of ¢ as a function of all genes’
s expression at a single time point (Figure[SI[C) [L1} 28, 29]. ODE methods typically assume linearity, as small
52 sample sizes make it challenging to infer the parameters of nonlinear functions. A causal edge ¢ — g is
53 included when ¢’ has a statistically significant coefficient in the ODE.

54 Decision trees (DTs) are a type of nonparametric function based on partitioning the data [30, B1]. DT
ss  methods fall either under VAR or ODE; either the DTs fit the expression of g at the current time as a
5o function of all genes’ expression at the previous time point (VAR), or they fit the derivative of the expression
s of g as a function of all genes’ expression at a single time point (ODE) (Figure [SID) [32, 83]. A causal edge
ss g — g is included in the network when an importance score for ¢’ exceeds some threshold, where importance
5o scores are typically the reduction in variance of g when ¢’ is included as a predictor.

60 Dynamic Bayesian networks (DBNs) search the space of possible directed acyclic graphs between previous
e and current expression levels to identify the network structure with the highest posterior probability of each
e edge given the data (Figure ) [34, 35, 36l B7, [38]. DBNs typically assume a linear relationship between
e previous and current expression. A causal edge g’ — ¢ is included in the network when its marginal posterior
6 probability of existence exceeds some threshold.

65 A Gaussian process (GP) is a distribution over continuous, nonlinear functions. GPs are often used in the
e context of nonlinear DBNs, where GP regression is used to model a nonlinear relationship between previous
o expression and current expression (Figure [SIF) [39, 40]. A causal edge g’ — g is included in the network
e based on its posterior probability of existence exceeding some threshold.

o 3. Results

70 First, we briefly describe the approach in BETS to infer a directed gene network. Next, we compare
n  results from BETS to those from twenty other methods on the 100-gene time series data from the DREAM4
2 Network Inference Challenge [4I]. Then, we describe the network estimated from the GC transcriptional
7 time series data. Finally, we validate the inferred network using two different frameworks: overexpression
7 experiments on the same system, and genetic variants associated with inferred edges in primary lung tissue
5 in the Genotype-Tissue Expression (GTEx) v6 project [10].

w  3.1. BETS: A vector autoregressive approach to causal inference of gene requlatory networks.

i Directed networks represent causal relationships among diverse interacting variables in complex systems.
s We developed a robust, scalable approach based on ideas from Granger causality to construct these directed
7 networks from short, high-dimensional time series observations of gene expression levels.

80 Let G be the set of all p = |G| genes in the data set and g € G be a gene. Let g be G with g removed.
s Let t be a single time point, ranging from {1,2,...,T}. Let X/ be the expression of gene g at time ¢. Let L
&2 be the time lag, or the number of previous time point observations; so L = 2 means that we use two previous
s  time points, t — 1 and t — 2, to predict expression at time ¢.
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s+ Definition 3.1 (Granger causality). For lag L, a gene ¢’ is said to Granger-cause another gene g if using

& thLl, ..., X7 |, the expression value of ¢' at times t — 1 to ¢ — L, improves prediction of X/, the expression
s value of g at time ¢, beyond the prediction using X7 ,..., X7 ; alone.
87 To test for Granger causality from ¢’ to g, we first preprocessed the gene expression time series data

s (STAR Methods). For every potential effect gene g, we fit all other genes g’ € —g simultaneously (Equation
8 , echoing ideas from the graphical lasso for undirected network inference [42]. Intuitively, this adapts the
o idea of Granger causality to conditional Granger causality, where we consider how gene g’ Granger causes g
o1 conditioning on the effects of all other genes. This approach uses the regression:

L L
X = Za?Xf_e + Z Zﬁg X+ er (1)
=1

g’'€ng =1

o where ¢ ~ N (0,1). For BETS, we set L = 2. To test for an edge, if Bf/’g # 0, then we say ¢’ conditionally
o3 Granger-causes g at lag £. We build the directed network by including a directed edge to g from every gene
o ¢’ that has been inferred to conditionally Granger-cause g.

% Robustly building this network is difficult due to the high dimensionality of the problem: the number
o of genes that could Granger-cause a given g far exceeds the available time points and technical replicates.
o To address this challenge, BETS regularizes the VAR model parameters using an elastic net penalty (STAR
¢ Methods, Figure ) Elastic net regression encourages sparsity and performs automatic variable selection
o on the genes being tested for causal influence [43]. The elastic net penalty, unlike the lasso penalty [44], is
w0 able to select groups of correlated variables and allows the number of selected variables to be greater than
1w the number of samples. This is particularly important for gene expression assays where gene expression levels
102 are often well-correlated and there are far more genes than samples.

103 In BETS, we fit the same VAR model to a data set in which causal genes have their expression permuted
s over time to generate a null distribution of edge coefficients. The coeflicients are thresholded to produce
s a causal network with each edge at edge false discovery rate (FDR) < 0.05 (Figure [[A). We then apply
s this network inference procedure to multiple (here, 1,000) bootstrapped samples of the original data set
w (Figure ) Each edge has a selection frequency, or the frequency that the edge appears in networks inferred
w8 from the bootstrapped samples. Inspired by stability selection, this approach assesses if network edges are
w0 robust to perturbations of the data [3]. Finally, we run this overall procedure on a permuted version of the
1o original data set to obtain a null distribution of selection frequencies (Figure ) The selection frequency
m  threshold for including each edge is chosen to control the stability FDR < 0.2. As a baseline, we compare
n2  BETS against Enet, which runs elastic net regression without stability selection to produce a causal network
us  with each edge at edge FDR < 0.05 (Figure )
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Figure 1: BETS Algorithm. A) Model Fit. The VAR model is fit on both the original and a permuted data set (blue arrows
indicate shuffling each gene’s expression independently across time). Based on the null distribution of coefficients, a threshold
is chosen to control the edge FDR at < 0.05. B) Stability Selection. From the original data, 1,000 bootstrap samples are
generated. For each sample, a network is inferred as in A. Each edge’s selection frequency across the bootstrapped networks
is computed. C) Statistical Significance. For both the original and permuted data, a selection frequency distribution is
generated for stability selection as in B. Edges are thresholded to control the stability FDR at < 0.2. See also Figure for an
overview of network inference methods.

3.2. Leading Performance on DREAM Network Inference Challenge.

We evaluated BETS against other directed network inference methods. We used the DREAM4 Network
Inference Challenge [41], a community benchmark for directed network inference using gene time series data.
This benchmark consisted of five data sets, each with ten time series measurements for 100 genes across 21
time points [41]. Evaluation was previously done by looking at the average of the area under the precision
recall curve (AUPR) or the area under the receiver operating characteristic (AUROC) over the five data sets
[33, 41]. Any method that provides a ranking of possible network edges could be evaluated in this framework.

We tested BETS and Enet against 20 other methods on the DREAM challenge [32] B3] [36], [45, 46]. We ran
CSId, Jump3, CLR, MRNET, and ARACNE in-house and found our results consistent with those reported
in the literature. All 20 methods reported AUPR, but only 15 reported AUROC.

BETS ranked 6th out of 22 in AUPR with an average AUPR of 0.128 (Figure , Table and 3rd out
of 17 in AUROC with an average AUROC of 0.688 (Figure [2B, Table[S2). BETS was the top performer of
all VAR methods, and Enet was second best. All 22 methods outperformed random selection of edges, which
achieved an average AUPR of 0.002 and average AUROC of 0.50 [45]. We also found that BETS and Enet
had similar performance to the DBN methods in AUPR, and outperformed most of them in AUROC. Ranked
by the top AUPR of each class of methods, the best performing class was GP, followed by DT, MI, VAR,
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1w DBN, and ODE [32] 36, [45]. The VAR method used in BETS produces edge signs (indicating excitatory or
w inhibitory causal effects) and effect sizes. While other methods based on GPs (e.g., CSId), MI (e.g., tI-CLR)
12 or DTs (e.g., dynGENIE3) had marginally better overall network inference, they do not provide insight into
133 the causal relationships because they only output a positive measure of a causal interaction [28 [33], 40].

134 Next, we compared the speed of BETS and two other top-performing methods: CSId and Jump3 (Ta-
135 ble. BETS was the fastest at 4.8 hours while CSId took 9.8 hours and Jump3 took 45 hours. Thus, while
s BETS had a slightly lower AUPR compared with CSId and Jump3, it was substantially faster.

137 BETS improved upon Enet using stability selection. To quantify this improvement, we compared three
138 other models: elastic net with lag 1, ridge regression with lag 2, and lasso with lag 2 (Table . In each
130 case, the stability selection version outperformed the original version in average AUPR and AUROC. The
1w improvement in average AUPR ranged between 0.016 and 0.03 (+20% to +31%), while the improvement in
w1 average AUROC ranged between 0.012 and 0.04 (+1.8% to +6.1%). Hence, our stability selection procedure
12 leads to improved performance for multiple versions of VAR.

143 We also found that stability selection performance is robust to the number of bootstrap samples (Table.
s Decreasing the number of bootstrap samples from 1,000 to 100 caused minor decreases of —0.004 in AUPR
1w and —0.008 in AUROC, within the standard deviation across the networks. It also resulted in a 10-fold
s decrease in memory usage and 3-fold decrease in run time, due to a constant-time hyperparameter search. If
17 users face computational constraints, we recommend that they use 100 bootstrap samples for nearly equivalent
s performance.
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Figure 2: Algorithm performance on the DREAM Community Benchmark. A) AUPR scores from 22 methods,
averaged across the five DREAM networks. B) AUROC scores from 17 methods, averaged across the five DREAM
networks. Arrows indicate our methods. Stars indicate methods that we ran in-house; results were consistent with reported
results. The bars reach one standard deviation from the average as calculated across the five DREAM networks; no bar indicates

the standard deviation is not reported. See also Tables @ and

u  3.8. Application to gene transcription response to glucocorticoids.

150 To infer the causal relationships in the GC response network, we analyzed RNA-seq data collected from
151 the human adenocarcinoma and lung model cell line, A549. This consisted of two data sets. In an original
152 exposure data set, cells were exposed to the synthetic GC dexamethasone (dex) for 0, 0.5, 1, 2, 3, 4, 5, 6,
w3 7,8, 10, and 12 hours [6]. In an unperturbed data set, the cells were first exposed to dex for 12 hours, after
152 which the media was replaced and dex removed, and then measurements were taken at the same intervals
s 0, 0.5, 1,2,3,4,5, 6,7, 8, 10, and 12 hours. BETS was fit jointly over the two data sets. In total there
16 were 7 technical replicates (4 from original exposure and 3 from unperturbed). A single VAR was fit on 70
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17 samples: Each of the 7 replicates had 10 samples, because using a lag 2 VAR model turns 12 time points
158 into 10 samples.

150 We applied BETS to the GC-mediated expression responses to infer a causal network (Figure ) Edges
1o with selection frequency (frequency of appearance among bootstrap networks) at least 0.097 were declared
e significant (FDR < 0.2; Figure ) The network contained 2,768 nodes representing distinct genes and
2 31,945 directed edges (0.4% of possible edges). Of these, 466 genes were causes (had an outward directed
163 edge) and all 2,768 genes were effects (had an incoming directed edge). The out-degree distribution was
e heavy-tailed and skewed right (Figure ) while the in-degree distribution was lighter-tailed and more sym-
s metric (Figure ) The network’s edge in-degree had a heavier left tail and lighter right tail than a normal
s distribution (Figure ) This suggests that causal genes were relatively rare (only 1/6th of network genes
17 were causes) and a fifth of those only affected a single gene, whereas genes that were effects tended to have
s multiple causes. The network was inferred efficiently due to parallelization across genes, taking six days in
10 real time and 292 days in CPU time to perform 5.5 million elastic net model fits.

170 To study the network with respect to the glucocorticoid system, we annotated specific genes as transcrip-
wm  tion factor (TF), immune-related, and metabolism-related [47) [48] [49] [50]. First, we inspected enrichment
w2 of each category among the causal genes (Figure ) At FDR < 0.05, we found enrichment for TFs among
s causes; there were 226 causal TFs, representing 8.2% of the 2,768 input genes. 62 of these TFs were
we causal, representing 13% of all causal genes (odds ratio (OR) = 2.0, Fisher’s exact test (FET) adjusted
s p < 2.9 x 107°). Similarly, we found an enrichment among immune-related genes as causes: of 109 immune
e genes, representing 3.9% of the input genes, 39 of these were causes, representing 8.4% of all causal genes
7 (OR = 2.9, FET adjusted p < 2.5 x 1075). There was no enrichment among metabolism-related genes: there
s were 120 metabolism genes, representing 4.3% of input genes; 19 of these metabolism genes were causes,
o representing 4.1% of all causes (OR = 0.93, FET adjusted p < 0.66).

180 To study the interactions among gene classes inferred by our network, we quantified enrichment for edges
w1 between each of the four gene classes — immune, metabolic, TF, and other gene types (any) (Figure ,
12 Table . We found enrichment of 12 of the 16 possible edge types (FDR < 0.05). The network was
183 enriched for edges from any causal genes to immune genes; causal TF's to any genes, TFs, and immune genes;
1a causal immune genes to any genes, TF's, immune genes, and metabolic genes; and causal metabolic genes to
15 any genes, TFs, immune genes, and metabolic genes. This suggests that our network is enriched for causal
155 T'Fs, immune genes, and metabolic genes.
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Figure 3: Causal network inferred from glucocorticoid receptor data. A) Causal network clustered by gene type.
Edge color indicates the type of the causal gene: red edge indicates an immune causal edge, blue edge indicates a metabolic
causal edge, purple edge indicates an immune and metabolic causal edge, and tan edge indicates an other causal edge. B)
Significance thresholding for edges, based on null distribution of selection frequencies. C) Out-degree distribution
of network. For clarity, several high out-degree values with low frequencies are not shown. D) In-degree distribution of
network. E) Quantile-quantile (Q-Q) plot of in-degree distribution against normal quantiles. The in-degrees have
a heavier left tail and lighter right tail than the normal distribution. F) Enrichment of gene classes among network
causal genes, measured by odds ratio. G) Enrichment of edge classes among network edges, measured by odds ratio.
See also Table [S6l

Our network identified known biological interactions between genes with immune, metabolic, and TF
roles; we highlighted 16 of the gene pairs with experimentally validated interactions (Figure EL Table .
S0OCS1 and SOCS3 bind IRS2 and promote its degradation, leading to reduced insulin signalling [51} 52];
furthermore, SOCS1 represses IL-4-induced IRS2 signalling [63]. NR4A1 heterodimerizes with RXRA to
activate it to promote gene expression under vitamin A signaling [54]; NR4A1 also inhibits p300-induced
RXRA acetylation [55]. Eleven of the 16 edges had the correct interaction direction; the five that were
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reversed are TNFAIP3 — IRAK2, SOCS8 — HIVEP1, ATF3 — MDM?2, E2F1 — CDHI1, and FOS —
EGFR. These results suggest that BETS infers biologically meaningful relationships, but transcriptional
data, absent other assays on protein abundance and cellular dynamics, are often underpowered to resolve the
direction of the edge.

10
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Figure 4: Time series profiles of experimentally validated causal interactions across gene classes. For each gene
pair, their profiles were from either the original exposure data set or the unperturbed data set. Because these are conditional
Granger-causal relationships, and the effects of the complete set of covariates were not subtracted from the effect gene values,
the relationship of the gene pair may be vague. Colors encode gene classes: pink shows immune genes, dark blue/gray shows
metabolic genes, teal shows TFs, and brown/tan shows other genes. Darker colors show causal genes and lighter colors show
effect genes. The grey line marks zero-centered expression. Each y-axis tick indicates 0.1 unit of In(TPM) where TPM is
Transcripts Per kilobase Million. See also Table[S7]
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w 8.4. Validation of inferred network on overexpression data.

108 We asked whether our inferred network edges validated on overexpression versions of the same experimen-
19 tal system, in which each of ten TFs was separately overexpressed over the same 12 hours of observations.
20 Specifically, we assessed the concordance between inferred network edges ¢’ — ¢ and their coefficient in the
21 overexpression data set under a VAR model (STAR Methods).

202 We first evaluated how well network edges replicated on individual overexpression data sets. We performed
23 linear regression of a one-hot encoding of the original network’s edge sign (i.e., positive versus no edge or
24 negative sign; negative versus positive or no edge) as the predictor against the VAR model edge coefficients
205 estimated from each of the overexpression time series as the response (Figure —B, STAR Methods). Of
26 the ten data sets, 9 showed enriched positive effect sizes among positive edges at FDR < 0.2 (CEBPB,
27 CEBPD, FOSL2, FOXO01, FOX03, KLF6, KLF9, KLF15, OCT4; Figure ) Three data sets showed
28 enriched negative effect sizes among negative edges (OCT4, TFCP2L1, CEBPD) and four showed enriched
20 positive effect sizes among negative edges (CEBPB, FOSL2, KLF9, KLF15; Figure ) Taken together,
20 the positive edges inferred by BETS validate on the overexpression data, but the negative edges do not,
o indicating repressive effects may have inconsistent signs or feedback loops.

212 Next, we checked whether the 123 inferred causal edges from the TF TFCP2L1 validated in the TFCP2L1
a3 overexpression data set (there were only about 10 causal edges from each of the other 9 TFs). We regressed the
21 original network’s edge sign (+1 for positive edges, 0 for no edge, and —1 for negative edge) as the predictor
25 against the overexpression VAR model edge coefficients as the response (Figure ) We found a positive
26 relationship between the edge sign and overexpression coefficient (slope 0.17, two-sided t-test p < 5 x 1077).
a7 This shows that causal edges from TFCP2L1 are enriched for matched effect directions in the TFCP2L1
aus  overexpression data.
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Figure 5: Validation of inferred network on overexpression data. A-B) Regression of one-hot encoding of positive
(negative for B) edges as the predictor against the VAR model edge coefficient from the overexpression data as
the response. A 1 indicates that an edge had a significant positive (in A) or negative (in B) coefficient in the original inferred
network (FDR < 0.2). C) For the 123 causal edges from TFCP2L1, regression of edge sign as the predictor against
the VAR model edge coefficient from TFCP2L1 overexpression data as the response.

a0 8.5, Validation of network edges through lung trans-eQTLs.

220 We validated our network edges on an expression quantitative trait-loci (eQTL) study. A single nucleotide
o1 polymorphism (SNP) S is an eQTL for a gene ¢’ if it is associated with g¢"’s expression level within a
22 population. Given a true causal edge ¢ — g, if a SNP S is a local (cis-) eQTL for ¢/, S might also be
2 a distal (trans-) eQTL for g [56]. We used gene expression levels in primary lung tissue (n = 278) from
2 the Genotype Tissue Expression (GTEx) project v6p [I0]. We observed an enrichment of low trans-eQTL
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»s  association p-values from the directed network compared to shuffling the SNP labels (Figure @A—B). This
26 suggests our network captures more valid causal effects than expected by chance.

27 We next inspected specific associations and their corresponding edges. We found 341 trans-eQTL pairs in
28 lung samples corresponding with 130 network edges (q-value FDR < 0.2). There are more trans-eQTLs than
20 edges because there are multiple cis-eQTLs for some causal genes g’. The 341 trans-eQTLs greatly improved
20 upon the 2 identified in the GTEx v6 trans-eQTL study [57], demonstrating the utility of transcriptional time
o series for prioritizing promising associations. The top trans-associations were rs2302178-CLDNI (g-value
a2 FDR < 0.095, extended from the cis-association rs2302178-HS3ST6), rs590429-ADAMTS (qg-value FDR
a3 < 0.11, extended from the cis-association rs2302178-OLR1), and rs2072783-CLIP2 (g-value FDR < 0.11,
= extended from the cis-association rs2302178-GMPR) (Figure [6[C).

235 We searched for validated associations between immune-related genes, metabolic-related genes, and TFs.
26 Ome association was OLR1 — ITGAV, where we see that the known association between SNP rs4329754 and
xwr OLR1 extends to an association between the same SNP and effect gene ITGAV (g-value FDR < 0.13) [10].
23 OLRI plays key roles in immunity and metabolism [58, [59]. It is associated with metabolic syndrome [60]
20 and atherosclerosis [60], and modulates inflammatory and humoral immune responses [61], [62]. Meanwhile,
a0 ITGAV plays a key role in the motility of CD4% T cells during inflammation [63].

201 Another association was between the TF SNAI2 and gene PTPNG, where we find that the known associ-
22 ation between SNP rs56800165 and SNAI2 extends to an association between the same SNP rs56800165 and
a3 effect gene PTPN6 (q-value FDR < 0.17) [I0]. SNAI2 is a direct target of the glucocorticoid receptor GR to
2¢  regulate cell migration in breast cancer [64], while PTPNG6 is involved in glucose homeostasis via negatively
25 regulation of insulin signalling [65]. PTPN6 is also associated with inflammatory phenotypes in multiple dis-
us  eases [60] [67]. Finally, both SNAI2 and PTPNG are involved in the cell-cell adherens junctions pathway, as
a1 SNAI2 represses transcription of cadherin, while PTPN6 positively regulates the cadherin-catenin complex
2 [68]. Thus, for several eQTL-validated edges for gene pairs, we find that the genes are involved in related
29 biological processes, but further experimentation is required to confirm direct interactions.

250 Finally, as A549 cells are models for lung tissue [69], we quantified enrichment of validated edges in
1 lung compared to enrichment in four other tissues: subcutaneous adipose (n = 298), transformed fibroblasts
2 (n = 272), tibial artery (n = 285), and thyroid (n = 278). We validated 341 unique network edges across
»3  the five tissues (FDR < 0.2). 130 edges validated for lung, 4 for subcutaneous adipose, 125 for transformed
x4 fibroblasts, 3 for tibial artery, and 82 for thyroid tissues. More network edges validated in primary lung than
»s in other tissues, suggesting that A549 cells most closely match lung samples among GTEx tissues; this is
36 consistent with their tissue of tumor origin.
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Figure 6: Network edge validation using known cis- elements from GTEx v6 lung cis-eQTLs. A) Enrichment of
trans associations in lung among p-values from edges inferred by BETS compared to p-values from permutations.
B) Q-Q plot of validated edges shows signal enrichment in lung samples when compared to signals from four other tissues
in the GTEx v6 study. C) SNPs associated with inferred gene pairs. Genotype-phenotype plots corresponding to the
cis-effect (left column), correlation in the GTEx v6 data between cause (y-axis) and effect (x-axis) gene pairs (right column).

4. Discussion

We described an approach, BETS, to build directed networks using short time series observations of high-
dimensional transcriptional data. BETS combined ideas from elastic net regression, graphical lasso, stability
selection and VAR models to infer Granger causality relationships in high dimensional transcriptional time
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s series data. Our method achieved competitive performance on the DREAM4 100-Gene Network Inference
s%2  Challenge, ranking 6th out of 22 methods in AUPR and 3rd out of 17 methods in AUROC; it was also faster
»%3  than several methods with similar or better performance and infers effect size and sign, unlike the other top
x4 performing methods. Stability selection resulted in consistent improvement to VAR models across different
s hyperparameter settings.

266 Next, we applied BETS to time series RNA-seq data from human A549 cells exposed to glucocorticoids and
xr  identified a directed network of 31,945 edges (FDR < 0.2), capturing the causal relationships among genes
s after exposure to GCs. In our network, we found enrichment of immune genes and TFs among causal genes.
%0 We also found enrichment of causal edges from TFs, immune genes, and metabolic genes. We validated our
a0 network first in ten overexpression data sets, replicating positive edges with overexpression effects. Validating
on network edges by searching for trans-eQTLs in GTEx, we found an enrichment of associations with genetic
oz variants across network edges. Finally, we discovered 341 trans-eQTLs, dramatically improving from the
s GTEx trans-eQTL study without filtering tests for association [57].

274 While BETS has demonstrated effective inference of causal relations, there are interesting future direc-
o tions to explore. All methods that infer networks from transcriptional time series face several difficulties.
a  Transcript levels are sometimes an imperfect proxy for protein levels, especially when transcript dynamics
o are changing [T} [70]; the scarcity of time point samples causes statistical challenges for inferring millions
o of possible causal interactions between genes, let alone non-additive interactions among causes [3] [71], [72];
a9 transcriptional data do not capture the complete regulatory context including chromatin structure and epi-
20 genetic regulations [I1]; transcriptional relationships are often nonstationary: the relationship may change
2 over time due to responses from the environment [4, [5]; and inferred networks are often sensitive to the
22 choice of preprocessing and parameter choices [73]. Single cell data also implicitly include transcriptional
23 time series information when pseudotime is inferred, making ideas from Granger causality exceptionally rel-
20 evant. Finally, experimental followup is key to establishing causality; BETS can only generate promising,
285 interpretable hypotheses. Indeed, by discovering hundreds of more trans-eQTLs than the GTEx study (a
26 170-fold increase) [57], BETS demonstrates its potential to prioritize biologically meaningful associations.
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2 H. STAR Methods

3 J.1. Method details

e Bootstrap FElastic net regression from Time Series (BETS). Bootstrap Elastic net regression from Time
w5 Series (BETS) is a vector-autoregressive approach to causal inference from gene expression time series data.
w6 It is based on the principle of Granger causality [27]: a gene ¢’ Granger-causes another gene g if previous
sr  information from gene ¢’ improves our current predictions of gene g, beyond using previous information of
w8 other genes.

300 BETS first preprocesses the data. BETS fits an elastic net vector autoregression model to handle the high
s dimensionality of the time series, inferring a network (Figure ) It infers one network for each of 1,000
sn bootstrapped samples of the original data set and computes each edge’s selection frequency: its frequency
a2 of appearance among the bootstrapped networks (Figure [1B) [3]. Finally, BETS includes an edge in the
a3 network using the selection frequencies (Figure ) Our baseline comparison, Enet, only preprocesses the
s data and fits an elastic net vector autoregression model from the original data (Figure ; Section (3.2]).

as  Preprocessing temporal time series data. For a gene temporal profile (i.e., one gene’s expression values
a6 across time for a single replicate), we used zero-mean unstandardized normalization, which centers each gene
a7 temporal profile to have mean zero across time. Because gene temporal profile ranges from staying almost
ais constant to having drastic fluctuations, BETS uses this approach because a unit-variance normalization
a0 would over-represent the weak causal effects of genes with lower variability.

a0 Vector autoregression model. Let G be the set of all genes in the data, let p = |G| be the number of genes,
a1 and let g be a gene. Let —g be G with g removed. Let there be T time points total, and let t € {1,2,...,T}
22 be a single time point. Let there be R replicates of the gene expression time series.

323 Let X/, be the expression of gene g at time ¢ for replicate . Let X7 = [X/,, X/,,... 7XZR]T be the
a2a R X 1 vector of gene expression levels of gene g across R replicates at time t. The rest of the paper does not
s mention replicates for simplicity, but here we discuss replicates for completeness.

326 Let ¢’ be the gene we are testing to be causal for gene g and let £ refer to the time lag of the causal edge
27 g — g. Let L be the maximum lag. In BETS, L = 2.
328 We model each gene g as
L L ) )
X{ = Zangie + Z Z B X+ e, (2)
=1 {=1g'€e—g

20 where ¢, ~ N(0,1). In other words, the expression of each gene g is modelled as a linear function of its
s and other genes’ L previous expression values, under independent Gaussian noise. o represents the (scalar)
m  effect size of gene ¢’s ¢th previous value, X! ,, on its current value, X7. ] ¥ represents the (scalar) effect
s size of the £th previous value of gene ¢’ # g, thig, on gene g’s current value, XJ. Equation [2[ requires that
s ¢ > ( for the (th previous value, X/ , , to exist.

33 To demonstrate how our model is fit in practice, we reformulate Equation [2| using matrix notation. Each

s row represents one time point for one replicate. There are T'— L time points with ¢ > L and R replicates, so
s there are R(T — L) samples, or rows, in total. Let N = R(T — L).
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Define X7, an N X 1 vector, as:

Xiiia
X121
X = ' (3)
Xl ion
L X7k ]
337 We can similarly write XY _,, which is X{ with each entry replaced by its ¢th previous value. Define XY _,,
1 a N x L matrix consisting of the first L previous vectors X¢_,, i.e., for £ ranging in {1,...,L}.
X=Xy XL (4)

s Let af be a L x 1 vector of the L lagged coefficients.

af
of = | |. (5)
ay
340 Next, let us formulate Equation involving the genes ¢’ in matrix notation. Let X9, be a N x L(|G|—1)
s predictor matrix of the vectors Xfl_e, for ¢’ # gand £ € {1,...L}. Note the number of columns is L(|G| — 1),
s because there are L previous time points £ € {1,..., L}, and for each ¢, there are |G| —1 genes ¢’ # g, giving
ws |G| — 1 vectors: X7!,, ... ,Xf'j"l.
X%, = [xet, L xdexd, L oxle L xde]. (6)
344 Let 8,9 be a L(|G| — 1) x 1 vector of the causal coefficients ,Bgl’g where ¢’ # g.
91,9
1
9lc|—1-9
1
91,9
2
B;? = : ~ (7)
9lG|-1-9
2
BiI/G\fl’g
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We then fit the model:
X{ =X o) +X.%,87 + e, (8)
where €; is a N x 1 vector with each element ¢, ,, ~ N(0,1). To write in the most compact form, we can
write

XG  — X9 XY 39 _ af 9
Co=xx2) =g o)

Note that X& , is a N x L|G| matrix and 39 is a L|G| x 1 vector. Thus the final matrix formulation of
Equation [2 is:
X{ = X7 B9 + e (10)

Elastic net penalty. Because of the large number of predictors as compared to the small number of samples,
we use the elastic net penalty, which is a generalization of both ridge and lasso penalties. The elastic net fits
the following objective:

. . o = _ _
Bhastic npr = argmin [ X7 — X{ 893 + Mall 57l + (1 = a)[|57]13)- (11)
B9IERLIGI
Here || - ||1 represents the ¢;-norm and || - ||z represents the ¢3-norm.
For the elastic net, we used the following ranges of hyperparameter values: A € {107%,1073,...,1},a €

{0.1,0.3,...,0.9}. For lasso, we used A € {1075,...,1}. For ridge, when we used {1075,... 1}, we found
that the the optimal value selected in some cases was the maximum value of A = 1. We thus expanded the
range to {1075,...,10%} to ensure that we were not missing better hyperparameters at larger values. At this
point, the optimal A was found to be 100.

Hyperparameter tuning. Hyperparameters were selected using leave-one-out cross-validation (LOOCV). The
hyperparameter (or pair of hyperparameters, for elastic net) that minimizes the mean-squared error on the
held-out datapoints is selected. More specifically, we first fix a hyperparameter (A, a). Then, for a given gene
g and row index 4, extract the i-the row of X{ and X ,. Refer to this extracted validation set as (X{);
(target) and (X?_,); (predictors). The remaining data is the training set, (X{)_; (target) and (X&,)_;
(predictors).

First, let Baa)ﬂ, be the A% xsric npr that is fit from the training set.

Bl = argmin [(XF) = (K27 -+ Aall 37+ (1 = )| 3713). (12)
Je

We then compute prediction error on the validation set, [|(X{); — (X ,); A(g)\ ) :|13). We repeat the fit

/3(9/\ a),i and error for every row index 7 of X{ and for every gene g. The mean held-out cross-validation error
for (A, a) is:

N
MSB(a) = 30 30 KD — (K )b 5 (13)

geG i=1

The (A, a) that minimizes the error in Equation [13]is selected.
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7 Permuted coefficients. We evaluate the significance of any given edge ¢’ — ¢ through permutation. In detail,
s we remove the time dependency between ¢’ and g via permutations of individual gene temporal profiles over
60 time.

370 We first generate a single permuted data set th . For each gene, we independently shuffle the temporal
sn  profile of each gene g € {1,...,|G|} across time (Figure[1]A). This is done separately for distinct replicates.
P We wish to model the hypothesis of no causal relations from any gene ¢’ € —g, upon a given effect gene

s g. We use the unpermuted values of the effect gene X/ and the permuted values of all other causal genes
s g € —g, as X, 7. The effect gene g remains unpermuted, as we do not consider self-regulatory loops.

375 Permutation-based causal coefficients Bg/’g are then fit as
L L ) )
X{ = Zangfe + Z Z B X+ e (14)
=1 {=1g'€ng
376 We use these coefficients to perform FDR calibration.

s Fdge FDR. The result of the elastic net VAR model is a complete network whose edges are weighted according
ais to the estimated regression coefficients.

379 For each lag ¢ € {1,..., L} and effect gene g, we control the edge FDR at < 0.05 by finding the threshold
w0 T such that

Zg’eﬁg ]]'{|5g }g‘ > Téy}
> gy {1877 > T7} + > gy {877
s For each gene pair (¢, g), ¢’ € g, a directed edge ¢’ — g exists if for at least one of the lags ¢ € {1,..., L},
9’9 g
382 |5€ ‘ > TK .

< 0.05. (15)
>T7}

3 Stability selection. Stability selection is used to ensure the robustness of BETS to small sample size. Stability
s« selection is a method for high-dimensional graph estimation that uses bootstrap samples [74]. While the
sss  authors prove finite sample control for the family-wise error rate (FWER), we are interested in controlling
ss  the false discovery rate (FDR).

387 First, we draw B = 1,000 bootstrap samples, where each sample consists of N = R(T — L) rows drawn
s with replacement from XtG_e, the predictors, and X7, the target (Equation .
389 For each bootstrap sample, we infer a network using BETS. Each edge g — g’s selection frequency, 7y 4

w0 (the frequency of ¢’ — g among the bootstrap networks) is computed. (Figure [1| B).

s Stability FDR. To determine the appropriate cutoff for the selection frequency of each edge (mgy 4), we
s generate a null distribution of selection frequencies using permutations. First, we generate a second permuted
33 data set in which we again independently shuffle the temporal profile of each gene g € {1,...,|G|} across
sa  time. This is done separately for distinct replicates. We run the selection frequency procedure on this
ss  permuted data set to get the null selection frequency of each edge, 7y 4.

396 We control the stability FDR at 0.2 by finding the threshold T such that

’ ]]. 7’% / > T
Lgeng iy g > To) <02 (16)
Zg’e—\g Il{ﬂ-.(]/uq > Tb} + Zg’e—\g 1{7‘-9’,9 > Tb}

57 Because the maximum lag is 2, each edge ¢’ — ¢ has two possible lags and thus two selection frequencies.
ws  The lag with larger absolute value of average coefficient across the 1,000 networks is considered in both the
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10 permuted and the real empirical distributions. So, if |6fl’g| exceeds |,Bg/’g|, the lag is said to be 1 and the
w0 selection frequency W;/_g is used.

w1 Network inference performance metrics. Refer to every network edge inferred by a method as a positive and
w2 every missing edge as a negative. Let TP be True Positives, F'P be False Positives, TN be True Negatives,
w3 and F'N be False Negatives. Let TPR be True Positive Rate, (i.e., recall), and F'PR be False Positive Rate.
s0s Then, we have

TP
TPR = —F—
TP+ FN
FP
FPR= —————
FP+TN
Precision = 7TP
TP+ FP
405 In the DREAM benchmark, each network inference method is evaluated by comparing the true network

ws  (i.e., the network used to generate the synthetic data) with the inferred network at different thresholds for
w7 edge inclusion. The two main evaluation metrics are Area Under the Receiver Operating Characteristic curve
ws  (AUROC) and Area Under the Precision-Recall curve (AUPR). AUROC plots TPR on the y axis and FPR
wo on the z axis. AUPR plots precision on the y axis and recall on the x axis. When the number of negatives
a0 greatly exceeds the number of positives, as with gene networks, which are typically sparse, AUPR is a more
a1 relevant metric [75].

a2 5.2. Software

a13 BETS is available for download on Github at https://github.com/lujonathanh/BETS. The software is
aa licensed under the terms of the Apache License, version 2.0.

as 5.3, Data sets and Processing

sne  DREAM Network Inference Challenge. There were 5 data sets in the DREAM4 Network Inference Challenge,
ar  each consisting of 10 time series of 21 time points and 100 genes [41] [76]. For the first half of the time series,
as  a “drug perturbation” was applied; this affected about 1/3 of genes. For the second half, the perturbation
a0 was removed and the system was allowed to relax back to the wild-type state.

w0 Glucocorticoid gene expression data. We analyzed RNA sequencing data from a set of experiments developed
= to study glucocorticoid receptors (GRs) in the human adenocarcinoma and lung model cell line, A549 [6].
w22 There was an original exposure data set of 4 replicates in which cells were stimulated by the glucocorticoid
23 dexamethasone (dex), and gene expression was profiled at {0,0.5,1,2,3,4,5,6,7,8,10,12} hours of dex stim-
22 ulation. There was also an unperturbed data set of 3 replicates in which cells were exposed to dex for 12
w5 hours, after which the conditioned media was replaced and dex removed. Gene expression was profiled at
o {0,0.5,1,2,3,4,5,6,7,8,10,12} hours after dex removal. We integrated the original exposure and unperturbed
w27 data into a joint data set with 7 replicates.

a2 We selected 2,768 genes for analysis, which had average expression > 2 TPM and were differentially
w9 expressed in the original exposure data. A gene was called differentially expressed if its expression at any
s time point differed from its expression at time 0, ascertained by running edgeR (FDR < 0.05) [6]. We added
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. NR3C1, which encodes the glucocorticoid receptor (GR). NR3C1 was not found to be differentially expressed
a2 at FDR S 0.05.

433 After genes were selected, gene expression Transcripts Per kilobase Million (TPM) were log-normalized
s¢ and corrected for surrogate variables using SVAseq [(7]. Each gene’s temporal profile was centered to have
.5 mean zero across time. In the original exposure data, all replicates besides replicate 1 had a measurement
a6 for each time point. Replicate 1 was missing time points 5 and 6 hrs, so we imputed these values using a
a7 linear interpolation from time points 4 and 7 hrs in the log-transformed, surrogate-corrected space.

s Ouverexpression transcriptional time series data. There were 10 overexpression data sets, in which each of the
a9 transcription factors CEBPB, CEBPD, FOSL2, FOXO1, FOX03, KLF6, KLF9, KLF15, POU5F1,
w  and TFCP2L1 was separately overexpressed across 12 hours of dex stimulation. Each overexpression data
a1 set had three replicates; gene expression was profiled after {0,1,4,8,12} hours of dex stimulation. The same
w2768 genes were selected and the same normalization and SVAseq correction as earlier was performed.

ws  5.4. Application of methods to the data

s DREAM benchmarking. We ran the methods BETS, Enet, CSId [40], Jump3 [32], CLR [23], MRNET [24],
wus and ARACNE [25] on the DREAM challenge. In BETS, inferred edges were ranked by their selection
ws  frequency for calculating AUPR and AUROC. In Enet, edges were ranked by the absolute value of their
a7 coefficient. The Python3 version of CSId was run after obtaining it from correspondence with Dr. Penfold.
aag Jump3 required setting the “systematic noise” and “observational noise” parameters. We used Dr. Huynh-
w9 Thu’s settings on the DREAM challenge, with systematic noise at le — 4 and observational noise at 0.01
o times the value of the gene’s expression. ARACNE, MRNET, and CLR were run using the minet R library.
1 BETS, Enet, CSId, and Jump3 were run on a single node without parallelization. The node had 28 cores,
2 128 GB of memory, and 2.4 GHz processor speed. ARACNE, MRNET, and CLR were run on a 4 GB RAM,
»s3  Intel Core i5 1.3 GHz laptop.

s Network analysis: Gene annotations. We considered genes with three possible labels: immune system,
s metabolism, or transcription factor. Immune genes were labeled as such using two sources. The first source
w6 1is the Gene Ontology (GO) annotation “Immune” ( G0:0002376) [417]. We applied this label when the evi-
7 dence codes were EXP, IDA, IGI, IMP, IPI, IC, TAS. The second source is the Gene Ontology Consortium’s
ss  curated, ranked list of immune-related genes based on multiple databases and experimental evidence [49].
o For the GO annotation, we selected all genes with score > 7. This resulted in 616 immune genes overall, and
w0 109 immune genes in our list of 2768 genes.

a61 Metabolic genes were called using two sources. The first source is the GO annotation “carbohydrate
w2 metabolic process” GO:0005975 [47]. We applied this label when the evidence codes were EXP, IDA, IGI,
w3 IMP, IPI, IC, TAS. The second source is the Gene Set Enrichment Analysis (GSEA)-curated list of metabolic-
st related genes [48]. We searched only among those with experimental evidence: the Canonical, KEGG,
ws BIOCARTA, and Reactome pathways. We used the following four search queries: “gluconeogenesis OR
wo  (glucose AND metabolism) OR glycolysis,” “lipid AND metabolism,” “Diabetes,” “Obesity.” This resulted
w7 in 544 metabolic genes overall, of which 120 were in our gene list. 65 genes were both immune and metabolic
ws  overall; 12 of these were in our gene list.

469 Transcription factors (TFs) were called using the Bioguo database of human TFs [50]. There were 1463
o TFs overall, of which 226 were present in our gene list.
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a1 Experimental interactions. We created a list of experimentally validated interactions from the BIOGRID
«» Homo sapiens Protein-Protein Interactions database [78] and the STRING database [79]. Proteins were
w3 mapped to genes using BioMart from Ensembl 94 [80]. Among genes in our gene list, there were 17,990
as - BIOGRID interactions and 13,148 STRING interactions.

as  Validation on overexpression data. The overexpression data had four time points with 1 to 4 hour time gaps,
as  unlike the original 12 time points with 0.5 to 2 hour time gaps. On the overexpression data, we used a VAR
a7 model that regressed each effect gene’s expression level on its previous expression level and the causal gene’s
ws  previous expression level, assuming normal noise e; ~ N (0,1):

X?=c9X)  +d9IXT |+ (17)

s No regularization was included, and ordinary least squares was used to fit the equation. The expression Xfil
w0 of a causal gene ¢’ is fit as a single predictor without the other expression. Lag 1, not 2, is used due to the
w1 larger time gaps.

w2 Validation on lung trans-eQTLs in GTEx v6. Trans-eQTLs were discovered using the Genotype Tissue
w3 Expression (GTEx) v6 data [I0, 57]. First, we mapped our genes from hg38 to hgl9. For every edge
w g — g, we tested the set of single nucleotide polymorphisms (SNPs) within 20 kilobases of ¢’ for trans-eQTL
w5 association with g [8I]. Specifically, we computed the p-value for linear association of each SNP with the
s corresponding effect gene g using MatrixEQTL [82]. A null distribution was generated by taking every edge
wr g — g, permuting the effect gene g’s expression values, and repeating the linear association test. FDR over
s test statistics was calculated using g-value [83]. Because not every causal gene ¢’ had a cis-eQTL, only 26, 839
w0 edges (84% of the original 31,945 edges) were tested.

w 6. Supplemental Information

w1 0.1. Network inference methods

492 Several methods have been developed to estimate directed graphs of genes from transcriptional time series
w3 data (Figure [S1]). Broadly, these methods estimate directed networks in which the directed edges between
s nodes—representing genes—indicate a cause-effect relationship between those genes, such that perturbing
w05 the expression levels of the causal gene would lead to changes in expression of the effect gene [20].

496 Let G be the set of all genes and g be a single gene. Let —g be G with g removed. Let there be T time
w7 points total, and let ¢ be a single time point ranging from {1,2,...,T}. Let X7 be the expression of gene g
ws  at time t. Let € be the residual noise at time ¢. Let : denote sequencing through values, for example X7 .
wo  would denote all the values X{ through X%. Let pa(X}) refer to the causal parents of gene g at time ¢ in

so dynamic Bayesian Networks. For example, pa(X/) may include thi .- Let g’ be the gene we are testing to
s be causal for gene g. Let £ be the time lag of the causal interaction. We are testing the existence of the edge
se g — g at lag £.
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Figure S1: Related to Figure Overview of gene regulatory network inference methods. Panels show each inference
method applied to a cause gene g’ (blue, solid) and an effect gene g (blue, dotted). A) Mutual information is computed between
the cause and effect. B) The effect’s expression is fit as an autoregression from the cause’s past expression. C) The effect’s
expression is fit as a differential equation from the cause’s current expression. D) The effect’s expression is fit as a decision tree
function of the cause’s past expression. E) The space of dynamic causal networks is searched, with linear relationships between
cause and effect. F) The space of dynamic causal networks is searched, with nonlinear relationships between cause and effect.

sos  6.1.1. Mutual information
504 Mutual information (MI) methods assess the MI between the expression of ¢’ at the ¢-th previous time

s point and the expression of g at the current time point (Figure [STA) [21, 22, 23] 24] 25]:

P(X{,, X{)

— (18)
P(X)P(XY)

T
I(g',9) = > P(X]_,,X{)log
t=I+1

s A causal edge ¢’ — ¢ is included if I*(g’, g) exceeds a threshold. MI methods have the advantage of being
sor simple and fast. However, they do not give insight into the sign of two genes’ relationship (i.e., activation or
s repression) because MI is an unsigned metric [24] 20].
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s0  0.1.2. Granger causality

510 Granger causality methods determine if including the expression of ¢’ at the previous time point improves
su - our ability to predict the expression of g at the current time point above using the expression of g at the
sz previous time point [27]. A common way to implement a Granger causality approach uses a vector autore-
sz gression (VAR) model, which usually assumes a linear relationship between all genes’ previous expression
su and g's current expression. (Figure [SIB) [84].

L L
X{= Z%?th—e + Z Zﬁf XL e (19)
=1

g'e—g =1

sis A causal edge ¢’ — ¢ is included in the network if Bg,’g is significantly different from 0 for some ¢. While
si6 - older VAR analyses did not fit the causal predictors simultaneously [84, [85l [86], newer analyses fit them
sz simultaneously, using regularization techniques such as lasso [13] [87] or ridge regression [88] to handle the
sis high dimensionality of genome-wide sequencing assays. Nonlinear, kernel-valued functions have also been
s used to implement ideas in Granger causality [89].

s0  60.1.8. Ordinary differential equations
521 Ordinary differential equations (ODEs) fit the derivative of the expression of g as a function of all genes’
s2 expression at a single time point (Figure ) [111, 28], 29]:

ax? / /
S XX e (20)
s3 Although complex dynamics are often nonlinear, ODE methods typically assume linearity, as small sample
s« sizes make it challenging to infer the parameters of nonlinear functions. A causal edge ¢’ — ¢ is included in
s»s  the network if ¢’ has a significant coefficient in the ODE.
526 These methods are often combined with additional methods such as spline interpolation and piecewise
sz linear functions to improve performance [28] [29].

ss 0.1.4. Decision trees

529 Decision trees (DT) are a type of nonparametric function based on partitioning the data [30, 31]. DT
s methods fall either under VAR or ODE methods. Either the DTs fit the expression of g at the current time
sn  as a function of all genes’ expression at the previous time point (VAR), or they fit the derivative of the
s expression of g as a function of all genes’ expression at a single time point (ODE) (Figure ) 132, 33].

919 q|—
X7 =X X0 +e fe DT (21)
ng ’ ’
! = f(X?, XD, ... X9 4, feDT. (22)

s:3 A causal edge ¢’ — ¢ is included in the network when an importance score for g¢'— typically, the reduction
s« in variance of ¢ from including ¢’ as a predictor— exceeds some threshold. One limitation of DT methods is
535 that they only produce a ranking of edges, without specifying the sign of the relationship between the genes
s [32) B3].
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ssv 0.1.5. Dynamic Bayesian networks

538 Dynamic Bayesian networks (DBNs) search the space of possible directed acyclic graphs between previous
s and current expression levels and identify the network structure with the highest posterior probability of each
so edge given the data (Figure [S1E) [34] 35, 136] [37, 38]. DBNs typically assume a linear relationship between
s previous expression values and current expression values. A causal edge ¢’ — ¢ is included in the network
s when its marginal posterior probability of existence exceeds some threshold. The joint probability of all the
se3 genes’ expression across the time points 1 : T factorizes as:

T

P(xi") = 1] P(x{) ] P(Xf|pa(XY)).
geG t=2

s Bach gene’s expression has a linear relationship with its parents:

X7 = f(pa(X?)) + ¢, feLINEAR.

55 While DBNs have been shown to be effective on smaller data sets [90], they scale poorly due to the super-
s6  exponential growth of possible causal graph structures [56] [88]. Even after limiting the number of possible
sz parents per gene to two, this results in cubic scaling of the search space. One exception is ScanBMA, which
s uses a pruning method based on Occam’s window to limit the search space and gain a speedup [36].

s 0.1.0. Gaussian process

550 The Gaussian process (GP) is a distribution over continuous, nonlinear functions. GPs are often used
ssi in the context of nonlinear DBNs, where GP regression is used to model a nonlinear relationship between
s2  previous expression levels and current expression levels (Figure ) [39,[40]. A causal edge ¢’ — ¢ is included
553 in the network based on its posterior probability of existence, i.e., the sum of the posterior probabilities of
ssa - those networks that contain the edge. Each gene’s expression has a nonlinear relationship with its parents:

Xi = fpa(X{)) + e, f~GP.

sss By allowing nonlinear relationships between genes, GPs have proven highly effective. However, like DBN,
6 they perform a search over causal graphs, and therefore suffer from the same scalability issues [39] [40].

st 0.2. Validation of inferred network on overerpression data

558 Our analyses regressed network edge signs as predictors against the VAR model edge coefficients from
s the overexpression data as response (Figure[5). We sought to assess the strength of these associations across
so  the 10 data sets, compared against shuffled edges. We compared the effect sizes of all 10 regressions of
s1 positive edge one-hot encodings on the overexpression coefficients with the effect sizes estimated similarly
so  after shuffling the edge labels; we did the same for negative edges. At FDR < 0.2, there was a substantial
3  enrichment of effect sizes of positive edges among the original network (Common Language Effect Size (CLES)
see = 0.93, two-sided Mann-Whitney U-test (MWU) adjusted p < 0.0026); there was no enrichment of effect
ses  sizes for negative edges in the original network (CLES = 0.55, two-sided MWU adjusted p < 0.73). Thus,
ss  the positive edges inferred by BETS validate on the overexpression data, but the negative edges do not,
ss7  indicating repressive effects may have inconsistent signs.

sse  0.3. Supplementary Tables
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Algorithm Method | AUPR AUPR | Network 1 | Network 2 | Network 3 | Network 4 | Network 5
Type (Average) | (STD) | AUPR AUPR AUPR AUPR AUPR
ebdbnet DBN 0.043
G1DBN DBN 0.11 0.01 0.11 0.1 0.13 0.1 0.11
ScanBMA DBN 0.101
VBSSMa DBN 0.086 0.02 0.08 0.05 0.11 0.1 0.09
VBSSMb DBN 0.096 0.03 0.09 0.06 0.12 0.12 0.09
dynGENIE3 DT 0.198 0.05 0.22 0.14 0.25 0.22 0.16
GENIE3 DT 0.072 0.02 0.05 0.06 0.1 0.06 0.09
Jump3 DT 0.182 0.05 0.26 0.11 0.19 0.17 0.18
CSlc GP 0.07 0.04 0.13 0.03 0.07 0.07 0.05
CSId GP 0.208 0.03 0.26 0.17 0.22 0.2 0.19
GP4GRN GP 0.162 0.05 0.22 0.1 0.16 0.21 0.12
ARACNE MI 0.046 0.01 0.03 0.04 0.06 0.04 0.06
CLR MI 0.072 0.02 0.05 0.06 0.11 0.06 0.08
MRNET MI 0.068 0.02 0.04 0.06 0.1 0.06 0.08
tl-CLR MI 0.168 0.05 0.18 0.11 0.24 0.15 0.16
Inferelator ODE 0.0688 0.01 0.063 0.071 0.075 0.073 0.062
TSNI ODE 0.026 0.01 0.02 0.03 0.03 0.02 0.03
BETS VAR 0.128 0.02 0.16 0.1 0.13 0.14 0.11
Enet VAR 0.098 0.02 0.12 0.08 0.1 0.11 0.08
GCCA VAR 0.05 0.02 0.04 0.04 0.07 0.07 0.03
LASSO VAR 0.073
OKVAR-Boost | VAR 0.034 0.02 0.05 0.05 0.03 0.02 0.02

Table S1: Related to Figure DREAM4 100-gene Network Inference Results, AUPR. DBN is Dynamic Bayesian
Network, DT is Decision Tree, GP is Gaussian Process, MI is Mutual Information, ODE is Ordinary Differential Equation,
VAR is Vector Autoregression. The references that reported ebdbnet, ScanBMA, and LASSO did not provide AUPR values for
individual networks. Algorithms that were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. Where
reported literature values were available, they were consistent with these values. Values for CSIc, GIDBN, GCCA, GP4GRN,
TSNI, VBSSMa and VBSSMb were taken from [45]. Values for ebdnet, LASSO and ScanBMA, were taken from [36]. Values
for dynGENIE3, GENIE3, OKVAR-Boost and tl-CLR were taken from [33]. Value for Inferelator and Jump3 were taken from

[32).

27



https://doi.org/10.1101/587170
http://creativecommons.org/licenses/by-nc-nd/4.0/

aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/587170; this version posted March 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Algorithm Method | Average | STD Network 1 | Network 2 | Network 3 | Network 4 | Network 5
Type AUROC | AUROC | AUROC AUROC AUROC AUROC AUROC
ebdbnet DBN 0.643
G1DBN DBN 0.676 0.03 0.68 0.64 0.68 0.66 0.72
ScanBMA | DBN 0.657
VBSSMa | DBN 0.624 0.06 0.59 0.56 0.59 0.67 0.71
VBSSMb | DBN 0.618 0.06 0.56 0.57 0.62 0.64 0.7
Jump3 DT 0.72 0.04 0.77 0.67 0.74 0.68 0.74
CSle GP 0.61 0.03 0.65 0.56 0.63 0.61 0.6
CSId GP 0.728 0.01 0.74 0.71 0.72 0.74 0.73
GP4GRN | GP 0.686 0.04 0.72 0.62 0.7 0.7 0.69
ARACNE | MI 0.558 0.01 0.56 0.54 0.56 0.55 0.58
CLR MI 0.678 0.03 0.7 0.63 0.71 0.67 0.68
MRNET MI 0.672 0.03 0.68 0.63 0.71 0.66 0.68
TSNI ODE 0.566 0.03 0.55 0.55 0.6 0.54 0.59
BETS VAR 0.688 0.06 0.78 0.65 0.64 0.7 0.67
Enet VAR 0.662 0.05 0.73 0.62 0.62 0.67 0.67
GCCA VAR 0.584 0.02 0.6 0.57 0.6 0.58 0.57
LASSO VAR 0.643

Table S2: Related to Figure DREAMA4 100-gene Network Inference Results, AUROC. DBN is Dynamic Bayesian
Network, DT is Decision Tree, GP is GP, MI is MI, ODE is Ordinary Differential Equation, VAR is Vector Autoregression. The
references that reported ebdbnet, ScanBMA, and LASSO did not provide AUROC values for individual networks. Algorithms
that were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. Values for CSIc, GIDBN, GCCA,
GP4GRN, TSNI, VBSSMa and VBSSMb were taken from [45]. Values for ebdnet, LASSO and ScanBMA, were taken from [36].
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Method AUPR AUROC Time (hours) | Literature
In-House | Literature | In-House | Literature | In-House Reference

CSId 0.208 0.234 0.728 0.712 9.2 [45]

Jump3 0.182 0.187 0.72 45 [32]

BETS 0.128 0.688 4.8

Enet 0.098 0.662 1.2

CLR 0.072 0.123 0.678 0.699 0.0000089 [36]

MRNET 0.068 0.13 0.672 0.701 0.000011 [36]

ARACNE | 0.046 0.106 0.558 0.589 0.000010 [36]

Table S3: Related to Figure[2] Results of In-House Algorithms on DREAMA4 100-gene Network Inference. AUPR
and AUROC indcate average AUPR and AUROC over the 5 networks, respectively. BETS and Enet are bolded to indicate
that they are our own developed methods, based on vector autoregression. CSId is a Gaussian process method [40]. Jump3 is
a decision tree method [32]. CLR [23], MRNET [91], and ARACNE [25] are mutual information methods. See Supplemental
Information for discussion of differences when compared to literature-reported performance for ARACNE, MRNET, and CLR.
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Normalization | Lag Penalty Coefficient Bootstrap Coefficient Bootstrap
AUROC AUROC AUPR AUPR
Omean 1 Elastic Net | 0.674 (0.05) 0.686 (0.05) | 0.112 (0.03) 0.14 (0.03)
Omean 2 Elastic Net | 0.662 (0.05) 0.688 (0.06) | 0.098 (0.02) 0.128 (0.02)
Omean 2 Lasso 0.652 (0.05) 0.692 (0.06) | 0.14 (0.04)  0.162 (0.05)
Omean 2 Ridge 0.642 (0.04) 0.66 (0.05) | 0.08 (0.03)  0.096 (0.03)

Table S4: Related to Figure@ Improvement on DREAMA4 100-gene Network Inference from Bootstrap. For each
AUROC or AUPR column, the average is the listed value and the standard deviation is listed in parentheses. ”Coefficient”
denotes the result when ranking edges by their fitted coefficient, as in the original method. ”Bootstrap” denotes the results
when ranking edges by the frequency by which they appear in the bootstrap networks.
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Bootstrap Time | Memory
Samples AUROC AUPR (hr) | (GB)
100 0.68 (0.05) 0.124 (0.02) 1.6 1.6
1000 0.688 (0.06) | 0.128 (0.02) | 4.8 15.6

Table S5: Related to Figure Dependency of BETS performance on Bootstrap Samples. DREAM results reported
for running BETS on both 100 and 1000 bootstrap samples. All values in the columns are averages and the parenthetical values
as standard deviations across the 5 DREAM4 Networks. The 1000 samples row is bolded because 1000 samples are the default
settings. These use zero-mean normalization, lag 2, and the elastic net penalty.
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Cause Type | Effect Type | Odds Ratio If){—ivz;llue S_(i‘];i?d iég;lgf{ag_ﬁ%
Any Any 1 1.00E4-00 | 1.00E4-00 | No
Any TF 1 5.69E-01 | 6.51E-01 | No
Any Imm 1.06 2.73E-02 | 3.64E-02 | Yes
Any Metab 0.96 9.16E-01 | 9.77E-01 | No
TF Any 1.22 3.51E-25 | 9.36E-25 | Yes
TF TF 1.32 4.43E-06 | 7.09E-06 | Yes
TF Imm 1.21 2.24E-02 | 3.25E-02 | Yes
TF Metab 1.14 7.54E-02 | 9.28E-02 | No
Imm Any 2.69 0.00E4-00 | 0.00E+00 | Yes
Imm TF 2.71 2.21E-45 | 1.18E-44 | Yes
Imm Imm 2.71 5.98E-23 | 1.37E-22 | Yes
Imm Metab 2.18 5.65E-14 | 1.01E-13 | Yes
Metab Any 2.96 0.00E4-00 | 0.00E+00 | Yes
Metab TF 2.58 1.55E-43 | 6.20E-43 | Yes
Metab Imm 2.93 2.45E-30 | 7.85E-30 | Yes
Metab Metab 2.49 6.21E-22 | 1.24E-21 | Yes

Table S6: Related to Figure Enrichment of edges between specific gene classes in inferred causal network. A
Fisher’s Exact Test was performed, whether the rows of the contingency table were whether or not an edge was of the edge
type, and the columns were whether or not the edge was part of the inferred network.
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Edge Cause Effect Average Selection Correct —
Type Gene Gene Lag Coefficient | Frequency Shown Data set Direction? Citation

I =1 TNFAIP3 | IRAK2 1 0.01 0.163 unperturbed N [92]
I-M | SOCS1 IRS2 1 0.01 0.1 unperturbed Y [51 53]
I—-T | FOS ATF3 1 0.1 0.709 unperturbed Y [93]

I—- A | FOS HSPA1A | 2 0.02 0.2 original Y [94]
M-I IGFBP3 CDh44 1 0.01 0.212 original Y [95]

M — M | SOCS3 IRS2 2 0.01 0.099 original Y [52]

M — T | SOCS3 HIVEP1 |1 0.02 0.297 unperturbed N [96]

M — A | ATF3 MDM2 1 0.02 0.46 original N o1

T—1 | E2F1 CDH1 1 -0.01 0.12 unperturbed N [9g]

T — M | NR4A1l RXRA 2 0.02 0.471 unperturbed Y [54, 55, [99)
T — T | BHLHE40 | HIVEP1 | 1 0.01 0.152 original Y [96]

T — A | NR4Al VHL 2 0.01 0.237 unperturbed Y [100]
A—1 FOS EGFR 1 0.004 0.109 original N [101]

A —> M | ZFP36 YWHAH | 2 0.004 0.131 unperturbed Y [102]

A —- T | NROB1 ESRRA |1 -0.004 0.102 unperturbed Y [103]

A — A | CCNE2 CDK2 1 0.04 0.636 original Y [104], 105}, [106), [T07]

Table S7: Related to Figure[d] Gene Pair information from Figure[d] Shown Data Set indicates whether the gene temporal
profiles in Figure [] are taken from the original exposure data or unperturbed data. The edge type indicates the gene class of
the causal and effect gene; for example, I — M indicates an edge from an Immune causal gene to a Metabolic effect gene. I =
Immune; M = Metabolic; T = Transcription Factor; A = Any gene.
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