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Abstract

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and
inform downstream experiments, ultimately paving the way for regulatory network re-engineering. Network
inference from transcriptional time series data requires accurate, interpretable, and efficient determination
of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from
Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene
network from transcriptional time series data. BETS uses elastic net regression and stability selection from
bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling effi-
cient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark,
the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of
similar performance but additionally infers whether the causal effects are activating or inhibitory. We apply
BETS to transcriptional time series data of 2, 768 differentially-expressed genes from A549 cells exposed to
glucocorticoids over a period of 12 hours. We identify a network of 2, 768 genes and 31, 945 directed edges
(FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: overexpression
experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in pri-
mary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is freely available as an open
source software package at https://github.com/lujonathanh/BETS.

Keywords: gene regulation, network inference, directed networks, bulk RNA-seq, glucocorticoids, vector
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1. Introduction1

The recent availability of gene expression measurements over time has enabled the search for interpretable2

statistical models of gene regulatory dynamics [1]. These time series data present a unique opportunity to3

use the coordinated transcriptional response to environmental exposure to infer causal relationships between4

genes. However, there are several challenges to overcome in the analysis of time series transcriptomic data.5

These data are generally high-dimensional: the number of quantified gene transcripts—approximately 20,0006

in human samples—often dramatically exceeds the number of available time points and samples. Many7

classical statistical assumptions fail to hold in this high-dimensional regime [2, 3]. Moreover, the large8

number of gene transcripts poses a computational burden, as the number of possible edges in a gene network9

grows quadratically. Finally, a transcriptional time series often has a small number of time points, and10

those time points are often not uniformly spaced; furthermore, because transcriptional time series data often11

quantify transcription post exposure, the time series is not stationary, and genes respond to the exposure12

and return to baseline at different rates [4, 5].13

In this work, we develop an approach that uses the gene transcriptional time series following glucocorticoid14

(GC) exposure to build a directed gene network [6]. GCs play an essential role in regulating stress response,15

and are widely used as anti-inflammatory and immunosuppresive medication [6, 7]. Despite clinical benefits,16

prolonged exposure to GCs has been linked to increased risk for type 2 diabetes mellitus (T2DM) [8] and17

obesity [9]. Here, we develop a method to accurately, interpretably, and efficiently infer a directed gene18

network using transcriptional time series data. We focus our analysis of this network on immune-related19

genes, metabolism-related genes, and transcription factors (TFs) to study the inferred coordinated response20

of these systems to GCs.21

Our method, Bootstrap Elastic net inference from Time Series (BETS), uses vector autoregression with22

elastic net regularization to accurately infer directed edges between genes. Stability selection, which assesses23

the robustness of an edge to perturbations in the data, leads to improvements over baseline vector autoregres-24

sion methods in this high-dimensional context [3]. Furthermore, BETS is biologically interpretable because25

estimated coefficients provide the direction (sign) and effect size of the causal relationship between a pair of26

genes. Finally, BETS’s parallelization enables efficient inference of networks with millions of possible edges27

in a computationally tractable way.28

We use the causal network inferred by BETS on the GC time series data to study the relationships between29

TFs, immune genes, and metabolic genes. We validate our network using two approaches: ten measurements30

of the same GC system with a specific TF overexpressed, and an expression quantitative trait loci (eQTL)31

study [10]. Although our framework is motivated by transcriptional response to GC exposure, our approaches32

are general, and BETS is applicable to inferring directed networks from arbitrary transcriptional time series.33

2. Related Work34

Several methods have been developed to estimate directed gene networks from transcriptional time series35

data (Figure S1) [11, 12, 13, 14, 15, 16, 17, 18, 19]. These methods estimate directed networks in which the36

directed edges between nodes—representing genes—indicate a cause-effect relationship between genes, i.e.,37

perturbing expression of the causal gene would lead to changes in expression of the effect gene [20]. We38

briefly overview these methods; for detailed discussion, see Supplemental Information. Here, we take g′ to39

be the causal gene and g to be the effect gene, and quantify support for a causal edge g′ → g in the data.40

Mutual information (MI) methods assess the MI between the expression of g′ at the previous time point41

and the expression of g at the current time point (Figure S1A) [21, 22, 23, 24, 25, 26]. A causal edge g′ → g42

is included in the network if the MI of the two genes across time exceeds a threshold.43
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Granger causality methods determine if including the expression of g′ at the previous time point improves44

our ability to predict the expression of g at the current time point above using the expression of g at the45

previous time point [27]. A common way to implement Granger causality is through a vector autoregression46

(VAR) model, which assumes a linear relationship between all genes’ expression at the previous time point47

and the expression of g at the current time point. A causal edge g′ → g is included in the network when g′48

has a statistically significant coefficient in the VAR.49

Ordinary differential equations (ODEs) fit the derivative of the expression of g as a function of all genes’50

expression at a single time point (Figure S1C) [11, 28, 29]. ODE methods typically assume linearity, as small51

sample sizes make it challenging to infer the parameters of nonlinear functions. A causal edge g′ → g is52

included when g′ has a statistically significant coefficient in the ODE.53

Decision trees (DTs) are a type of nonparametric function based on partitioning the data [30, 31]. DT54

methods fall either under VAR or ODE; either the DTs fit the expression of g at the current time as a55

function of all genes’ expression at the previous time point (VAR), or they fit the derivative of the expression56

of g as a function of all genes’ expression at a single time point (ODE) (Figure S1D) [32, 33]. A causal edge57

g′ → g is included in the network when an importance score for g′ exceeds some threshold, where importance58

scores are typically the reduction in variance of g when g′ is included as a predictor.59

Dynamic Bayesian networks (DBNs) search the space of possible directed acyclic graphs between previous60

and current expression levels to identify the network structure with the highest posterior probability of each61

edge given the data (Figure S1E) [34, 35, 36, 37, 38]. DBNs typically assume a linear relationship between62

previous and current expression. A causal edge g′ → g is included in the network when its marginal posterior63

probability of existence exceeds some threshold.64

A Gaussian process (GP) is a distribution over continuous, nonlinear functions. GPs are often used in the65

context of nonlinear DBNs, where GP regression is used to model a nonlinear relationship between previous66

expression and current expression (Figure S1F) [39, 40]. A causal edge g′ → g is included in the network67

based on its posterior probability of existence exceeding some threshold.68

3. Results69

First, we briefly describe the approach in BETS to infer a directed gene network. Next, we compare70

results from BETS to those from twenty other methods on the 100-gene time series data from the DREAM471

Network Inference Challenge [41]. Then, we describe the network estimated from the GC transcriptional72

time series data. Finally, we validate the inferred network using two different frameworks: overexpression73

experiments on the same system, and genetic variants associated with inferred edges in primary lung tissue74

in the Genotype-Tissue Expression (GTEx) v6 project [10].75

3.1. BETS: A vector autoregressive approach to causal inference of gene regulatory networks.76

Directed networks represent causal relationships among diverse interacting variables in complex systems.77

We developed a robust, scalable approach based on ideas from Granger causality to construct these directed78

networks from short, high-dimensional time series observations of gene expression levels.79

Let G be the set of all p = |G| genes in the data set and g ∈ G be a gene. Let ¬g be G with g removed.80

Let t be a single time point, ranging from {1, 2, . . . , T}. Let Xg
t be the expression of gene g at time t. Let L81

be the time lag, or the number of previous time point observations; so L = 2 means that we use two previous82

time points, t− 1 and t− 2, to predict expression at time t.83

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587170doi: bioRxiv preprint 

https://doi.org/10.1101/587170
http://creativecommons.org/licenses/by-nc-nd/4.0/


Definition 3.1 (Granger causality). For lag L, a gene g′ is said to Granger-cause another gene g if using84

Xg′

t−1, . . . , X
g′

t−L, the expression value of g′ at times t− 1 to t−L, improves prediction of Xg
t , the expression85

value of g at time t, beyond the prediction using Xg
t−1, . . . , X

g
t−L alone.86

To test for Granger causality from g′ to g, we first preprocessed the gene expression time series data87

(STAR Methods). For every potential effect gene g, we fit all other genes g′ ∈ ¬g simultaneously (Equation88

1), echoing ideas from the graphical lasso for undirected network inference [42]. Intuitively, this adapts the89

idea of Granger causality to conditional Granger causality, where we consider how gene g′ Granger causes g90

conditioning on the effects of all other genes. This approach uses the regression:91

Xg
t =

L∑
`=1

αg`X
g
t−` +

∑
g′∈¬g

L∑
`=1

βg
′,g
` Xg′

t−` + εt, (1)

where εt ∼ N (0, 1). For BETS, we set L = 2. To test for an edge, if βg
′,g
` 6= 0, then we say g′ conditionally92

Granger-causes g at lag `. We build the directed network by including a directed edge to g from every gene93

g′ that has been inferred to conditionally Granger-cause g.94

Robustly building this network is difficult due to the high dimensionality of the problem: the number95

of genes that could Granger-cause a given g far exceeds the available time points and technical replicates.96

To address this challenge, BETS regularizes the VAR model parameters using an elastic net penalty (STAR97

Methods, Figure 1A). Elastic net regression encourages sparsity and performs automatic variable selection98

on the genes being tested for causal influence [43]. The elastic net penalty, unlike the lasso penalty [44], is99

able to select groups of correlated variables and allows the number of selected variables to be greater than100

the number of samples. This is particularly important for gene expression assays where gene expression levels101

are often well-correlated and there are far more genes than samples.102

In BETS, we fit the same VAR model to a data set in which causal genes have their expression permuted103

over time to generate a null distribution of edge coefficients. The coefficients are thresholded to produce104

a causal network with each edge at edge false discovery rate (FDR) ≤ 0.05 (Figure 1A). We then apply105

this network inference procedure to multiple (here, 1, 000) bootstrapped samples of the original data set106

(Figure 1B). Each edge has a selection frequency, or the frequency that the edge appears in networks inferred107

from the bootstrapped samples. Inspired by stability selection, this approach assesses if network edges are108

robust to perturbations of the data [3]. Finally, we run this overall procedure on a permuted version of the109

original data set to obtain a null distribution of selection frequencies (Figure 1C). The selection frequency110

threshold for including each edge is chosen to control the stability FDR ≤ 0.2. As a baseline, we compare111

BETS against Enet, which runs elastic net regression without stability selection to produce a causal network112

with each edge at edge FDR ≤ 0.05 (Figure 1A).113
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Figure 1: BETS Algorithm. A) Model Fit. The VAR model is fit on both the original and a permuted data set (blue arrows
indicate shuffling each gene’s expression independently across time). Based on the null distribution of coefficients, a threshold
is chosen to control the edge FDR at ≤ 0.05. B) Stability Selection. From the original data, 1, 000 bootstrap samples are
generated. For each sample, a network is inferred as in A. Each edge’s selection frequency across the bootstrapped networks
is computed. C) Statistical Significance. For both the original and permuted data, a selection frequency distribution is
generated for stability selection as in B. Edges are thresholded to control the stability FDR at ≤ 0.2. See also Figure S1 for an
overview of network inference methods.

3.2. Leading Performance on DREAM Network Inference Challenge.114

We evaluated BETS against other directed network inference methods. We used the DREAM4 Network115

Inference Challenge [41], a community benchmark for directed network inference using gene time series data.116

This benchmark consisted of five data sets, each with ten time series measurements for 100 genes across 21117

time points [41]. Evaluation was previously done by looking at the average of the area under the precision118

recall curve (AUPR) or the area under the receiver operating characteristic (AUROC) over the five data sets119

[33, 41]. Any method that provides a ranking of possible network edges could be evaluated in this framework.120

We tested BETS and Enet against 20 other methods on the DREAM challenge [32, 33, 36, 45, 46]. We ran121

CSId, Jump3, CLR, MRNET, and ARACNE in-house and found our results consistent with those reported122

in the literature. All 20 methods reported AUPR, but only 15 reported AUROC.123

BETS ranked 6th out of 22 in AUPR with an average AUPR of 0.128 (Figure 2A, Table S1) and 3rd out124

of 17 in AUROC with an average AUROC of 0.688 (Figure 2B, Table S2). BETS was the top performer of125

all VAR methods, and Enet was second best. All 22 methods outperformed random selection of edges, which126

achieved an average AUPR of 0.002 and average AUROC of 0.50 [45]. We also found that BETS and Enet127

had similar performance to the DBN methods in AUPR, and outperformed most of them in AUROC. Ranked128

by the top AUPR of each class of methods, the best performing class was GP, followed by DT, MI, VAR,129
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DBN, and ODE [32, 36, 45]. The VAR method used in BETS produces edge signs (indicating excitatory or130

inhibitory causal effects) and effect sizes. While other methods based on GPs (e.g., CSId), MI (e.g., tl-CLR)131

or DTs (e.g., dynGENIE3) had marginally better overall network inference, they do not provide insight into132

the causal relationships because they only output a positive measure of a causal interaction [28, 33, 40].133

Next, we compared the speed of BETS and two other top-performing methods: CSId and Jump3 (Ta-134

ble S3). BETS was the fastest at 4.8 hours while CSId took 9.8 hours and Jump3 took 45 hours. Thus, while135

BETS had a slightly lower AUPR compared with CSId and Jump3, it was substantially faster.136

BETS improved upon Enet using stability selection. To quantify this improvement, we compared three137

other models: elastic net with lag 1, ridge regression with lag 2, and lasso with lag 2 (Table S4). In each138

case, the stability selection version outperformed the original version in average AUPR and AUROC. The139

improvement in average AUPR ranged between 0.016 and 0.03 (+20% to +31%), while the improvement in140

average AUROC ranged between 0.012 and 0.04 (+1.8% to +6.1%). Hence, our stability selection procedure141

leads to improved performance for multiple versions of VAR.142

We also found that stability selection performance is robust to the number of bootstrap samples (Table S5).143

Decreasing the number of bootstrap samples from 1, 000 to 100 caused minor decreases of −0.004 in AUPR144

and −0.008 in AUROC, within the standard deviation across the networks. It also resulted in a 10-fold145

decrease in memory usage and 3-fold decrease in run time, due to a constant-time hyperparameter search. If146

users face computational constraints, we recommend that they use 100 bootstrap samples for nearly equivalent147

performance.148
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B

A

Figure 2: Algorithm performance on the DREAM Community Benchmark. A) AUPR scores from 22 methods,
averaged across the five DREAM networks. B) AUROC scores from 17 methods, averaged across the five DREAM
networks. Arrows indicate our methods. Stars indicate methods that we ran in-house; results were consistent with reported
results. The bars reach one standard deviation from the average as calculated across the five DREAM networks; no bar indicates
the standard deviation is not reported. See also Tables S1, S2, S3, S4, and S5.

3.3. Application to gene transcription response to glucocorticoids.149

To infer the causal relationships in the GC response network, we analyzed RNA-seq data collected from150

the human adenocarcinoma and lung model cell line, A549. This consisted of two data sets. In an original151

exposure data set, cells were exposed to the synthetic GC dexamethasone (dex) for 0, 0.5, 1, 2, 3, 4, 5, 6,152

7, 8, 10, and 12 hours [6]. In an unperturbed data set, the cells were first exposed to dex for 12 hours, after153

which the media was replaced and dex removed, and then measurements were taken at the same intervals154

0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, and 12 hours. BETS was fit jointly over the two data sets. In total there155

were 7 technical replicates (4 from original exposure and 3 from unperturbed). A single VAR was fit on 70156
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samples: Each of the 7 replicates had 10 samples, because using a lag 2 VAR model turns 12 time points157

into 10 samples.158

We applied BETS to the GC-mediated expression responses to infer a causal network (Figure 3A). Edges159

with selection frequency (frequency of appearance among bootstrap networks) at least 0.097 were declared160

significant (FDR ≤ 0.2; Figure 3B). The network contained 2, 768 nodes representing distinct genes and161

31, 945 directed edges (0.4% of possible edges). Of these, 466 genes were causes (had an outward directed162

edge) and all 2, 768 genes were effects (had an incoming directed edge). The out-degree distribution was163

heavy-tailed and skewed right (Figure 3C) while the in-degree distribution was lighter-tailed and more sym-164

metric (Figure 3D). The network’s edge in-degree had a heavier left tail and lighter right tail than a normal165

distribution (Figure 3E). This suggests that causal genes were relatively rare (only 1/6th of network genes166

were causes) and a fifth of those only affected a single gene, whereas genes that were effects tended to have167

multiple causes. The network was inferred efficiently due to parallelization across genes, taking six days in168

real time and 292 days in CPU time to perform 5.5 million elastic net model fits.169

To study the network with respect to the glucocorticoid system, we annotated specific genes as transcrip-170

tion factor (TF), immune-related, and metabolism-related [47, 48, 49, 50]. First, we inspected enrichment171

of each category among the causal genes (Figure 3F). At FDR ≤ 0.05, we found enrichment for TFs among172

causes; there were 226 causal TFs, representing 8.2% of the 2, 768 input genes. 62 of these TFs were173

causal, representing 13% of all causal genes (odds ratio (OR) = 2.0, Fisher’s exact test (FET) adjusted174

p ≤ 2.9× 10−5). Similarly, we found an enrichment among immune-related genes as causes: of 109 immune175

genes, representing 3.9% of the input genes, 39 of these were causes, representing 8.4% of all causal genes176

(OR = 2.9, FET adjusted p ≤ 2.5×10−6). There was no enrichment among metabolism-related genes: there177

were 120 metabolism genes, representing 4.3% of input genes; 19 of these metabolism genes were causes,178

representing 4.1% of all causes (OR = 0.93, FET adjusted p ≤ 0.66).179

To study the interactions among gene classes inferred by our network, we quantified enrichment for edges180

between each of the four gene classes – immune, metabolic, TF, and other gene types (any) (Figure 3G,181

Table S6). We found enrichment of 12 of the 16 possible edge types (FDR ≤ 0.05). The network was182

enriched for edges from any causal genes to immune genes; causal TFs to any genes, TFs, and immune genes;183

causal immune genes to any genes, TFs, immune genes, and metabolic genes; and causal metabolic genes to184

any genes, TFs, immune genes, and metabolic genes. This suggests that our network is enriched for causal185

TFs, immune genes, and metabolic genes.186
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Figure 3: Causal network inferred from glucocorticoid receptor data. A) Causal network clustered by gene type.
Edge color indicates the type of the causal gene: red edge indicates an immune causal edge, blue edge indicates a metabolic
causal edge, purple edge indicates an immune and metabolic causal edge, and tan edge indicates an other causal edge. B)
Significance thresholding for edges, based on null distribution of selection frequencies. C) Out-degree distribution
of network. For clarity, several high out-degree values with low frequencies are not shown. D) In-degree distribution of
network. E) Quantile-quantile (Q-Q) plot of in-degree distribution against normal quantiles. The in-degrees have
a heavier left tail and lighter right tail than the normal distribution. F) Enrichment of gene classes among network
causal genes, measured by odds ratio. G) Enrichment of edge classes among network edges, measured by odds ratio.
See also Table S6.

Our network identified known biological interactions between genes with immune, metabolic, and TF187

roles; we highlighted 16 of the gene pairs with experimentally validated interactions (Figure 4, Table S7).188

SOCS1 and SOCS3 bind IRS2 and promote its degradation, leading to reduced insulin signalling [51, 52];189

furthermore, SOCS1 represses IL-4 -induced IRS2 signalling [53]. NR4A1 heterodimerizes with RXRA to190

activate it to promote gene expression under vitamin A signaling [54]; NR4A1 also inhibits p300-induced191

RXRA acetylation [55]. Eleven of the 16 edges had the correct interaction direction; the five that were192
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reversed are TNFAIP3 → IRAK2, SOCS3 → HIVEP1, ATF3 → MDM2, E2F1 → CDH1, and FOS →193

EGFR. These results suggest that BETS infers biologically meaningful relationships, but transcriptional194

data, absent other assays on protein abundance and cellular dynamics, are often underpowered to resolve the195

direction of the edge.196
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Figure 4: Time series profiles of experimentally validated causal interactions across gene classes. For each gene
pair, their profiles were from either the original exposure data set or the unperturbed data set. Because these are conditional
Granger-causal relationships, and the effects of the complete set of covariates were not subtracted from the effect gene values,
the relationship of the gene pair may be vague. Colors encode gene classes: pink shows immune genes, dark blue/gray shows
metabolic genes, teal shows TFs, and brown/tan shows other genes. Darker colors show causal genes and lighter colors show
effect genes. The grey line marks zero-centered expression. Each y-axis tick indicates 0.1 unit of ln(TPM) where TPM is
Transcripts Per kilobase Million. See also Table S7.
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3.4. Validation of inferred network on overexpression data.197

We asked whether our inferred network edges validated on overexpression versions of the same experimen-198

tal system, in which each of ten TFs was separately overexpressed over the same 12 hours of observations.199

Specifically, we assessed the concordance between inferred network edges g′ → g and their coefficient in the200

overexpression data set under a VAR model (STAR Methods).201

We first evaluated how well network edges replicated on individual overexpression data sets. We performed202

linear regression of a one-hot encoding of the original network’s edge sign (i.e., positive versus no edge or203

negative sign; negative versus positive or no edge) as the predictor against the VAR model edge coefficients204

estimated from each of the overexpression time series as the response (Figure 5A-B, STAR Methods). Of205

the ten data sets, 9 showed enriched positive effect sizes among positive edges at FDR ≤ 0.2 (CEBPB,206

CEBPD, FOSL2, FOXO1, FOXO3, KLF6, KLF9, KLF15, OCT4 ; Figure 5A). Three data sets showed207

enriched negative effect sizes among negative edges (OCT4, TFCP2L1, CEBPD) and four showed enriched208

positive effect sizes among negative edges (CEBPB, FOSL2, KLF9, KLF15 ; Figure 5B). Taken together,209

the positive edges inferred by BETS validate on the overexpression data, but the negative edges do not,210

indicating repressive effects may have inconsistent signs or feedback loops.211

Next, we checked whether the 123 inferred causal edges from the TF TFCP2L1 validated in the TFCP2L1212

overexpression data set (there were only about 10 causal edges from each of the other 9 TFs). We regressed the213

original network’s edge sign (+1 for positive edges, 0 for no edge, and −1 for negative edge) as the predictor214

against the overexpression VAR model edge coefficients as the response (Figure 5C). We found a positive215

relationship between the edge sign and overexpression coefficient (slope 0.17, two-sided t-test p ≤ 5× 10−5).216

This shows that causal edges from TFCP2L1 are enriched for matched effect directions in the TFCP2L1217

overexpression data.218
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Figure 5: Validation of inferred network on overexpression data. A-B) Regression of one-hot encoding of positive
(negative for B) edges as the predictor against the VAR model edge coefficient from the overexpression data as
the response. A 1 indicates that an edge had a significant positive (in A) or negative (in B) coefficient in the original inferred
network (FDR ≤ 0.2). C) For the 123 causal edges from TFCP2L1, regression of edge sign as the predictor against
the VAR model edge coefficient from TFCP2L1 overexpression data as the response.

3.5. Validation of network edges through lung trans-eQTLs.219

We validated our network edges on an expression quantitative trait-loci (eQTL) study. A single nucleotide220

polymorphism (SNP) S is an eQTL for a gene g′ if it is associated with g′’s expression level within a221

population. Given a true causal edge g′ → g, if a SNP S is a local (cis-) eQTL for g′, S might also be222

a distal (trans-) eQTL for g [56]. We used gene expression levels in primary lung tissue (n = 278) from223

the Genotype Tissue Expression (GTEx) project v6p [10]. We observed an enrichment of low trans-eQTL224
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association p-values from the directed network compared to shuffling the SNP labels (Figure 6A-B). This225

suggests our network captures more valid causal effects than expected by chance.226

We next inspected specific associations and their corresponding edges. We found 341 trans-eQTL pairs in227

lung samples corresponding with 130 network edges (q-value FDR ≤ 0.2). There are more trans-eQTLs than228

edges because there are multiple cis-eQTLs for some causal genes g′. The 341 trans-eQTLs greatly improved229

upon the 2 identified in the GTEx v6 trans-eQTL study [57], demonstrating the utility of transcriptional time230

series for prioritizing promising associations. The top trans-associations were rs2302178-CLDN1 (q-value231

FDR ≤ 0.095, extended from the cis-association rs2302178-HS3ST6 ), rs590429-ADAMTS (q-value FDR232

≤ 0.11, extended from the cis-association rs2302178-OLR1 ), and rs2072783-CLIP2 (q-value FDR ≤ 0.11,233

extended from the cis-association rs2302178-GMPR) (Figure 6C).234

We searched for validated associations between immune-related genes, metabolic-related genes, and TFs.235

One association was OLR1 → ITGAV, where we see that the known association between SNP rs4329754 and236

OLR1 extends to an association between the same SNP and effect gene ITGAV (q-value FDR ≤ 0.13) [10].237

OLR1 plays key roles in immunity and metabolism [58, 59]. It is associated with metabolic syndrome [60]238

and atherosclerosis [60], and modulates inflammatory and humoral immune responses [61, 62]. Meanwhile,239

ITGAV plays a key role in the motility of CD4+ T cells during inflammation [63].240

Another association was between the TF SNAI2 and gene PTPN6, where we find that the known associ-241

ation between SNP rs56800165 and SNAI2 extends to an association between the same SNP rs56800165 and242

effect gene PTPN6 (q-value FDR ≤ 0.17) [10]. SNAI2 is a direct target of the glucocorticoid receptor GR to243

regulate cell migration in breast cancer [64], while PTPN6 is involved in glucose homeostasis via negatively244

regulation of insulin signalling [65]. PTPN6 is also associated with inflammatory phenotypes in multiple dis-245

eases [66, 67]. Finally, both SNAI2 and PTPN6 are involved in the cell-cell adherens junctions pathway, as246

SNAI2 represses transcription of cadherin, while PTPN6 positively regulates the cadherin-catenin complex247

[68]. Thus, for several eQTL-validated edges for gene pairs, we find that the genes are involved in related248

biological processes, but further experimentation is required to confirm direct interactions.249

Finally, as A549 cells are models for lung tissue [69], we quantified enrichment of validated edges in250

lung compared to enrichment in four other tissues: subcutaneous adipose (n = 298), transformed fibroblasts251

(n = 272), tibial artery (n = 285), and thyroid (n = 278). We validated 341 unique network edges across252

the five tissues (FDR ≤ 0.2). 130 edges validated for lung, 4 for subcutaneous adipose, 125 for transformed253

fibroblasts, 3 for tibial artery, and 82 for thyroid tissues. More network edges validated in primary lung than254

in other tissues, suggesting that A549 cells most closely match lung samples among GTEx tissues; this is255

consistent with their tissue of tumor origin.256
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Figure 6: Network edge validation using known cis- elements from GTEx v6 lung cis-eQTLs. A) Enrichment of
trans associations in lung among p-values from edges inferred by BETS compared to p-values from permutations.
B) Q-Q plot of validated edges shows signal enrichment in lung samples when compared to signals from four other tissues
in the GTEx v6 study. C) SNPs associated with inferred gene pairs. Genotype-phenotype plots corresponding to the
cis-effect (left column), correlation in the GTEx v6 data between cause (y-axis) and effect (x-axis) gene pairs (right column).

4. Discussion257

We described an approach, BETS, to build directed networks using short time series observations of high-258

dimensional transcriptional data. BETS combined ideas from elastic net regression, graphical lasso, stability259

selection and VAR models to infer Granger causality relationships in high dimensional transcriptional time260
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series data. Our method achieved competitive performance on the DREAM4 100-Gene Network Inference261

Challenge, ranking 6th out of 22 methods in AUPR and 3rd out of 17 methods in AUROC; it was also faster262

than several methods with similar or better performance and infers effect size and sign, unlike the other top263

performing methods. Stability selection resulted in consistent improvement to VAR models across different264

hyperparameter settings.265

Next, we applied BETS to time series RNA-seq data from human A549 cells exposed to glucocorticoids and266

identified a directed network of 31, 945 edges (FDR ≤ 0.2), capturing the causal relationships among genes267

after exposure to GCs. In our network, we found enrichment of immune genes and TFs among causal genes.268

We also found enrichment of causal edges from TFs, immune genes, and metabolic genes. We validated our269

network first in ten overexpression data sets, replicating positive edges with overexpression effects. Validating270

network edges by searching for trans-eQTLs in GTEx, we found an enrichment of associations with genetic271

variants across network edges. Finally, we discovered 341 trans-eQTLs, dramatically improving from the272

GTEx trans-eQTL study without filtering tests for association [57].273

While BETS has demonstrated effective inference of causal relations, there are interesting future direc-274

tions to explore. All methods that infer networks from transcriptional time series face several difficulties.275

Transcript levels are sometimes an imperfect proxy for protein levels, especially when transcript dynamics276

are changing [11, 70]; the scarcity of time point samples causes statistical challenges for inferring millions277

of possible causal interactions between genes, let alone non-additive interactions among causes [3, 71, 72];278

transcriptional data do not capture the complete regulatory context including chromatin structure and epi-279

genetic regulations [11]; transcriptional relationships are often nonstationary: the relationship may change280

over time due to responses from the environment [4, 5]; and inferred networks are often sensitive to the281

choice of preprocessing and parameter choices [73]. Single cell data also implicitly include transcriptional282

time series information when pseudotime is inferred, making ideas from Granger causality exceptionally rel-283

evant. Finally, experimental followup is key to establishing causality; BETS can only generate promising,284

interpretable hypotheses. Indeed, by discovering hundreds of more trans-eQTLs than the GTEx study (a285

170-fold increase) [57], BETS demonstrates its potential to prioritize biologically meaningful associations.286
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5. STAR Methods302

5.1. Method details303

Bootstrap Elastic net regression from Time Series (BETS). Bootstrap Elastic net regression from Time304

Series (BETS) is a vector-autoregressive approach to causal inference from gene expression time series data.305

It is based on the principle of Granger causality [27]: a gene g′ Granger-causes another gene g if previous306

information from gene g′ improves our current predictions of gene g, beyond using previous information of307

other genes.308

BETS first preprocesses the data. BETS fits an elastic net vector autoregression model to handle the high309

dimensionality of the time series, inferring a network (Figure 1A). It infers one network for each of 1, 000310

bootstrapped samples of the original data set and computes each edge’s selection frequency: its frequency311

of appearance among the bootstrapped networks (Figure 1B) [3]. Finally, BETS includes an edge in the312

network using the selection frequencies (Figure 1B). Our baseline comparison, Enet, only preprocesses the313

data and fits an elastic net vector autoregression model from the original data (Figure 1A; Section 3.2).314

Preprocessing temporal time series data. For a gene temporal profile (i.e., one gene’s expression values315

across time for a single replicate), we used zero-mean unstandardized normalization, which centers each gene316

temporal profile to have mean zero across time. Because gene temporal profile ranges from staying almost317

constant to having drastic fluctuations, BETS uses this approach because a unit-variance normalization318

would over-represent the weak causal effects of genes with lower variability.319

Vector autoregression model. Let G be the set of all genes in the data, let p = |G| be the number of genes,320

and let g be a gene. Let ¬g be G with g removed. Let there be T time points total, and let t ∈ {1, 2, . . . , T}321

be a single time point. Let there be R replicates of the gene expression time series.322

Let Xg
t,r be the expression of gene g at time t for replicate r. Let Xg

t = [Xg
t,1, X

g
t,2, . . . , X

g
t,R]T be the323

R× 1 vector of gene expression levels of gene g across R replicates at time t. The rest of the paper does not324

mention replicates for simplicity, but here we discuss replicates for completeness.325

Let g′ be the gene we are testing to be causal for gene g and let ` refer to the time lag of the causal edge326

g′ → g. Let L be the maximum lag. In BETS, L = 2.327

We model each gene g as328

Xg
t =

L∑
`=1

αg`X
g
t−` +

L∑
`=1

∑
g′∈¬g

βg
′,g
` Xg′

t−` + εt, (2)

where εt ∼ N (0, 1). In other words, the expression of each gene g is modelled as a linear function of its329

and other genes’ L previous expression values, under independent Gaussian noise. αg` represents the (scalar)330

effect size of gene g’s `th previous value, Xg
t−`, on its current value, Xg

t . βg
′,g
` represents the (scalar) effect331

size of the `th previous value of gene g′ 6= g, Xg′

t−`, on gene g’s current value, Xg
t . Equation 2 requires that332

t > ` for the `th previous value, Xg
t−` , to exist.333

To demonstrate how our model is fit in practice, we reformulate Equation 2 using matrix notation. Each334

row represents one time point for one replicate. There are T −L time points with t > L and R replicates, so335

there are R(T − L) samples, or rows, in total. Let N = R(T − L).336
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Define Xg
t , an N × 1 vector, as:

Xg
t =



Xg
L+1,1

...
Xg
L+1,R

Xg
L+2,1

...
Xg
L+2,R

...

...
Xg
T,R



. (3)

We can similarly write Xg
t−`, which is Xg

t with each entry replaced by its `th previous value. Define Xgt−`,337

a N × L matrix consisting of the first L previous vectors Xg
t−`, i.e., for ` ranging in {1, . . . , L}.338

Xgt−` = [Xg
t−1 . . .X

g
t−L]. (4)

Let αg` be a L× 1 vector of the L lagged coefficients.339

αg` =

α
g
1
...
αgL

 . (5)

Next, let us formulate Equation 2 involving the genes g′ in matrix notation. Let X¬gt−` be a N ×L(|G|−1)340

predictor matrix of the vectors Xg′

t−`, for g′ 6= g and ` ∈ {1, . . . L}. Note the number of columns is L(|G|−1),341

because there are L previous time points ` ∈ {1, . . . , L}, and for each `, there are |G|− 1 genes g′ 6= g, giving342

|G| − 1 vectors: X
g′1
t−`, . . . ,X

g′|G|−1

t−` .343

X¬gt−` =
[
X
g′1
t−1 . . .X

g′|G|−1

t−1 X
g′1
t−2 . . .X

g′|G|−1

t−2 . . . . . .X
g′|G|−1

t−L

]
. (6)

Let β.,g` be a L(|G| − 1)× 1 vector of the causal coefficients βg
′,g
` where g′ 6= g.344

β.,g` =



β
g′1,g
1
...

β
g′|G|−1,g

1

β
g′1,g
2
...

β
g′|G|−1,g

2
...
...

β
g′|G|−1,g

L



. (7)
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We then fit the model:
Xg
t = Xgt−`α

g
` + X¬gt−`β

.,g
` + εt, (8)

where εt is a N × 1 vector with each element εt,n ∼ N (0, 1). To write in the most compact form, we can
write

XGt−` = [Xgt−`X
¬g
t−`], β̄g =

[
αg`
β.,g`

]
. (9)

Note that XGt−` is a N × L|G| matrix and β̄g is a L|G| × 1 vector. Thus the final matrix formulation of345

Equation 2 is:346

Xg
t = XGt−`β̄g + εt. (10)

Elastic net penalty. Because of the large number of predictors as compared to the small number of samples,347

we use the elastic net penalty, which is a generalization of both ridge and lasso penalties. The elastic net fits348

the following objective:349

β̂gELASTIC NET = arg min
β̄g∈RL|G|

‖Xg
t − XGt−`β̄g‖22 + λ(a‖β̄g‖1 + (1− a)‖β̄g‖22). (11)

Here ‖ · ‖1 represents the `1-norm and ‖ · ‖2 represents the `2-norm.350

For the elastic net, we used the following ranges of hyperparameter values: λ ∈ {10−4, 10−3, . . . , 1}, a ∈351

{0.1, 0.3, . . . , 0.9}. For lasso, we used λ ∈ {10−5, . . . , 1}. For ridge, when we used {10−5, . . . , 1}, we found352

that the the optimal value selected in some cases was the maximum value of λ = 1. We thus expanded the353

range to {10−5, . . . , 106} to ensure that we were not missing better hyperparameters at larger values. At this354

point, the optimal λ was found to be 100.355

Hyperparameter tuning. Hyperparameters were selected using leave-one-out cross-validation (LOOCV). The356

hyperparameter (or pair of hyperparameters, for elastic net) that minimizes the mean-squared error on the357

held-out datapoints is selected. More specifically, we first fix a hyperparameter (λ, a). Then, for a given gene358

g and row index i, extract the i-the row of Xg
t and XGt−`. Refer to this extracted validation set as (Xg

t )i359

(target) and (Xgt−`)i (predictors). The remaining data is the training set, (Xg
t )−i (target) and (XGt−`)−i360

(predictors).361

First, let β̂g(λ,a),i be the β̂gELASTIC NET that is fit from the training set.362

β̂g(λ,a),i = arg min
β̄g∈RL|G|

‖(Xg
t )−i − (XGt−`)−iβ̄g‖22 + λ(a‖β̄g‖1 + (1− a)‖β̄g‖22). (12)

We then compute prediction error on the validation set, ‖(Xg
t )i − (XGt−`)iβ̂

g
(λ,a),i‖

2
2). We repeat the fit363

β̂g(λ,a),i and error for every row index i of Xg
t and for every gene g. The mean held-out cross-validation error364

for (λ, a) is:365

MSE(λ, a) =
∑
g∈G

N∑
i=1

1

N
‖(Xg

t )i − (XGt−`)iβ̂
g
(λ,a),i‖

2
2. (13)

The (λ, a) that minimizes the error in Equation 13 is selected.366
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Permuted coefficients. We evaluate the significance of any given edge g′ → g through permutation. In detail,367

we remove the time dependency between g′ and g via permutations of individual gene temporal profiles over368

time.369

We first generate a single permuted data set X̃g
t . For each gene, we independently shuffle the temporal370

profile of each gene g ∈ {1, . . . , |G|} across time (Figure 1A). This is done separately for distinct replicates.371

We wish to model the hypothesis of no causal relations from any gene g′ ∈ ¬g, upon a given effect gene372

g. We use the unpermuted values of the effect gene Xg
t and the permuted values of all other causal genes373

g′ ∈ ¬g, as X̃¬gt . The effect gene g remains unpermuted, as we do not consider self-regulatory loops.374

Permutation-based causal coefficients β̃g
′,g
` are then fit as375

Xg
t =

L∑
`=1

αg`X
g
t−` +

L∑
`=1

∑
g′∈¬g

β̃g
′,g
` X̃g′

t−` + εt. (14)

We use these coefficients to perform FDR calibration.376

Edge FDR. The result of the elastic net VAR model is a complete network whose edges are weighted according377

to the estimated regression coefficients.378

For each lag ` ∈ {1, . . . , L} and effect gene g, we control the edge FDR at ≤ 0.05 by finding the threshold379

T g` such that380 ∑
g′∈¬g 1{|β̃

g′,g
` | > T g` }∑

g′∈¬g 1{|β̃
g′,g
` | > T g` }+

∑
g′∈¬g 1{|β

g′,g
` | > T g` }

≤ 0.05. (15)

For each gene pair (g′, g), g′ ∈ ¬g, a directed edge g′ → g exists if for at least one of the lags ` ∈ {1, . . . , L},381

|βg
′,g
` | > T g` .382

Stability selection. Stability selection is used to ensure the robustness of BETS to small sample size. Stability383

selection is a method for high-dimensional graph estimation that uses bootstrap samples [74]. While the384

authors prove finite sample control for the family-wise error rate (FWER), we are interested in controlling385

the false discovery rate (FDR).386

First, we draw B = 1, 000 bootstrap samples, where each sample consists of N = R(T − L) rows drawn387

with replacement from XGt−`, the predictors, and Xg
t , the target (Equation 10).388

For each bootstrap sample, we infer a network using BETS. Each edge g′ → g’s selection frequency, πg′,g389

(the frequency of g′ → g among the bootstrap networks) is computed. (Figure 1 B).390

Stability FDR. To determine the appropriate cutoff for the selection frequency of each edge (πg′,g), we391

generate a null distribution of selection frequencies using permutations. First, we generate a second permuted392

data set in which we again independently shuffle the temporal profile of each gene g ∈ {1, . . . , |G|} across393

time. This is done separately for distinct replicates. We run the selection frequency procedure on this394

permuted data set to get the null selection frequency of each edge, π̃g′,g.395

We control the stability FDR at 0.2 by finding the threshold Tb such that396 ∑
g′∈¬g 1{π̃g′,g > Tb}∑

g′∈¬g 1{π̃g′,g > Tb}+
∑
g′∈¬g 1{πg′,g > Tb}

≤ 0.2. (16)

Because the maximum lag is 2, each edge g′ → g has two possible lags and thus two selection frequencies.397

The lag with larger absolute value of average coefficient across the 1, 000 networks is considered in both the398
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permuted and the real empirical distributions. So, if |βg
′,g

1 | exceeds |βg
′,g

2 |, the lag is said to be 1 and the399

selection frequency π1
g′,g is used.400

Network inference performance metrics. Refer to every network edge inferred by a method as a positive and401

every missing edge as a negative. Let TP be True Positives, FP be False Positives, TN be True Negatives,402

and FN be False Negatives. Let TPR be True Positive Rate, (i.e., recall), and FPR be False Positive Rate.403

Then, we have404

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

In the DREAM benchmark, each network inference method is evaluated by comparing the true network405

(i.e., the network used to generate the synthetic data) with the inferred network at different thresholds for406

edge inclusion. The two main evaluation metrics are Area Under the Receiver Operating Characteristic curve407

(AUROC) and Area Under the Precision-Recall curve (AUPR). AUROC plots TPR on the y axis and FPR408

on the x axis. AUPR plots precision on the y axis and recall on the x axis. When the number of negatives409

greatly exceeds the number of positives, as with gene networks, which are typically sparse, AUPR is a more410

relevant metric [75].411

5.2. Software412

BETS is available for download on Github at https://github.com/lujonathanh/BETS. The software is413

licensed under the terms of the Apache License, version 2.0.414

5.3. Data sets and Processing415

DREAM Network Inference Challenge. There were 5 data sets in the DREAM4 Network Inference Challenge,416

each consisting of 10 time series of 21 time points and 100 genes [41, 76]. For the first half of the time series,417

a “drug perturbation” was applied; this affected about 1/3 of genes. For the second half, the perturbation418

was removed and the system was allowed to relax back to the wild-type state.419

Glucocorticoid gene expression data. We analyzed RNA sequencing data from a set of experiments developed420

to study glucocorticoid receptors (GRs) in the human adenocarcinoma and lung model cell line, A549 [6].421

There was an original exposure data set of 4 replicates in which cells were stimulated by the glucocorticoid422

dexamethasone (dex), and gene expression was profiled at {0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} hours of dex stim-423

ulation. There was also an unperturbed data set of 3 replicates in which cells were exposed to dex for 12424

hours, after which the conditioned media was replaced and dex removed. Gene expression was profiled at425

{0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} hours after dex removal. We integrated the original exposure and unperturbed426

data into a joint data set with 7 replicates.427

We selected 2, 768 genes for analysis, which had average expression > 2 TPM and were differentially428

expressed in the original exposure data. A gene was called differentially expressed if its expression at any429

time point differed from its expression at time 0, ascertained by running edgeR (FDR ≤ 0.05) [6]. We added430
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NR3C1, which encodes the glucocorticoid receptor (GR). NR3C1 was not found to be differentially expressed431

at FDR ≤ 0.05.432

After genes were selected, gene expression Transcripts Per kilobase Million (TPM) were log-normalized433

and corrected for surrogate variables using SVAseq [77]. Each gene’s temporal profile was centered to have434

mean zero across time. In the original exposure data, all replicates besides replicate 1 had a measurement435

for each time point. Replicate 1 was missing time points 5 and 6 hrs, so we imputed these values using a436

linear interpolation from time points 4 and 7 hrs in the log-transformed, surrogate-corrected space.437

Overexpression transcriptional time series data. There were 10 overexpression data sets, in which each of the438

transcription factors CEBPB, CEBPD, FOSL2, FOXO1, FOXO3, KLF6, KLF9, KLF15, POU5F1,439

and TFCP2L1 was separately overexpressed across 12 hours of dex stimulation. Each overexpression data440

set had three replicates; gene expression was profiled after {0, 1, 4, 8, 12} hours of dex stimulation. The same441

2768 genes were selected and the same normalization and SVAseq correction as earlier was performed.442

5.4. Application of methods to the data443

DREAM benchmarking. We ran the methods BETS, Enet, CSId [40], Jump3 [32], CLR [23], MRNET [24],444

and ARACNE [25] on the DREAM challenge. In BETS, inferred edges were ranked by their selection445

frequency for calculating AUPR and AUROC. In Enet, edges were ranked by the absolute value of their446

coefficient. The Python3 version of CSId was run after obtaining it from correspondence with Dr. Penfold.447

Jump3 required setting the “systematic noise” and “observational noise” parameters. We used Dr. Huynh-448

Thu’s settings on the DREAM challenge, with systematic noise at 1e − 4 and observational noise at 0.01449

times the value of the gene’s expression. ARACNE, MRNET, and CLR were run using the minet R library.450

BETS, Enet, CSId, and Jump3 were run on a single node without parallelization. The node had 28 cores,451

128 GB of memory, and 2.4 GHz processor speed. ARACNE, MRNET, and CLR were run on a 4 GB RAM,452

Intel Core i5 1.3 GHz laptop.453

Network analysis: Gene annotations. We considered genes with three possible labels: immune system,454

metabolism, or transcription factor. Immune genes were labeled as such using two sources. The first source455

is the Gene Ontology (GO) annotation “Immune” ( GO:0002376 ) [47]. We applied this label when the evi-456

dence codes were EXP, IDA, IGI, IMP, IPI, IC, TAS. The second source is the Gene Ontology Consortium’s457

curated, ranked list of immune-related genes based on multiple databases and experimental evidence [49].458

For the GO annotation, we selected all genes with score ≥ 7. This resulted in 616 immune genes overall, and459

109 immune genes in our list of 2768 genes.460

Metabolic genes were called using two sources. The first source is the GO annotation “carbohydrate461

metabolic process” GO:0005975 [47]. We applied this label when the evidence codes were EXP, IDA, IGI,462

IMP, IPI, IC, TAS. The second source is the Gene Set Enrichment Analysis (GSEA)-curated list of metabolic-463

related genes [48]. We searched only among those with experimental evidence: the Canonical, KEGG,464

BIOCARTA, and Reactome pathways. We used the following four search queries: “gluconeogenesis OR465

(glucose AND metabolism) OR glycolysis,” “lipid AND metabolism,” “Diabetes,” “Obesity.” This resulted466

in 544 metabolic genes overall, of which 120 were in our gene list. 65 genes were both immune and metabolic467

overall; 12 of these were in our gene list.468

Transcription factors (TFs) were called using the Bioguo database of human TFs [50]. There were 1463469

TFs overall, of which 226 were present in our gene list.470
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Experimental interactions. We created a list of experimentally validated interactions from the BIOGRID471

Homo sapiens Protein-Protein Interactions database [78] and the STRING database [79]. Proteins were472

mapped to genes using BioMart from Ensembl 94 [80]. Among genes in our gene list, there were 17, 990473

BIOGRID interactions and 13, 148 STRING interactions.474

Validation on overexpression data. The overexpression data had four time points with 1 to 4 hour time gaps,475

unlike the original 12 time points with 0.5 to 2 hour time gaps. On the overexpression data, we used a VAR476

model that regressed each effect gene’s expression level on its previous expression level and the causal gene’s477

previous expression level, assuming normal noise εt ∼ N (0, 1):478

Xg
t = cgXg

t−1 + dg
′,gXg′

t−1 + εt. (17)

No regularization was included, and ordinary least squares was used to fit the equation. The expression Xg′

t−1479

of a causal gene g′ is fit as a single predictor without the other expression. Lag 1, not 2, is used due to the480

larger time gaps.481

Validation on lung trans-eQTLs in GTEx v6. Trans-eQTLs were discovered using the Genotype Tissue482

Expression (GTEx) v6 data [10, 57]. First, we mapped our genes from hg38 to hg19. For every edge483

g′ → g, we tested the set of single nucleotide polymorphisms (SNPs) within 20 kilobases of g′ for trans-eQTL484

association with g [81]. Specifically, we computed the p-value for linear association of each SNP with the485

corresponding effect gene g using MatrixEQTL [82]. A null distribution was generated by taking every edge486

g′ → g, permuting the effect gene g’s expression values, and repeating the linear association test. FDR over487

test statistics was calculated using q-value [83]. Because not every causal gene g′ had a cis-eQTL, only 26, 839488

edges (84% of the original 31, 945 edges) were tested.489

6. Supplemental Information490

6.1. Network inference methods491

Several methods have been developed to estimate directed graphs of genes from transcriptional time series492

data (Figure S1). Broadly, these methods estimate directed networks in which the directed edges between493

nodes—representing genes—indicate a cause-effect relationship between those genes, such that perturbing494

the expression levels of the causal gene would lead to changes in expression of the effect gene [20].495

Let G be the set of all genes and g be a single gene. Let ¬g be G with g removed. Let there be T time496

points total, and let t be a single time point ranging from {1, 2, . . . , T}. Let Xg
t be the expression of gene g497

at time t. Let εt be the residual noise at time t. Let : denote sequencing through values, for example Xg
1:T498

would denote all the values Xg
1 through Xg

T . Let pa(Xg
t ) refer to the causal parents of gene g at time t in499

dynamic Bayesian Networks. For example, pa(Xg
t ) may include Xg′

t−`. Let g′ be the gene we are testing to500

be causal for gene g. Let ` be the time lag of the causal interaction. We are testing the existence of the edge501

g′ → g at lag `.502
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Figure S1: Related to Figure 1. Overview of gene regulatory network inference methods. Panels show each inference
method applied to a cause gene g’ (blue, solid) and an effect gene g (blue, dotted). A) Mutual information is computed between
the cause and effect. B) The effect’s expression is fit as an autoregression from the cause’s past expression. C) The effect’s
expression is fit as a differential equation from the cause’s current expression. D) The effect’s expression is fit as a decision tree
function of the cause’s past expression. E) The space of dynamic causal networks is searched, with linear relationships between
cause and effect. F) The space of dynamic causal networks is searched, with nonlinear relationships between cause and effect.

6.1.1. Mutual information503

Mutual information (MI) methods assess the MI between the expression of g′ at the `-th previous time504

point and the expression of g at the current time point (Figure S1A) [21, 22, 23, 24, 25]:505

I`(g′, g) =
T∑

t=l+1

P (Xg′

t−`, X
g
t ) log

P (Xg′

t−`, X
g
t )

P (Xg′

t−`)P (Xg
t )
. (18)

A causal edge g′ → g is included if I`(g′, g) exceeds a threshold. MI methods have the advantage of being506

simple and fast. However, they do not give insight into the sign of two genes’ relationship (i.e., activation or507

repression) because MI is an unsigned metric [24, 26].508
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6.1.2. Granger causality509

Granger causality methods determine if including the expression of g′ at the previous time point improves510

our ability to predict the expression of g at the current time point above using the expression of g at the511

previous time point [27]. A common way to implement a Granger causality approach uses a vector autore-512

gression (VAR) model, which usually assumes a linear relationship between all genes’ previous expression513

and g’s current expression. (Figure S1B) [84].514

Xg
t =

L∑
`=1

αg`X
g
t−` +

∑
g′∈¬g

L∑
`=1

βg
′,g
` Xg′

t−` + εt. (19)

A causal edge g′ → g is included in the network if βg
′,g
` is significantly different from 0 for some `. While515

older VAR analyses did not fit the causal predictors simultaneously [84, 85, 86], newer analyses fit them516

simultaneously, using regularization techniques such as lasso [13, 87] or ridge regression [88] to handle the517

high dimensionality of genome-wide sequencing assays. Nonlinear, kernel-valued functions have also been518

used to implement ideas in Granger causality [89].519

6.1.3. Ordinary differential equations520

Ordinary differential equations (ODEs) fit the derivative of the expression of g as a function of all genes’521

expression at a single time point (Figure S1C) [11, 28, 29]:522

dXg
t

dt
= f(Xg

t , X
g′1
t , . . . X

g′G−1

t ) + εt. (20)

Although complex dynamics are often nonlinear, ODE methods typically assume linearity, as small sample523

sizes make it challenging to infer the parameters of nonlinear functions. A causal edge g′ → g is included in524

the network if g′ has a significant coefficient in the ODE.525

These methods are often combined with additional methods such as spline interpolation and piecewise526

linear functions to improve performance [28, 29].527

6.1.4. Decision trees528

Decision trees (DT) are a type of nonparametric function based on partitioning the data [30, 31]. DT529

methods fall either under VAR or ODE methods. Either the DTs fit the expression of g at the current time530

as a function of all genes’ expression at the previous time point (VAR), or they fit the derivative of the531

expression of g as a function of all genes’ expression at a single time point (ODE) (Figure S1D) [32, 33].532

Xg
t = f(Xg

t−1:t−L, X
g′1:g′|G|−1

t−1:t−L ) + εt, f ∈ DT. (21)

dXg
t

dt
= f(Xg

t , X
g′1
t , . . . X

g′|G|−1

t ) + εt, f ∈ DT. (22)

A causal edge g′ → g is included in the network when an importance score for g′— typically, the reduction533

in variance of g from including g′ as a predictor— exceeds some threshold. One limitation of DT methods is534

that they only produce a ranking of edges, without specifying the sign of the relationship between the genes535

[32, 33].536
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6.1.5. Dynamic Bayesian networks537

Dynamic Bayesian networks (DBNs) search the space of possible directed acyclic graphs between previous538

and current expression levels and identify the network structure with the highest posterior probability of each539

edge given the data (Figure S1E) [34, 35, 36, 37, 38]. DBNs typically assume a linear relationship between540

previous expression values and current expression values. A causal edge g′ → g is included in the network541

when its marginal posterior probability of existence exceeds some threshold. The joint probability of all the542

genes’ expression across the time points 1 : T factorizes as:543

P (X
g1:g|G|
1:T ) =

∏
g∈G

P (Xg
1 )

T∏
t=2

P (Xg
t |pa(Xg

t )).

Each gene’s expression has a linear relationship with its parents:544

Xg
t = f(pa(Xg

t )) + εt, f ∈ LINEAR.

While DBNs have been shown to be effective on smaller data sets [90], they scale poorly due to the super-545

exponential growth of possible causal graph structures [56, 88]. Even after limiting the number of possible546

parents per gene to two, this results in cubic scaling of the search space. One exception is ScanBMA, which547

uses a pruning method based on Occam’s window to limit the search space and gain a speedup [36].548

6.1.6. Gaussian process549

The Gaussian process (GP) is a distribution over continuous, nonlinear functions. GPs are often used550

in the context of nonlinear DBNs, where GP regression is used to model a nonlinear relationship between551

previous expression levels and current expression levels (Figure S1F) [39, 40]. A causal edge g′ → g is included552

in the network based on its posterior probability of existence, i.e., the sum of the posterior probabilities of553

those networks that contain the edge. Each gene’s expression has a nonlinear relationship with its parents:554

Xg
t = f(pa(Xg

t )) + εt, f ∼ GP.

By allowing nonlinear relationships between genes, GPs have proven highly effective. However, like DBN,555

they perform a search over causal graphs, and therefore suffer from the same scalability issues [39, 40].556

6.2. Validation of inferred network on overexpression data557

Our analyses regressed network edge signs as predictors against the VAR model edge coefficients from558

the overexpression data as response (Figure 5). We sought to assess the strength of these associations across559

the 10 data sets, compared against shuffled edges. We compared the effect sizes of all 10 regressions of560

positive edge one-hot encodings on the overexpression coefficients with the effect sizes estimated similarly561

after shuffling the edge labels; we did the same for negative edges. At FDR ≤ 0.2, there was a substantial562

enrichment of effect sizes of positive edges among the original network (Common Language Effect Size (CLES)563

= 0.93, two-sided Mann-Whitney U-test (MWU) adjusted p ≤ 0.0026); there was no enrichment of effect564

sizes for negative edges in the original network (CLES = 0.55, two-sided MWU adjusted p ≤ 0.73). Thus,565

the positive edges inferred by BETS validate on the overexpression data, but the negative edges do not,566

indicating repressive effects may have inconsistent signs.567

6.3. Supplementary Tables568
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Algorithm
Method
Type

AUPR
(Average)

AUPR
(STD)

Network 1
AUPR

Network 2
AUPR

Network 3
AUPR

Network 4
AUPR

Network 5
AUPR

ebdbnet DBN 0.043
G1DBN DBN 0.11 0.01 0.11 0.1 0.13 0.1 0.11
ScanBMA DBN 0.101
VBSSMa DBN 0.086 0.02 0.08 0.05 0.11 0.1 0.09
VBSSMb DBN 0.096 0.03 0.09 0.06 0.12 0.12 0.09
dynGENIE3 DT 0.198 0.05 0.22 0.14 0.25 0.22 0.16
GENIE3 DT 0.072 0.02 0.05 0.06 0.1 0.06 0.09
Jump3 DT 0.182 0.05 0.26 0.11 0.19 0.17 0.18
CSIc GP 0.07 0.04 0.13 0.03 0.07 0.07 0.05
CSId GP 0.208 0.03 0.26 0.17 0.22 0.2 0.19
GP4GRN GP 0.162 0.05 0.22 0.1 0.16 0.21 0.12
ARACNE MI 0.046 0.01 0.03 0.04 0.06 0.04 0.06
CLR MI 0.072 0.02 0.05 0.06 0.11 0.06 0.08
MRNET MI 0.068 0.02 0.04 0.06 0.1 0.06 0.08
tl-CLR MI 0.168 0.05 0.18 0.11 0.24 0.15 0.16
Inferelator ODE 0.0688 0.01 0.063 0.071 0.075 0.073 0.062
TSNI ODE 0.026 0.01 0.02 0.03 0.03 0.02 0.03
BETS VAR 0.128 0.02 0.16 0.1 0.13 0.14 0.11
Enet VAR 0.098 0.02 0.12 0.08 0.1 0.11 0.08
GCCA VAR 0.05 0.02 0.04 0.04 0.07 0.07 0.03
LASSO VAR 0.073
OKVAR-Boost VAR 0.034 0.02 0.05 0.05 0.03 0.02 0.02

Table S1: Related to Figure 2. DREAM4 100-gene Network Inference Results, AUPR. DBN is Dynamic Bayesian
Network, DT is Decision Tree, GP is Gaussian Process, MI is Mutual Information, ODE is Ordinary Differential Equation,
VAR is Vector Autoregression. The references that reported ebdbnet, ScanBMA, and LASSO did not provide AUPR values for
individual networks. Algorithms that were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. Where
reported literature values were available, they were consistent with these values. Values for CSIc, G1DBN, GCCA, GP4GRN,
TSNI, VBSSMa and VBSSMb were taken from [45]. Values for ebdnet, LASSO and ScanBMA, were taken from [36]. Values
for dynGENIE3, GENIE3, OKVAR-Boost and tl-CLR were taken from [33]. Value for Inferelator and Jump3 were taken from
[32].
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Algorithm
Method
Type

Average
AUROC

STD
AUROC

Network 1
AUROC

Network 2
AUROC

Network 3
AUROC

Network 4
AUROC

Network 5
AUROC

ebdbnet DBN 0.643
G1DBN DBN 0.676 0.03 0.68 0.64 0.68 0.66 0.72
ScanBMA DBN 0.657
VBSSMa DBN 0.624 0.06 0.59 0.56 0.59 0.67 0.71
VBSSMb DBN 0.618 0.06 0.56 0.57 0.62 0.64 0.7
Jump3 DT 0.72 0.04 0.77 0.67 0.74 0.68 0.74
CSIc GP 0.61 0.03 0.65 0.56 0.63 0.61 0.6
CSId GP 0.728 0.01 0.74 0.71 0.72 0.74 0.73
GP4GRN GP 0.686 0.04 0.72 0.62 0.7 0.7 0.69
ARACNE MI 0.558 0.01 0.56 0.54 0.56 0.55 0.58
CLR MI 0.678 0.03 0.7 0.63 0.71 0.67 0.68
MRNET MI 0.672 0.03 0.68 0.63 0.71 0.66 0.68
TSNI ODE 0.566 0.03 0.55 0.55 0.6 0.54 0.59
BETS VAR 0.688 0.06 0.78 0.65 0.64 0.7 0.67
Enet VAR 0.662 0.05 0.73 0.62 0.62 0.67 0.67
GCCA VAR 0.584 0.02 0.6 0.57 0.6 0.58 0.57
LASSO VAR 0.643

Table S2: Related to Figure 2. DREAM4 100-gene Network Inference Results, AUROC. DBN is Dynamic Bayesian
Network, DT is Decision Tree, GP is GP, MI is MI, ODE is Ordinary Differential Equation, VAR is Vector Autoregression. The
references that reported ebdbnet, ScanBMA, and LASSO did not provide AUROC values for individual networks. Algorithms
that were run in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. Values for CSIc, G1DBN, GCCA,
GP4GRN, TSNI, VBSSMa and VBSSMb were taken from [45]. Values for ebdnet, LASSO and ScanBMA, were taken from [36].
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Method
AUPR AUROC Time (hours) Literature

ReferenceIn-House Literature In-House Literature In-House
CSId 0.208 0.234 0.728 0.712 9.2 [45]
Jump3 0.182 0.187 0.72 45 [32]
BETS 0.128 0.688 4.8
Enet 0.098 0.662 1.2
CLR 0.072 0.123 0.678 0.699 0.0000089 [36]
MRNET 0.068 0.13 0.672 0.701 0.000011 [36]
ARACNE 0.046 0.106 0.558 0.589 0.000010 [36]

Table S3: Related to Figure 2. Results of In-House Algorithms on DREAM4 100-gene Network Inference. AUPR
and AUROC indcate average AUPR and AUROC over the 5 networks, respectively. BETS and Enet are bolded to indicate
that they are our own developed methods, based on vector autoregression. CSId is a Gaussian process method [40]. Jump3 is
a decision tree method [32]. CLR [23], MRNET [91], and ARACNE [25] are mutual information methods. See Supplemental
Information for discussion of differences when compared to literature-reported performance for ARACNE, MRNET, and CLR.
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Normalization Lag Penalty
Coefficient
AUROC

Bootstrap
AUROC

Coefficient
AUPR

Bootstrap
AUPR

0mean 1 Elastic Net 0.674 (0.05) 0.686 (0.05) 0.112 (0.03) 0.14 (0.03)
0mean 2 Elastic Net 0.662 (0.05) 0.688 (0.06) 0.098 (0.02) 0.128 (0.02)
0mean 2 Lasso 0.652 (0.05) 0.692 (0.06) 0.14 (0.04) 0.162 (0.05)
0mean 2 Ridge 0.642 (0.04) 0.66 (0.05) 0.08 (0.03) 0.096 (0.03)

Table S4: Related to Figure 2. Improvement on DREAM4 100-gene Network Inference from Bootstrap. For each
AUROC or AUPR column, the average is the listed value and the standard deviation is listed in parentheses. ”Coefficient”
denotes the result when ranking edges by their fitted coefficient, as in the original method. ”Bootstrap” denotes the results
when ranking edges by the frequency by which they appear in the bootstrap networks.

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587170doi: bioRxiv preprint 

https://doi.org/10.1101/587170
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bootstrap
Samples

AUROC AUPR
Time
(hr)

Memory
(GB)

100 0.68 (0.05) 0.124 (0.02) 1.6 1.6
1000 0.688 (0.06) 0.128 (0.02) 4.8 15.6

Table S5: Related to Figure 2. Dependency of BETS performance on Bootstrap Samples. DREAM results reported
for running BETS on both 100 and 1000 bootstrap samples. All values in the columns are averages and the parenthetical values
as standard deviations across the 5 DREAM4 Networks. The 1000 samples row is bolded because 1000 samples are the default
settings. These use zero-mean normalization, lag 2, and the elastic net penalty.
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Cause Type Effect Type Odds Ratio
Raw
p-value

Adjusted
p-value

Significant
at FDR 0.05

Any Any 1 1.00E+00 1.00E+00 No
Any TF 1 5.69E-01 6.51E-01 No
Any Imm 1.06 2.73E-02 3.64E-02 Yes
Any Metab 0.96 9.16E-01 9.77E-01 No
TF Any 1.22 3.51E-25 9.36E-25 Yes
TF TF 1.32 4.43E-06 7.09E-06 Yes
TF Imm 1.21 2.24E-02 3.25E-02 Yes
TF Metab 1.14 7.54E-02 9.28E-02 No
Imm Any 2.69 0.00E+00 0.00E+00 Yes
Imm TF 2.71 2.21E-45 1.18E-44 Yes
Imm Imm 2.71 5.98E-23 1.37E-22 Yes
Imm Metab 2.18 5.65E-14 1.01E-13 Yes
Metab Any 2.96 0.00E+00 0.00E+00 Yes
Metab TF 2.58 1.55E-43 6.20E-43 Yes
Metab Imm 2.93 2.45E-30 7.85E-30 Yes
Metab Metab 2.49 6.21E-22 1.24E-21 Yes

Table S6: Related to Figure 3. Enrichment of edges between specific gene classes in inferred causal network. A
Fisher’s Exact Test was performed, whether the rows of the contingency table were whether or not an edge was of the edge
type, and the columns were whether or not the edge was part of the inferred network.
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Edge
Type

Cause
Gene

Effect
Gene

Lag
Average
Coefficient

Selection
Frequency

Shown Data set
Correct
Direction?

Citation

I → I TNFAIP3 IRAK2 1 0.01 0.163 unperturbed N [92]
I → M SOCS1 IRS2 1 0.01 0.1 unperturbed Y [51, 53]
I → T FOS ATF3 1 0.1 0.709 unperturbed Y [93]
I → A FOS HSPA1A 2 0.02 0.2 original Y [94]
M → I IGFBP3 CD44 1 0.01 0.212 original Y [95]
M → M SOCS3 IRS2 2 0.01 0.099 original Y [52]
M → T SOCS3 HIVEP1 1 0.02 0.297 unperturbed N [96]
M → A ATF3 MDM2 1 0.02 0.46 original N [97]
T → I E2F1 CDH1 1 -0.01 0.12 unperturbed N [98]
T → M NR4A1 RXRA 2 0.02 0.471 unperturbed Y [54, 55, 99]
T → T BHLHE40 HIVEP1 1 0.01 0.152 original Y [96]
T → A NR4A1 VHL 2 0.01 0.237 unperturbed Y [100]
A → I FOS EGFR 1 0.004 0.109 original N [101]
A → M ZFP36 YWHAH 2 0.004 0.131 unperturbed Y [102]
A → T NR0B1 ESRRA 1 -0.004 0.102 unperturbed Y [103]
A → A CCNE2 CDK2 1 0.04 0.636 original Y [104, 105, 106, 107]

Table S7: Related to Figure 4. Gene Pair information from Figure 4. Shown Data Set indicates whether the gene temporal
profiles in Figure 4 are taken from the original exposure data or unperturbed data. The edge type indicates the gene class of
the causal and effect gene; for example, I → M indicates an edge from an Immune causal gene to a Metabolic effect gene. I =
Immune; M = Metabolic; T = Transcription Factor; A = Any gene.
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