Climate services for arboviral diseases in the Caribbean

1	Full ti	tle: Co-developing climate services for public health: stakeholder needs and
2	percej	ptions for the prevention and control of Aedes-transmitted diseases in the
3	Carib	bean.
4		
5	Short	title: Climate services for arboviral diseases in the Caribbean
6		
7	Anna 1	M. Stewart-Ibarra ^{1,2,*} , Moory Romero ^{1,3} , Avery Q. J. Hinds ⁴ , Rachel Lowe ^{5,6,7} ,
8	Roché	Mahon ⁸ , Cedric J. Van Meerbeeck ⁸ , Leslie Rollock ⁹ , Marquita Gittens-St.
9	Hilaire	e ^{10,11} , Sylvester St. Ville ¹² , Sadie J. Ryan ^{13,14} , Adrian R. Trotman ⁸ , Mercy J.
10	Borbo	r-Cordova ¹⁵
11		
12	1.	Institute for Global Health and Translational Science, State University of New
13		York (SUNY) Upstate Medical University, Syracuse, NY, USA
14	2.	Department of Medicine and Department of Public Health and Preventative
15		Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
16	3.	Department of Environmental Studies, SUNY College of Environmental Sciences
17		and Forestry, Syracuse, NY, USA
18	4.	Caribbean Public Health Agency, 16-18 Jamaica Boulevard, Federation Park,
19		Trinidad & Tobago
20	5.	Department of Infectious Disease Epidemiology, London School of Hygiene &
21		Tropical Medicine, London, UK
22	6.	Centre for the Mathematical Modelling of Infectious Diseases, London School of
23		Hygiene & Tropical Medicine, London, UK

Climate services for arboviral diseases in the Caribbean

24	7. Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
25	8. The Caribbean Institute for Meteorology and Hydrology, St. James, Barbados
26	9. Ministry of Health and Wellness, St. Michael, Barbados
27	10. Faculty of Medical Sciences, University of the West Indies at Cave Hill,
28	Bridgetown, St. Michael, Barbados
29	11. Best-dos Santos Public Health Laboratory, Ministry of Health, St. Michael,
30	Barbados
31	12. Environmental Health Division, Ministry of Health and Environment, Roseau,
32	Commonwealth of Dominica
33	13. Quantitative Disease Ecology and Conservation Lab Group, Department of
34	Geography and Emerging Pathogens Institute, University of Florida, Gainesville,
35	Florida, USA
36	14. School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
37	15. Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica
38	del Litoral (ESPOL), Guayaquil, Ecuador
39	
40	*Corresponding author: State University of New York (SUNY) Upstate Medical
41	University, 505 Irving Ave., Syracuse, NY 13210 USA; Email: stewarta@upstate.edu;
42	Phone: +1 315 464 6489

Climate services for arboviral diseases in the Caribbean

43 Abstract

44	Background: Small island developing states (SIDS) in the Caribbean region are
45	challenged with managing the health outcomes of a changing climate. Health and climate
46	sectors have partnered to co-develop climate services to improve the management of
47	these diseases, for example, through the development of climate-driven early warning
48	systems. The objective of this study was to identify health and climate stakeholder
49	perceptions and needs in the Caribbean, with respect to the development of climate
50	services for arboviruses (e.g. dengue, chikungunya, and Zika).
51	Methods: Stakeholders included public decision makers and practitioners from the
52	climate and health sectors at the regional (Caribbean) level and from the countries of
53	Dominica and Barbados. From April to June 2017, we conducted interviews (n=41),
54	surveys (n=32), and national workshops with stakeholders. Survey responses were
55	tabulated and audio recordings were transcribed and analyzed using qualitative coding to
56	identify responses by research topic, country/region, and sector.
57	Results: Health practitioners indicated that their jurisdiction is currently experiencing an
58	increased risk of diseases transmitted by Ae. aegypti due to climate variability, and most
59	anticipated that this risk will increase in the future. National health sectors reported
60	financial limitations and a lack of technical expertise in geographic information systems
61	(GIS), statistics, and modeling, which constrained their ability to implement climate
62	services for arboviruses. National climate sectors were constrained by a lack of
63	personnel. Stakeholders highlighted the need to strengthen partnerships with the private
64	sector, academia, and civil society. They identified a gap in local research on climate-
65	arbovirus linkages, which constrained the ability of the health sector to make informed

Climate services for arboviral diseases in the Caribbean

66	decisions. Strategies to strengthen the climate-health partnership included a top-down
67	approach by engaging senior leadership, multi-lateral collaboration agreements, national
68	committees on climate and health, and shared spaces of dialogue. Mechanisms for
69	mainstreaming climate services for health operations to control arboviruses included
70	climate-health bulletins and an online GIS platform that would allow for regional data
71	sharing and the generation of spatiotemporal epidemic forecasts.
72	Conclusions: These findings support the creation of interdisciplinary and intersectoral
73	communities of practices and the co-design of climate services for the Caribbean public
74	health sector. By fostering the effective use of climate information within health policy,
75	research and practice, nations will have greater capacity to adapt to a changing climate.
76	
77	Keywords: climate services, dengue fever, arbovirus, Aedes aegypti, public health,
78	Caribbean, small island developing states (SIDS), early warning system, co-development,
79	climate change, adaptation

Climate services for arboviral diseases in the Caribbean

81 Introduction

82	Small island developing states (SIDS) in the Caribbean region are highly
83	susceptible to the health impacts of climate variability and long-term changes in climate
84	[1,2]. Impacts include increased risk of communicable diseases, such as mosquito-borne
85	arboviruses, and noncommunicable diseases, such as cardiovascular complications
86	associated with heat stress. SIDS face similar challenges-small populations who are
87	repeatedly exposure to extreme climate events (e.g., droughts and tropical storms),
88	limited global political power, reliance on imported goods, and difficulty preventing and
89	responding to disasters due to resource constraints [1,3,4]. Caribbean SIDS will likely
90	experience more extreme climate events in the future due to climate change, increasing
91	the social and economic burden of climate-sensitive health outcomes.
92	Dengue fever, chikungunya and Zika fever, arboviral diseases transmitted by the
93	Aedes aegypti mosquito, are among the top public health concerns in the Caribbean
94	region [5,6]. The Caribbean Public Health Agency (CARPHA) recently issued an
95	advisory for the possibility of a severe dengue epidemic in 2019 [7], given a rise in
96	dengue activity in Latin America, the increasing burden of arboviruses over the last
97	number of years, and the large gap in time since the last dengue epidemic in the
98	Caribbean region, which occurred in 2009. The Caribbean is the region of the Americas
99	with the highest incidence of dengue [8]. Vector control is the main public health
100	interventions to prevent and control disease outbreaks through insecticide application,
101	elimination of larval habitat sites, public education and community mobilization [9].
102	Despite these efforts, the annual number of dengue cases in the region increased from an
103	estimated 136,000 to 811,000 cases between 1990 and 2013, with case estimates adjusted

Climate services for arboviral diseases in the Caribbean

104	to account for underreporting [8]. Novel tools and management strategies are urgently
105	needed to increase the capacity of the public health sector to prevent and respond to

- 106 arboviral disease outbreaks.
- 107 Changes in local climate can influence *Ae. aegypti* physiology and population
- 108 dynamics, thereby affecting disease transmission. Warmer ambient temperatures increase
- 109 the probability of arbovirus transmission by *Ae. aegypti*, with optimum transmission at
- 110 28.5°C; however, transmission is improbable in extreme heat (>34°C) [10]. Both excess

111 rainfall and drought conditions can potentially increase mosquito densities, depending on

the characteristics of the build environment and anthropogenic water storage [11,12]. In

the Caribbean region, studies have documented the effects of climate on dengue and Ae.

114 *aegypti* in Barbados [11,13–16], Cuba [17], Puerto Rico [18–20], Jamaica [16,21],

115 Trinidad and Tobago [13,16], and Guadeloupe [22].

116 Given the linkages between arboviruses, Ae. aegypti, and climate, the World 117 Health Organization and experts in the Caribbean have recommended developing 118 climate-driven early warning systems (EWS) and models to forecast arbovirus outbreaks 119 [23,24]. These tools are known as climate services -- tailored products for a specific 120 sector that allow decision makers and practitioners to plan interventions. For example, an 121 EWS for arboviruses could inform decisions about when and where to deploy public 122 health interventions to prevent an epidemic in the context of an impending climate event 123 [25]. A recent study by Lowe et al. [11] found that dengue transmission in Barbados 124 increased one month after a particularly wet month and five months after a drought event 125 was observed, and the model was able to accurately predict outbreak versus non-outbreak

Climate services for arboviral diseases in the Caribbean

126	months. This study demonstrated the potential to develop an operational climate-driven
127	forecast model to predict arbovirus outbreaks in the eastern Caribbean.

128 The perceptions, needs, and interests of stakeholders from the health and climate 129 sectors should ideally drive the development and implementation of a forecast model 130 through an iterative engagement process with modelers and other scientists [26,27]. The 131 end-users of climate information are a diverse group of actors with distinct needs and 132 interests [28,29]. Morss et al. [28] report insightful lessons learned as scientists who 133 attempt to communicate flood risk to the public sector. They state, "Decision makers are 134 not a coherent entity, but a collection of individuals, each of whom uses different 135 information to address different goals in a unique context." An arbovirus forecast should 136 be developed with a realistic understanding of the present-day public health response 137 capacity, which may be constrained by resources, information, prior experiences, and 138 other actors or institutions [30]. To guide this process, the Global Framework for Climate 139 Services (GFCS) was developed as the policy mechanism to support the development of 140 climate services for the health sector and other key sectors [31]. The GFCS aims for 141 stakeholder engagement between health and climate actors at all levels to promote the 142 effective use of climate information within health research, policy and practice [31].

Prior studies of health sector perceptions of climate have focused on the perceptions of the health sector with respect to the impacts of long-term climate change and climate variability. However, few studies (primarily for malaria early warning systems, MEWS, e.g. [32–34]) address health sector needs and interests with respect to climate-driven epidemic forecasts. Studies from the United States and Canada have analyzed the perceptions and engagement of public health practitioners in the context of

Climate services for arboviral diseases in the Caribbean

149 long-term climate change and impacts on overall health [35–39]. One study from China 150 assessed health sector perceptions of dengue and climate change [40]. In the Caribbean, a 151 study found that health providers perceived mosquito-borne disease as increasing due to 152 changing seasonal patterns [41], whereas another study found that health practitioners 153 had limited understanding of the effects of climate variability on health [42]. Climate 154 practitioners in Jamaica were generally aware of the health implications of climate 155 change for heat stress, respiratory diseases, and vector borne diseases [43].

The objective of this study was to identify health and climate stakeholder perceptions and needs in the Caribbean, with respect to the development of climate services for arboviruses. We addressed four key areas, based on the GFCS health exemplar goals [31]:

160 (1) What are the perceptions of climate-health or climate-arbovirus linkages?

161 (2) Who are the key actors engaged in climate-arbovirus surveillance and control, and 162 how can communication and partnerships amongst these actors be strengthened?

(3) What are the current capabilities of the health and climate sectors to implement a climate-driven arbovirus EWS, and what capacities need to be strengthened so that the health sector can effectively access, understand and use climate/weather information for decision-making?

(4) What climate/weather data are currently used by the health sector for arbovirus
control, what added value does it provide, and how can climate/weather data be
effectively tailored for arbovirus control operations?

170

171

Climate services for arboviral diseases in the Caribbean

172 Methods

173 Ethical statement

174	The study protocols were reviewed and approved (or deemed exempt) by the
175	Institutional Review Board (IRB) of the State University of New York Upstate Medical
176	University, the IRB of the University of the West Indies, Cave Hill Campus on behalf of
177	the Ministry of Health of Barbados, and the Ministry of Health and Environment of
178	Dominica. No informed consent was required, as all participants were adults (>18 years
179	of age), were public sector employees, and no identifying information was gathered.
180	
181	Study sites
182	This study focused on the perspectives of health and climate stakeholders from
183	the countries of Barbados and Dominica (Figure 1), SIDS in the eastern Caribbean, as
184	well as regional Caribbean stakeholders. There is a high burden of arboviral diseases in
185	both countries [44–48] (Table 1). These countries were selected because of the regional
186	and national interest in building on previous projects, wherein the health sector identified
187	climate services as a top priority for the management of arboviruses.

Climate services for arboviral diseases in the Caribbean

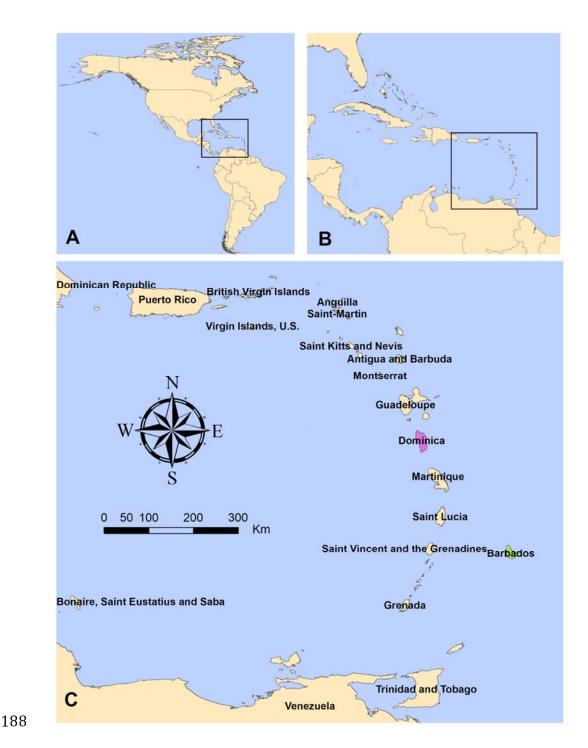


Figure 1: Map of the study region, showing A. The location of the Caribbean region within the Americas, with inset B. showing the archipelago of islands making up the Caribbean, and their location within Meso-America, with inset C. the location of Dominica (purple) and Barbados (green) within the islands in the region. This map was created using freely available country boundary data from GADM.org, rendered in ArcGIS, and image files created using GIMP freeware.

Climate services for arboviral diseases in the Caribbean

_		Barbados	Dominica
_	Mean annual dengue cases (2012-2016) [82]*	2,274	169
	Mean annual dengue incidence (2012-2016) per	80.0	23.5
	10,000 people [82]*		
	Total chikungunya cases since 2013 [83]	1,833 suspected	3,590 suspected
		114 confirmed	173 confirmed
	Total Zika cases since 2016 [46,47]	705 suspected	1,263 suspected
		150 confirmed	79 confirmed
-	*Includes suspected and confirmed cases		
	Barbados (pop. 284,996; land area: 43	9 km ²) has a service-	based economy, with
	tourism accounting for 12% of the gross dome	estic produce (GDP).	However, tourism is a
	water-intensive sector, and droughts threaten	to reduce the already	limited freshwater
	resources [49]. From 2011-2015, Barbados wa	as selected as the cou	ntry in the Western
	hemisphere for the WHO project on climate c	hange adaptations str	ategies for human
	health, funded by the Global Environment Fac	cility (GEF) Special C	Climate Change Fund
	(SCCF) [50]. The Ministry of Health is respon	nsible for arbovirus a	nd vector surveillance
	and control.		
	Dominica (pop. 73,543; land area: 750) km ²) is characterized	d by abundant
	freshwater resources, forest and rugged terrain	n. Eco-tourism is beco	oming increasingly
	significant to its economy. Dominica was sele	ected as the health exe	emplar for the GFCS,
	resulting in a national consultation on climate	and health vulnerabi	lity in 2015-2016 that
	included vector borne diseases (VBDs), food		

Table 1. Arboviral disease cases in Barbados and Dominica

Climate services for arboviral diseases in the Caribbean

209	country was devastated by Hurricane Maria in September 2017, a category 5 hurricane
210	that damaged 90% of buildings, resulting in USD 1.3 billion in damages, the equivalent
211	of 224% of Dominica's GDP in 2016 [52]. This study was conducted in the months prior
212	to Hurricane Maria. The Ministry of Health and Environment is responsible for arbovirus
213	and vector surveillance and control.
214	The national health agencies of both countries are supported by the Caribbean
215	Public Health Agency (CARPHA) and the Pan American Health Organization (PAHO),
216	the regional arm of the WHO. Each country has its own national meteorological and
217	hydrological service (NMHS) supported by the Caribbean Institute for Meteorology and
218	Hydrology, the technical arm of the Caribbean Meteorological Organization (CMO).
219	Details regarding the mandates and capabilities of the public health and climate national
220	and regional organizations, with respect to arbovirus and vector surveillance and control,
221	and climate monitoring and forecasting, are provided in S1 Text.
222	
223	Surveys and interviews
224	We collected data from key stakeholders from the climate and health sectors
225	spanning senior leadership, managers, and expert practitioners. Stakeholders from the
226	health sector were engaged in arbovirus epidemiology and vector control, or
227	environmental health, at national and regional (Caribbean) agencies. Stakeholders from
228	the climate sector were individuals involved in the development of climate services for
229	the Caribbean region and managers/practitioners from NMHSs. Interviewees were
230	identified by local collaborators and through snowball methodology, whereby

231 interviewees were asked to identify 2-3 additional stakeholders. We determined that we

Climate services for arboviral diseases in the Caribbean

had effectively sampled all key stakeholders when no new names were identified; this
was feasible given the relatively small size of the climate and health sectors in the study
area.

235 A survey instrument was developed for health sector stakeholders. We asked 236 questions regarding basic demographic information, their perceptions of climate 237 variability and arbovirus risk factors, perceptions of the public health sector response to 238 climate variability, current use of climate information, how they prefer to interact with 239 and receive EWS information, the current strengths and weaknesses of their department 240 with respect to the implementation of a arbovirus EWS, and their training needs. In the 241 survey, we defined climate variability as, "short-term changes in climate that occurs over 242 months, to seasons, to years. This variability is the result of natural, large-scale features 243 of the climate, often related to El Niño or La Niña events. Examples include floods, 244 multi-year or seasonal droughts, heat waves, hurricanes or tropical storms." Questions 245 were informed by a prior large-scale survey of health practitioner perceptions of climate 246 change impacts on health conducted in the United States, called "Are We Ready?" [36-247 38], as well as studies by Paterson et al. [39] and Gould and Rudolf [35]. 248 Printed surveys were distributed to health sector stakeholders at national vector 249 control, environmental health, and epidemiology offices, as well as those who 250 participated in national workshops on the development of climate services for arboviruses 251 in Barbados and Dominica in April 2017. The workshop in Dominica was organized by 252 the CIMH and the Ministry of Health and Environment (6 health sector participants). The 253 workshop in Barbados was organized by the PAHO and the CIMH (~21 health sector

Climate services for arboviral diseases in the Caribbean

254 participants). Survey responses were entered into an online digital database using

255 Qualtrics and responses were tabulated.

256	An interview instrument was developed for stakeholders from the climate and
257	health sectors. Questions in the interview and survey were similar so that we could
258	triangulate and validate the responses. We also asked which organizations they had
259	partnered with to manage vector borne diseases, which organizations they would like to
260	partner with, how climate and health fit within their current institutional
261	priorities/mandates/competencies, and what strategies would stimulate collaboration
262	between the climate and health sectors. In interviews with program directors, we asked
263	additional questions about available climate and arbovirus/vector data, as well as
264	arbovirus and vector surveillance and control strategies, and climate monitoring and
265	forecasting (see institutional competencies in S1 Text).
266	Project investigators interviewed stakeholders from the climate and health sectors
267	through in-person meetings or via Skype in April and May 2017. Interviews were audio
268	recorded following permission from interviewees. Recordings were transcribed and
269	coded by project investigators to identify responses by research topic, country/region and
270	sector [53,54].

During the Barbados national workshop, we conducted an exercise where health (n=~21) and climate sector (n=6) participants were divided into small groups that included representatives from both sectors. Groups were asked to respond to different forecast scenarios (2 week, 3 month, and 1 year forecasts of *Aedes aegypti* larval indices and dengue incidence). They were asked to identify the actions that they would take in response to alerts at each time scale, and they discussed the utility of a vector versus

Climate services for arboviral diseases in the Caribbean

277	disease forecast. As with interviews, responses were audio recorded, transcribed, and
278	coded.
279	The survey, interview, and workshop instruments were reviewed and tested by
280	local collaborators, as well as the research team, prior to implementation. Instruments are
281	available in S2 Text and S3 Text.
282	
283	Results
284	We surveyed 32 individuals from the health sector and interviewed 41 individuals
285	from the climate (n=10) and health (n=31) sectors. Respondent demographics are shown
286	in Table 2. Several individuals participated in both interviews and surveys; however, the
287	exact number is unknown since identifiable information was not collected from surveys.

	Survey	Interview
Responses	% (n)	% (n)
Total respondents	32	41
Female	72% (23)	56% (23)
Male	28% (9)	44% (18)
Jurisdiction		
Barbados	63% (20)	37% (15)
Dominica	31% (10)	41% (17)
Regional	6% (2)	15% (6)
Sector		
Health sector	100% (32)	76% (31)
Climate sector	**	24% (10)

Table 2. Demographics of survey and interview participants

Climate services for arboviral diseases in the Caribbean

Range Age		
18 - 30	9% (3)	*
31 - 40	25% (8)	*
41 -50	31% (10)	*
51-65	25% (8)	*
> 65	3% (1)	*
No response	6% (2)	*
Level of Education		
Associate's degree	16% (5)	0% (0)
Bachelor's degree	22% (7)	2% (1)
Master's degree	59% (19)	20% (8)
MD or PhD degree	0% (0)	15% (6)
No response	3% (1)	61%(25)
Time working in sector		
1-5 years	3% (1)	0% (0)
6 -11 years	13.5% (4)	2% (1)
12-15 years	16% (5)	5% (2)
> 15 years	62.5% (20)	20% (8)
No response	6% (2)	76% (31)

288 *Data not gathered

289 **Only individuals from the health sector were surveyed

290

291 (1) What are the perceptions of climate-health or climate-arbovirus linkages?

292 *Perceptions of climate variability and health impacts.* In surveys, health

- 293 practitioners were asked to respond to a series of statements about the effects of climate
- variability on health in their jurisdiction and their ability to respond to these effects
- 295 (Likert scale, from strongly disagree to strongly agree, Table 3). Most agreed that their

Climate services for arboviral diseases in the Caribbean

296	jurisdiction is experiencing an increased risk of diseases transmitted by Ae. aegypti due to
297	climate variability and that the risk will increase in the future. Survey respondents were
298	worried about the effects of climate variability on health, and they agreed that this is an
299	urgent problem in their jurisdiction. Although two thirds agreed that there are options or
300	solutions to reduce the effects of climate variability on health, they disagreed that they
301	had sufficient resources and expertise assess the impacts of climate variability on health
302	and to protect residents in their jurisdiction.

303

Table 3. Perceptions of climate variability impacts on health reported by survey

305 **respondents.** Results shown as % (n). This most common response per question is

306 highlighted in bold. Adapted from [36–38].

Questions	No	Don't	Disagree*	Neither agree	Agree*
Questions	response	know	Disagiee	nor disagree	Agree
My jurisdiction is currently					
experiencing one or more serious public		3% (1)	13% (4)	9% (3)	
health problems as a result of climate	6% (2)				69% (22)
variability.					
My jurisdiction is currently					
experiencing an increased risk of	20((1)	(0) (2)	20((1)	00/ (2)	
diseases transmitted by Aedes aegypti	3% (1)	6% (2)	3% (1)	9% (3)	78% (25)
due to climate variability.					
In the next 20 years, my jurisdiction					
will experience increasing risk of	204 (1)	100/ (1)	264 (1)	0 (0)	
diseases transmitted by Aedes aegypti	3% (1)	13% (4)	3% (1)	0 (0)	81% (26)
due to climate variability.					

Climate services for arboviral diseases in the Caribbean

I am worried about the impact of					
climate variability on the health and	3% (1)	0% (0)	0% (0)	3% (1)	94% (30)
well-being of people in my jurisdiction					
The effects of climate variability on the					
health of people in my jurisdiction is an	3% (1)	3% (1)	0% (0)	13% (4)	81% (26)
urgent problem					
There are options/solutions to reduce					
the effects of climate variability and to	3% (1)	3% (1)	16% (5)	13% (4)	66% (21)
improve the health of people in my	570(1)	570 (1)	10% (5)	1370 (4)	00 /0 (21)
jurisdiction					
The people in my jurisdiction are					
worried about the effects of climate	6% (2)	3% (1)	22% (7)	13% (4)	56% (18)
variability on their health and	070 (2)	570 (1)	2270 (7)	1576 (1)	5070 (10)
wellbeing.					
My health department currently has					
ample expertise to assess the potential					
public health impacts associated with	3% (1)	0% (0)	41% (13)	19% (6)	38% (12)
climate variability that could occur in					
my jurisdiction					
Dealing with the public health effects					
of climate variability is an important	6% (2)	0% (0)	13% (4)	22% (7)	59% (19)
priority for my health department					
I am knowledgeable about the potential					
public health impacts of climate	3% (1)	0% (0)	16% (5)	3% (1)	78% (25)
variability.					
The other relevant senior managers in	13% (4)	3% (1)	19% (6)	13% (4)	53% (17)
my health department are	10/0 (7)	0/0 (1)			

Climate services for arboviral diseases in the Caribbean

variability.					
My health department currently has					
ample expertise to create an effective					
plan to protect local residents from the	6% (2)	6% (2)	34% (11)	22% (7)	31% (10)
health impacts of climate variability					
My health department currently has					
sufficient resources to effectively					
protect local residents from the health	9% (3)	6% (2)	57% (18)	19% (6)	9% (3)
impacts of climate variability					
My health department is able to					
effectively communicate the health		0% (0)	31% (10)	19% (6)	41% (13)
impacts of climate variability to local	9% (3)				
communities					
Agree and strongly agree were combined	into one cate	gory, as were	disagree and str	ongly disagree	
	·		C		
			ansmitted dise		

311 diseases transmitted by Ae. aegypti (Table 4). Non-climate risk factors were identified as

312 more important overall than climate risk factors. The most important non-climate risk

313 factors, in order of importance, were the introduction of new viruses to susceptible

314 populations, water storage behavior, and insecticide resistance in mosquitoes. The most

315 important climate risk factors, in order of importance, were heavy rainfall and drought

316 conditions. The least important risk factors were warm air temperatures, El Niño or La

317 Niña events, and economic barriers to mosquito control by households.

307

308

309

Climate services for arboviral diseases in the Caribbean

318 Table 4. Factors that trigger epidemics of diseases transmitted by *Aedes aegypti*

319 **reported by survey respondents.** Results shown as % (n), listed in order of most to least

320 important.

	No	Slightly	Moderately		Very
Categories	response	important	important	Important	Important
Introduction of a new virus to a	0 (0)	0 (0)	0 (0)	9.4 (3)	90.6 (29)
susceptible population	0(0)	0(0)	0(0)	<u>у.</u> ч (3)	<i>J</i> 0.0 (2 <i>J</i>)
Water storage behavior	3.1 (1)	0 (0)	0 (0)	15.6 (5)	81.3 (26)
Insecticide resistant mosquitoes	0 (0)	6.3 (2)	6.3 (2)	18.8 (6)	68.8 (22)
Heavy rainfall	0 (0)	3.1 (1)	6.3 (2)	46.9 (15)	43.8 (14)
Human movement	0 (0)	3.1 (1)	6.3 (2)	46.9 (15)	43.8 (14)
Insufficient staff/resources for	0 (0)	0 (0)	12.5 (4)	43.8 (14)	43.8 (14)
vector control	0(0)	0(0)	12.3 (4)	43.8 (14)	45.8 (14)
Lack of community knowledge	0 (0)	3.1 (1)	15.6(5)	27.5(12)	43.8 (14)
and awareness	0 (0)	5.1 (1)	15.6 (5)	37.5 (12)	43.8 (14)
Limited community	0 (0)	21(1)	(2)	562(19)	24 4 (11)
engagement/mobilization	0 (0)	3.1 (1)	6.3 (2)	56.3 (18)	34.4 (11)
Drought conditions	3.1 (1)	31.3 (10)	9.4 (3)	25 (8)	31.3 (10)
High-risk housing conditions	9.4 (3)	12.5 (4)	21.9 (7)	25 (8)	31.3 (10)
Low risk perception by	21(1)	3.1 (1)	12.5 (4)	50 (16)	31.3 (10)
communities	3.1 (1)	5.1 (1)	12.3 (4)	50 (16)	51.5 (10)
Economic barriers to mosquito					
control by households (e.g., cost	0 (0)	9.4 (3)	31.3 (10)	34.4 (11)	25 (8)
of screens or insecticide)					
El Niño or La Niña events	3.1 (1)	6.3 (2)	18.8 (6)	50 (16)	21.9 (7)
Warmer air temperatures	6.3 (2)	25 (8)	18.8 (6)	31.3 (10)	18.8 (6)

Climate services for arboviral diseases in the Caribbean

322	Interviewees were also asked to discuss climate and non-climate risk factors for
323	arbovirus epidemics. They indicated that frequent (re)-introduction of viruses and vectors
324	was associated with human movement between the islands due to trade and tourism. In
325	Dominica, interviewees also identified human movement between rural and urban areas
326	as a risk factor.
327	Interviewees identified the onset of the hot, rainy/wet season as a risk factor for
328	arbovirus transmission, although they indicated that the linkages between rainfall and
329	dengue fever have become less apparent due to water storage practices. Two interviewees
330	highlighted this contradiction,
331	"If the rain falls very heavily, within two weeks expect to have an increase in
332	number of cases. It's always associated with rainfall" (Health Sector, Barbados).
333	"With these droughts, there doesn't seem to be, in the last few years, a real
334	dengue season" (Health Stakeholder, Barbados).
335	In Barbados, interviewees indicated that household water storage was associated
336	with drought conditions and the resulting water scarcity. Another risk factor was the
337	national legislation requiring that all new buildings greater than 1500 square feet have
338	rainwater storage receptacles as a drought adaptation strategy; however, the receptacles
339	have become mosquito larval habitat. Interviewees indicated that the improper
340	management of public utilities and infrastructure (e.g., telephone junction boxes, manhole
341	covers, public wells, drains) had resulted in cryptic mosquito larval habitats that were
342	difficult to find and treat during the wet season.
343	In Dominica, interviewees commented that water storage had increased following
344	Tropical Storm Erika (2015). The storm damaged the piped water systems and people

Climate services for arboviral diseases in the Caribbean

345	began storing freshwater in 55-gallon drums around the home. This behavior continued
346	despite repairs to water systems. One interviewee described the effects of Erika,
347	"After the Tropical Storm Erika, everything just got a little more vulnerable than
348	it used to be it was just one downpour of rain that caused all of the destruction"
349	(Health Stakeholder, Dominica)
350	Interviewees from Dominica noted that Ae. aegypti had expanded its range into higher
351	elevation areas, where the mosquito had not been present historically.
352	Other effects of climate on health. Interviewees were asked to identify other ways
353	that climate affected health in their jurisdiction. They identified a wide range of
354	interrelated health effects associated with climate, including increased risk of morbidity
355	due to the interaction of heat stress and diabetes associated with hotter days and nights,
356	leptospirosis (Leptospira sp.) associated with flooding, and communicable diseases
357	associated with relocation and crowding of people in shelters following tropical storms.
358	They indicated that malnutrition was associated with droughts that reduced crop yields
359	and warming ocean temperatures that caused fish kills. Respiratory problems (e.g.,
360	asthma) were associated with dry weather, dust and air pollution. Factors unique to
361	Barbados included hypertension due to sea level rise and salt-water intrusion in the
362	groundwater supply, reduced hygiene and Pseudomonas infections due to water scarcity
363	and storage, skin cancer due to UV exposure, and water-borne diseases (e.g.,
364	gastroenteritis, Salmonella) associated with flooding. Factors unique to Dominica
365	included loss of lives due to landslides associated with tropical storms, gastroenteritis
366	associated with dry weather, and mental health morbidity in the elderly and other

Climate services for arboviral diseases in the Caribbean

367	vulnerable populations who are relocated after tropical storms. One informant described
368	the complex web of causality associated with the effects of climate on health,
300	the complex web of causanty associated with the effects of chinate on health,
369	"[During droughts] people are not able to go to their farms, they don't have food
370	and their nutrition suffers. They don't have income they cannot get their
371	medications So its just the rippling effect" (Health Stakeholder, Dominica).
372	Interviewees stressed the need to strengthen the evidence base linking climate and
373	health in their jurisdictions. They recognized that most of these linkages were anecdotal
374	or hypothetical, since there have been few local studies on climate and health, as
375	summarized by one interviewee,
376	"So we have not been able to make a direct link between those diseases and
377	climate variability and change; however, we know that there has been an increase
378	as a result of climate variability The data to make that linkage is not really
379	always available" (Health Stakeholder, Dominica).
380	Interviewees from the Barbados NMHS indicated that they had limited experience with
381	climate research, and that this was an area that they were interested in expanding.
382	National-level health sector interviewees displayed a high level of field experience and
383	local knowledge, but they indicated that they had little knowledge of empirical studies
384	that could inform their decision-making and planning processes. As stated by one
385	interviewee,
386	"We want more evidence-based decision-making. We want data That's priority
387	#1 to get the evidence." (Health Stakeholder, Regional)
388	Interviewees recommended conducting case studies, or demonstration projects, in the
389	region to generate local evidence on climate-health linkages. They suggested focusing

Climate services for arboviral diseases in the Caribbean

these investigations and interventions at the medium-term climate variability timescale
(e.g., seasonal variation, year-to-year variation in extreme climate events), rather than the
long-term climate change time scale.

393

394 (2) Who are the key actors engaged in climate-arbovirus surveillance and control,

395 and how to strengthen communication and partnerships amongst these actors?

396 *Partnerships*. Interviewees identified diverse national and international agencies

and funders engaged in climate-arbovirus surveillance and control (Figure 2). The key

regional institutions were the PAHO, the CARPHA, and the CIMH. The Red Cross was

399 the most frequently mentioned non-governmental organization (NGO). The health sectors

400 engage periodically with their respective NMHS on specific projects; however, there are

401 no formal collaborations. Understanding and mitigating the effects of climate on health

402 are relatively high priorities in the health sector, but climate and health is not yet a

403 mandate (S1 Text). Similarly, the NMHS do not have a mandate to work on climate and

404 health. As a result, it has been difficult to allocate resources (e.g., personnel, funding) to

this area. Interviewees indicated that the key partnerships to be strengthened were the

406 private sector (tourism, vector control companies, media), academic institutions, and civil

407 society organizations.

Climate services for arboviral diseases in the Caribbean

Regional and national climate/weather sector CIMH, Dominica Meteorological Service

Social security Ministry of Education Disaster management Ministry of Environment National Pest (vector control) Land surveyors/planning

Ministry of Environmental Health of Dominica

> **Regional health** sector **CARPHA & PAHO**

> > Universities

Red Cross Village councils DFID (UK) Health Canada Utility companies Solid Waste Management

Faith-based organizations

Tourism (hotels)

Other private vector control

Media & communications

Regional and national climate/weather sector CIMH, Barbados Meteorological Services

Ministry of Health

of Barbados

Regional health

sector

Universities

Ministry of Education Government information service National Housing Corp. Ministry of Environment Town planning department National Petroleum Corp. Department of Emergency Management

CARPHA & PAHO Other community organizations

Tourism (hotels)

Red Cross

Constituency councils Faith-based organizations Water authority

Utility companies

Solid Waste Management

Private vector control Media & communications

408

409 Figure 2. Stakeholder analysis. Organizations (in black) that work with the health sector

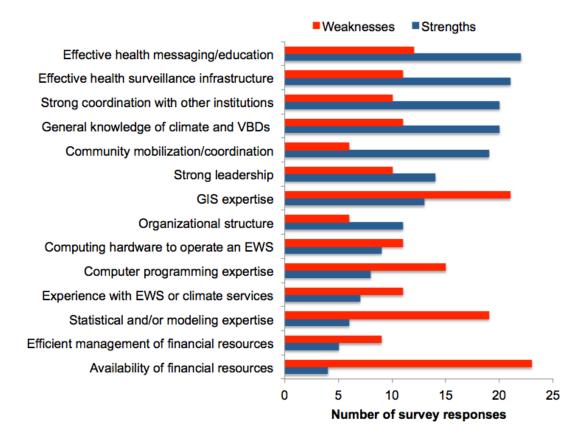
410 in Barbados and Dominica on issues related to vector control and climate services for

411 health. Organizations in red were identified as needing a stronger relationship with the

412 health sector.

Climate services for arboviral diseases in the Caribbean

414	Collaboration strategies. Interviewees identified six strategies to strengthen the
415	communication and partnerships amongst these actors. First, they highlighted the
416	importance of an integrated approach to the development of climate services for health
417	spanning research, operations, a platform for data and knowledge sharing, outreach,
418	awareness raising, education, an in-country response, and mitigation plans and policies.
419	Second, interviewees emphasized the importance of engaging senior leaders from the
420	health sector to raise the profile of climate and health on the health agenda, and to ensure
421	that actions are driven from the top-down. Third, they highlighted the importance of
422	formal collaboration agreements amongst climate, health, and other sectors, similar to the
423	multi-lateral agreements recently signed amongst the CIMH, the CARPHA and other
424	regional Caribbean agencies. Interviewees indicated that collaboration agreements would
425	allow them to co-develop and co-deliver climate services for the health sector.
426	Interviewees perceived that collaboration agreements signaled a strong commitment from
427	institution directors and an understanding of mutual benefit. Fourth, they suggested that
428	national committees on climate and health be established to specify the work that would
429	be done jointly, the roles of each partner, a timeline for an operational plan, and standard
430	operating procedures (SOPs) with a framework for communication, data sharing, and
431	reporting guidelines. Fifth, interviewees indicated the importance of creating shared
432	spaces for dialogue between the climate and health sectors, such as regional and national
433	climate and health forums. An interviewee from the climate sector stated,
434	"Just sitting with people in the sectors makes such a big difference Understand
435	them, what drives them, what are their needs? Because we might think they need
436	something they don't Sometimes it's about forgetting yourself and putting


Climate services for arboviral diseases in the Caribbean

437	yourself in the other person's shoes to really figure out what the need is about.
438	That's true engagement" (Climate Stakeholder, Regional).
439	This engagement would help to build functional working relationships and increase the
440	trust among people in both sectors, allowing sectoral stakeholders to learn about the
441	needs and perspectives of the other, what information can be shared, and the resources
442	available to help each other. One interviewee stated,
443	"Once we build the trust, then we build the network, then we can see what the
444	willingness to collect, to centralize, to digitize, and to share the data really is"
445	(Climate Stakeholder, Regional).
446	For example, interviewees suggested that the MoH could partner with their NMHS to
447	ensure that new weather stations are placed in areas that are strategic for the surveillance
448	of arboviruses. Representatives from the NMHS could participate in the regular
449	epidemiological surveillance meetings of the MoH. Last but not least, interviewees
450	suggested that climate services for health be framed as a national development priority, a
451	strategy that would increase buy-in from decision makers and funding from international
452	development agencies. One informant stated,
453	"I think people will embrace climate and health [it is] a real sustainable
454	development goal Health has always been a critical sector" (Climate
455	Stakeholder, Regional).
456	
457	(3) What are the current capabilities of the health and climate sectors to implement
458	a climate-driven arbovirus EWS? What capacities need to be strengthened?

Climate services for arboviral diseases in the Caribbean

459	Health sector survey respondents were asked to identify the strengths and
460	weaknesses of their institution with respect to the implementation of an arbovirus EWS
461	(Figure 3). The top strengths were effective public health messaging to communities,
462	effective health surveillance infrastructure, knowledge of the effects of climate on vector
463	borne diseases, strong coordination with other institutions, and community mobilization.
464	The top weaknesses, or areas to be strengthened, were the availability of financial
465	resources and expertise in geographic information systems (GIS), statistics, modeling,
466	and computer programming (S4 Table for software currently used in health departments

467 and S5 Table for preferred training activities).

468

469 Figure 3. Perceptions of the strengths and weaknesses of the health sector with 470 respect to the capacity to implement an EWS for Aedes aegypti transmitted diseases.

471

EWS = early warning system, GIS = geographic information system, VBDs = vector 472 borne diseases

Climate services for arboviral diseases in the Caribbean

474	Interviewees highlighted the need to train, nurture, and retain a cohort of
475	practitioners with expertise in climate and health. Health sector interviewees emphasized
476	the need to increase their skills in modeling and data analysis through technical
477	workshops on how to use climate information, data, models and other tools to predict
478	epidemics. They identified the need for training on climate and health linkages, greater
479	understanding of climate services for health, how to use climate services for health during
480	emergencies/disasters, and how to communicate the effects of climate on health to local
481	communities. They suggested that training activities be practical and interactive, such as
482	workshops where multisectoral teams respond to simulations of epidemic warnings.
483	Health sector interviewees also expressed an urgent need for training on
484	geographic information systems (GIS). They found that GIS was a highly effective tool
485	that allowed them to use field data to make informed decisions, and to communicate risk
486	information back to the public.
487	"It is so much easier, better, to use maps when you are doing presentations.
488	Especially if you are doing something with the public where you can actually
489	show them their community and say, 'There you have breeding sites. There is
490	where you have the problem.' And they can actually see it. You can actually show
491	it to them." (Health Stakeholder, Dominica).
492	In Dominica, interviewees highlighted the need for vector control specialists in the MoH,
493	since their environmental health officers are responsible for a broad portfolio of activities
494	and are trained as generalists. Interviewees from both countries highlighted the need for
495	better data collection and storage practices in the health sector in order to create high-
496	quality, long-term datasets.

Climate services for arboviral diseases in the Caribbean

497	NMHS (national climate sector) interviewees indicated that they had limited
498	capacity to implement climate services for health. Interviewees from Barbados and
499	Dominica indicated the need for additional personnel, as well as a better understanding of
500	health sector end-user needs Interviewees from the Dominica NMHS indicated that they
501	had difficulty reaching the meteorological stations to download data due to the complex
502	topography of the country. They identified the need for basic resources to increase their
503	monitoring and forecasting capacities, including a staff meteorologist, adequate
504	transportation to and from meteorological stations, financial resources, instrumentation,
505	and improved security to prevent vandalism the meteorological stations. They stated,
506	"We use our personal vehicles, but some of the areas are a bit challenging, and we
507	are two females, so sometimes depending on where we are going, we need
508	somebody else to go with us, for security" (Climate Stakeholder, Dominica).
509	Health sector interviewees from Dominica suggested that their technicians could be
510	trained to download data from meteorological stations to support the local NMHS.
511	
512	(4) What climate/weather data are currently used by the health sector for arbovirus
513	control, what is the added value, and how can climate/weather data be effectively
514	mainstreamed for arbovirus control operations?
515	Use of climate information. Health sector survey respondents were asked about
516	their current use of climate information (S6 Table). Two thirds of respondents indicated
517	they had received general information on the effects of climate on vector borne diseases,
518	and half of the respondents confirmed that climate information was used for some level
510	of planning for discass and vector control interventions. They were unsure as to whether

519 of planning for disease and vector control interventions. They were unsure as to whether

Climate services for arboviral diseases in the Caribbean

520	an EWS for arboviruses existed in their jurisdiction, but most indicated that climate
521	information was not part of existing epidemiological warning systems.
522	Interviewees confirmed that the arbovirus alert systems in Dominica and
523	Barbados were based solely on epidemiological surveillance. The health sector and
524	PAHO issue an alert when the number of reported cases surpasses a pre-determined
525	threshold established by the historical average for the same week or month (see Lowe et
526	al. [11] for details). Interviewees indicated that the current system did not provide
527	sufficient lead-time to effectively reduce the threat of an epidemic.
528	Interviewees described the current use of climate information for arbovirus
529	control. The health sector considers wet/dry seasons and extreme climate events when
530	planning vector control programs, for example, by increasing larviciding efforts at the
531	onset of the wet season or increasing community campaigns on safe water-storage during
532	droughts. Occasionally the health sector requests climate/weather information from their
533	NMHS and the data are generally shared as Excel files. However, they do not formally
534	incorporate climate information, such as seasonal climate forecasts, into their planning
535	process. Overall, climate information was reported to play a minor role in decision-
536	making, which was instead driven by policies, regulations, and specific competencies of
537	the organizations.
538	Forecast scenarios. At the national workshop in Barbados, health and climate
539	stakeholders were asked to identify the interventions they would implement if they were
540	provided with short (2 week), medium (3 month) and long-term (1 year) forecasts of
541	vector abundance and dengue incidence (S3 Text). They unanimously stated that disease

542 incidence forecasts would be more effective than vector forecasts in garnering the

Climate services for arboviral diseases in the Caribbean

543	political attention necessary to mobilize resources to implement preventative
544	interventions. With a short-term forecast, the health sector would increase education,
545	community mobilization, and larval source reduction, especially in known hotspots. With
546	a medium-term forecast, the health sector would be better able to plan with stakeholders,
547	mobilize the field team, look at trends, and create bulletins for community mobilization.
548	With a long-term forecast the health sector could better lobby with health sector
549	leadership and the Minister of Finance for the needed financial support, allowing for
550	more effective budgeting. They would be able to monitor and evaluate interventions and
551	conduct a needs assessment to inform planning. They would also be able to procure
552	diagnostic reagents and supplies for the national reference laboratory, a process that can
553	take up to 6 months. Although the workshop participants identified meaningful
554	interventions at each timescale, they preferred the medium-term (3-month) forecast as
555	indicated in the following,
556	"A year can feel like a long time away. With 3 months, there will be a sense of
557	urgency and you can do meaningful activities, although there might not be new
558	resources" (Health Stakeholder, Barbados).
559	Added value of climate services. Health sector interviewees highlighted the ways
560	in which climate services would improve their planning for arbovirus interventions. By
561	integrating climate and/or disease forecasts into their seasonal and annual planning
562	processes, they felt they could be proactive and more effective at preventing outbreaks, as
563	described by this interviewee,
564	"We know we have Aedes, we know we have the threat, but its only when

565 outbreaks happen, we start scrambling around to do things. So I think if we can

Climate services for arboviral diseases in the Caribbean

566	put mechanisms in place, long in advance, then we can have more success in
567	dealing with outbreaks. Or we can even prevent outbreaks" (Health Stakeholder,
568	Dominica)
569	Interviewees indicated that climate services have to provide reliable information early
570	enough such that the health sector can target control efforts in high-risk areas during
571	certain times of the year. This would result in a more efficient use of limited financial and
572	human resources, as described by this interviewee,
573	"When you know that there is an impending threat, you would come up with
574	specific activities that you would conduct. It doesn't necessarily mean that those
575	activities would be at a higher cost, but you can be more specific It will be
576	easier for us to respond to an impending threat, instead of running around"
577	(Health Stakeholder, Dominica).
578	Interviewees indicated that forecasts of disease risk could be used to inform hospitals
579	about staffing needs, stocking of medicines and laboratory diagnostic reagents, and the
580	development of targeted educational materials for the public. They suggested that
581	warnings be communicated to the public through social media and other outlets to
582	motivate community mobilization for preventative practices. Interviewees indicated that
583	they would feel more motivated and inspired in their day-to-day work if they could see
584	how the data that they collect was being used to inform decision-making.
585	Mainstreaming climate services. Health sector survey respondents were asked
586	how they would prefer to receive information from an arbovirus EWS. The top responses
587	were: a climate and health bulletin (91%), an interactive GIS platform (66%) and internal
588	meetings within their departments (59%) (S7 Table).

Climate services for arboviral diseases in the Caribbean

589	Interviewees were also asked to identify climate services that would improve their
590	day-to-day work related to arboviruses. Health sector interviewees confirmed that they
591	were interested in utilizing the Caribbean Health Climatic Bulletin launched in 2017 by
592	the CIMH, the CARPHA and the PAHO. The bulletin qualitatively summarizes potential
593	health impacts for a 3-month period based on seasonal climate forecasts
594	(https://rcc.cimh.edu.bb/health-bulletin-archive/). Health sector interviewees also
595	reiterated that a GIS platform would allow them to integrate and analyze real-time
596	information on disease epidemiology, entomology, and climate. They could use this
597	platform to produce risk maps showing the spatial distribution of mosquito vectors and
598	disease risk in relation to rainfall, temperature, and other climate information. They
599	suggested that these forecasts be converted into spatiotemporal alerts using a color-
600	coding scheme. Other ideas for climate services included the use of wind speed and wind
601	direction forecasts to inform insecticide fogging operations. One informant summarized
602	the health sector needs in the following,
603	"We need it [climate services] packaged in such a way that the health professional
604	would understand. Pick it up, and look at it, and understand it" (Health
605	Stakeholder, Dominica).
606	"Decision makers at the policy level are not healthcare providers. They are
607	administrators, they are politicians, and we need to help them. We need to feed
608	them [decision makers] with the kind of information they can understand, and [so]
609	they can feel comfortable making decisions" (Climate and health workshop
610	participant, Barbados).
(11	

611

Climate services for arboviral diseases in the Caribbean

612 **Discussion**

613 Small island developing states (SIDS) in the Caribbean region are amongst the 614 most vulnerable countries in the world to climate change [1.2]. The effects of a changing 615 climate include increased frequency and severity of droughts and increased frequency of 616 tropical storms and hurricanes. Extreme climate events affect directly or indirectly most 617 dimensions of people's well- being, including mental and physical health, food, housing, 618 freshwater, and livelihoods. Huang et al [55] state that public health sector adaptation to 619 climate change should consist of both adaptive-capacity building and implementation of 620 adaptation actions. A climate-driven arbovirus EWS is a key adaptation action. However, 621 our study confirms that this will only be possible if current capacities are increased in the 622 Caribbean region. Prior reports have noted the embryonic status of the application of 623 climate science in the Caribbean health sector [24] and an assessment of on the capacity 624 of the network of Caribbean NMHSs to deliver climate services that found that only one 625 NMHS offered specialized climate information services for the health sector [56]. 626 Global research on climate services has identified characteristics or conditions to 627 develop a usable science that can be mainstreamed for public health operations. The first 628 phase is to establish an enabling environment for partnership with different stakeholders. 629 This is done by identifying the common priorities, needs for research, and by building 630 necessary capacities for understanding among climate and public health stakeholders and 631 researchers [57,58]. In this study we identified some of the challenges involved in 632 initiating a successful process of joint collaboration between the climate and public health 633 sectors. This partnership is critical to ensure commitment and ownership by different 634 stakeholders and end-users as climate services are developed.

Climate services for arboviral diseases in the Caribbean

635	In this study, climate services for health, specifically for Ae. aegypti-transmitted
636	arboviral diseases, were considered because high policy level organizations
637	(PAHO/WHO, CIMH, CARPHA) are encouraging the application of the GFCS. The
638	WHO recently developed a guide for the operational development of climate resilience
639	water [59] and health systems [60]. This initiative acts in synergy with the GFCS and
640	describes how existing systems can include climate information in their operations to
641	reduce the impacts of climate change on human health. We found that the sustainability
642	of these initiatives will require the political will to establish climate services for health as
643	a mandate in the NMHS and public health sectors, allowing them to work in
644	interdisciplinary and intersectoral teams. The benefits of these decisions could extend to
645	other government agencies and the private sector, such as the Ministry of Environment or
646	Ministry of Tourism, as well as regional universities, research centers, and sustainable
647	development agencies. A clear opportunity was the "Third Global Conference on Health
648	and Climate: Special Focus on SIDS," which was held in Grenada in October 2018. The
649	meeting convened Caribbean Ministers of Health, Ministers of Environment,
650	representatives from UN agencies and other key stakeholders to develop an Action Plan
651	on Health and Climate Change for the Caribbean [61].
652	We found that the national climate sectors (NMHSs), in particular, identified
653	capacity challenges when asked about engaging in work on climate and health. We also
654	found that the regional climate stakeholders were more experienced with climate services
655	for health than local NMHS stakeholders. Prior assessments of the NMHSs in the
656	Caribbean also noted that there is limited technical capacity of local level staff, especially
657	on smaller islands like Barbados and Dominica [56]. In recent research, representatives

Climate services for arboviral diseases in the Caribbean

from the NMHSs recommended transitioning from a designation of NMHS to become
"National Climate Services Centers (NCSC)," which would facilitate the development of
climate services at the national level [56].

661 Despite major advances in climate science and climate-health research globally, 662 our results confirm that climate information is neither routinely applied nor used in 663 planning interventions in Barbados or Dominica. To date, there has been limited success 664 in developing operational climate services for dengue, although several studies have 665 demonstrated the potential [17,62–68]. One of the most promising examples of a climate-666 driven dengue forecast model framework was recently described by Lowe et al. for 667 Barbados [11]. Distributed lag nonlinear models [69] were coupled with a Bayesian 668 hieratical mixed model [66] to quantify the nonlinear and delayed impacts of climate 669 factors, such as drought and extreme rainfall, on dengue risk in Barbados from 1999 to 670 2016. The study found that drought periods followed by a combination of warm and wet 671 weather several months later could provide optimum conditions for imminent dengue 672 outbreaks. The developed model successfully predicted a high probability of dengue 673 outbreaks versus non-outbreaks in most years, with improved performance during El 674 Niño years. However, model performance in 2015-2016 was compromised by the lack of 675 data on the emergence of chikungunya and Zika in the region in the prior years. Seasonal 676 climate forecasts routinely produced by the Caribbean Institute for Meteorology and 677 Hydrology could be incorporated in the model framework as an early warning tool. This 678 could help the health sector to plan interventions that mitigate the impact of mosquito-679 borne disease epidemics in the region up to three months in advance.

Climate services for arboviral diseases in the Caribbean

680	The results of this study highlight the need for local research on climate-health
681	linkages, particularly at the climate variability time scale. In some cases, policy makers
682	and practitioners may be better able to plan interventions and to allocate resources at this
683	intermediate season-to-season timescale, as compared to the long-term climate change
684	timescale. Forecasts of extreme climate events can inform Disaster Risk Reduction
685	(DRR) interventions as well as health interventions for the most vulnerable groups.
686	Local climate-health research would engender collaborative scientific articles with co-
687	authors from the climate and health sectors, thus facilitating data sharing, building trust,
688	and fomenting a culture of research on climate and health. Development of data sharing
689	protocols between the climate and health sectors is a priority given the sensitivity of
690	sharing health information.
691	Health sector stakeholders demonstrated concern, awareness and a high-level
692	understanding of the impacts of climate variability on arboviruses and health in general.
693	Prior research in the Caribbean [42] found that there was limited knowledge about
694	climate and health linkages amongst nurses and doctors in private and public sectors.
695	However, this study focused on health sector practitioners and decision makers engaged
696	in environmental health and vector borne diseases, which may account for their greater
697	awareness and concern. More recent studies in the Caribbean confirm a relatively high
698	level of awareness and concern amongst health-care providers [41], similar to studies in
699	the U.S. [36,38]. Several capacity building initiatives undertaken by regional institutions
700	such as CARPHA and PAHO have likely contributed to higher levels of climate-health
701	awareness over time. However, our findings suggest that the public health sector does not

feel ready to develop and implement an EWS or other adaptation measures due to limited

Climate services for arboviral diseases in the Caribbean

institutional capacity (resources and expertise), as found in prior studies in the U.S. andCanada [35–39,55].

705 With respect to expertise, we identified a demand for basic training to increase 706 technical knowledge on climate and health linkages. There is the opportunity to create 707 capacity building programs focused on climate and health, which would support the 708 creation of a cohort of practitioners, decision makers, and researchers who are specialized 709 in this area, thus providing long-term sustainability for a program on climate and health. 710 Interviewees proposed that joint training activities across the climate and health sectors 711 would increase knowledge while strengthening the intersectoral partnership. An 712 interdisciplinary approach is needed for successful implementation of climate services for 713 health. 714 Our findings suggest that technical skills are most needed in the health sector, 715 including GIS, statistics, modeling and computer programming. The health sector 716 currently uses basic tools for disease mapping. It is important to assess local user-needs 717 in order to develop tailored visualizations that are useful and relevant. This is an 718 opportunity for co-production with health and other sectors such as urban planning, 719 disaster risk management, city utilities and services. Developing targeted training in GIS 720 that is driven by user-needs will help in visualization and data analysis at the local level. 721 Additionally, there is the opportunity to develop a fuller range of user-friendly 722 tools/instruments that can be applied by the health sector without specialized expertise in 723 their routine data and reporting activities. The operational co-production of tools and 724 products, such as the quarterly Caribbean Health Climatic Bulletin by the CARPHA, the 725 PAHO and the CIMH, is a noteworthy first step. The bulletin includes qualitative expert

Climate services for arboviral diseases in the Caribbean

726	statements on probable health risks associated with seasonal climate forecasts (3 months
727	ahead). However, there is significant scope for the development of the next generation of
728	climate services that focus on quantitative probabilistic forecasts of disease risk [24].
729	Overall, the appropriate involvement of stakeholders is a key element to identify users'
730	needs, to develop users' capacities and to exploit existing capabilities.
731	National-level opportunities. With respect to financial capacity, the Caribbean
732	climate and health sectors are beginning to work together to attract the resources needed
733	to increase local capacities to develop climate services for the health sector. Stakeholders
734	recommended framing climate services for health as a national development priority,
735	thereby attracting funding from international development agencies. A high-level policy
736	goal may enhance the partnership between climate and health government institutions.
737	For example, the Sustainable Development Goals (SDG), and the Paris Climate
738	Agreement are international policies that have common priorities and objectives: good
739	health and wellbeing (Objective 3), climate action (Objective13), and partnership for the
740	goals (Objective 17) [70,71]. The Paris Agreement recognizes the need to strengthen the
741	global response to the threat of climate change and to significantly reduce the risks of
742	climate change (Article 2.1), including the risk to human health [72]. Thus it is critical to
743	develop national policy interactions within the SDGs, to avoid policymakers and public
744	health planners operating in silos [55,73].
745	The National Development Plan, National Adaptation Plan for Climate Change,
746	and National Disaster Management Plans are policy documents being developed by most
747	countries in the Caribbean. The PAHO has also led recent efforts to develop Health
748	National Adaptation Plans focused on climate resilient health systems for Caribbean

Climate services for arboviral diseases in the Caribbean

740	SIDC [72] These decompanys provide a policy machanism to establish lines of
749	SIDS [73]. These documents provide a policy mechanism to establish lines of
750	intersectoral and interdisciplinary work, which can include the development of climate
751	services for health. Climate change adaptation/mitigation measures are part of the
752	National Determined Contributions (NDCs) that nations develop under the Paris
753	Agreement. Many of those measures can generate co-benefits or added value for the
754	health sector; co-benefits are the additional benefits that result when nations act to control
755	climate change [35]. For example, adaptation efforts aimed at improving water
756	management could also reduce the burden of water-borne or vector-borne diseases [59].
757	However, specific measures need to be identified, monitored and evaluated to be included
758	into the country National Determined Contributions (NDCs) to be reported to the United
759	Nations Framework Convention on Climate Change (UNFCCC). This approach also
760	offer the possibility to access funding from the Green Climate Fund (GCF) in priority
761	sectors such as health, food, water security, and livelihoods of people and communities.
762	For example, the GCF recently approved (March 2018) and co-funded a 5 year project,
763	"Water Sector Resilience Nexus for Sustainability in Barbados" [74].
764	Beyond the climate and health sectors, we identified a complex web of
765	institutional actors who can engage strategically in the development of climate services
766	for health including: a) Water agencies and their climate change and SDG goals related to
767	water supply, and water quality (drinking and wastewater) because of their potential links
768	to vector- and water-borne diseases, b) disaster risk management agencies that deal with
769	hydroclimatic risks that impact vulnerable populations and key infrastructure, c) tourism,
770	to protect visitor health, as well as considering human mobility a critical factor for
771	disease transmission, d) private sector vector control companies, e) community based

Climate services for arboviral diseases in the Caribbean

772	organizations, and f) academic partners, such as the University of West Indies.
773	Identifying priorities and gaps in specific information would strengthen the partnership
774	amongst the sectors, making more effective the development of climate services for
775	human health beyond the ministries and offices of public health [75,76].
776	Regional-level opportunities. In its role as the Regional Climate Centre (RCC),
777	the CIMH leads the implementation of the GFCS in the Caribbean. In its thrust to
778	develop sector-specific climate information, the CIMH has pursued an interdisciplinary
779	team approach that leverages the synergies offered by lead technical institutions who are
780	intimately familiar with their national, regional and sectoral contexts, and can
781	consistently invest in the co-production of user-driven climate early warning information
782	[56,77]. The Consortium of Regional Sectoral Early Warning Information Systems across
783	Climate Timescales (EWISACTs) Coordination Partners is an inter-institutional alliance
784	for climate resilience that in its form and function reflects good practice that prioritizes
785	cross-sectoral, interagency models of climate service delivery over those that follow a
786	silo-ed 'build it and they would come' approach [24]. As of 2015, the CIMH has actively
787	worked on an emerging, multi-pronged health-climate portfolio in collaboration with
788	national and regional partners such as Ministries of Health, NMHSs, the CARPHA, the
789	PAHO, and other international, interdisciplinary research partners [24]. New and
790	emerging research is being conducted to investigate the linkages between climate and
791	vector borne diseases, heat and health, as well as, Saharan dust and health [24]. Work is
792	also being done in climate and agriculture, which supports health and nutrition.
793	The Caribbean Community (CARICOM), a group of 20 Caribbean countries, has
794	mandated the Caribbean Community Climate Change Centre to mainstream climate

Climate services for arboviral diseases in the Caribbean

795	change adaptation strategies into the sustainable development agendas (UNESCO, 2017).
796	For the Caribbean Region, regional perspectives and considerations are relevant for all
797	the countries [78,79]. Successful projects and tools developed in pilot projects, as done in
798	Barbados [11], can be replicated in similar setting in other countries. A demonstration of
799	the benefits of climate services for arbovirus interventions in one country can be used as
800	a model for other productive sectors (tourism, water supply, disaster risk management),
801	and other countries in the region. Regional institutions should work in cooperation to
802	build technical capacities and resilient communities across the region. This is already
803	happening through the Sectoral EWISACTS portfolio and the work of its multi-
804	institutional Consortium, is increasing expertise and awareness of users and providers.
805	CIMH plans to strengthen their RCC platform for engaging stakeholders to share lessons
806	and promote awareness of climate services based on user-needs for all sectors.
807	

808 Limitations

809 When comparing the results of this study to prior studies on health sector 810 perceptions of climate, one key difference is that our study focused on people working 811 with arboviruses, environmental health, and climate, whereas other studies focused on 812 health-care providers or public health professionals in general. However, given the 813 relatively small size of the health sector in Barbados and Dominica, we interacted with 814 most senior leadership in interviews and national consultations, in particular those 815 involved with overall management of the public health sector, epidemiological programs, 816 environment, climate change and health. Although we did consider a regional 817 perspective, the results of this study may not be generalizable to all of the Caribbean.

Climate services for arboviral diseases in the Caribbean

- 818 Country-level studies should be conducted to capture the nuances of local governance
- 819 structures, disease epidemiology, and climate.
- Our results were skewed towards the health sector perspective rather than the climate sector, given that more health sector stakeholders were interviewed, and only health sector stakeholders were surveyed. In part, this reflected that there were many more people working in the national health sectors than in the national climate sectors. On the climate side, our results were skewed towards the regional perspective, given that regional stakeholders had more experience with climate services for health.
- 826

827 Conclusion

The results of this study provide recommendations to enhance an interdisciplinary dialogue and partnership within an active community of practitioners, decision makers, and scientists [31,80]. This study contributes to a broader effort to work collaboratively with regional and national health and climate stakeholders in the Caribbean to develop decision support models to predict arbovirus risk and to design effective warning and intervention strategies [24].

One of the key conclusions of this assessment is the need to strengthen the provider-user interface, as currently there is only limited consideration of the products needed by health sector users. Climate services for health can only become operational with the will and support of the climate and health sector institutions. At the same time, it is necessary to create appropriate 'communities of practices' and to emphasize the codesign of climate services products [81]. Final recommendations include:

Climate services for arboviral diseases in the Caribbean

840	1.	To continue to assess local stakeholder needs and perspectives to support the
841		development of climate services for health.
842	2.	To establish a Memorandum of Understanding (MoU) or Letter of Intent (LOI)
843		between the climate and health sectors, particularly at the national level, with a
844		focus on the development of climate services [77].
845	3.	Strengthening the capacity of NMHS through their designation as National
846		Climate Services Centers (NCSC) [56], allowing them to build capacity around
847		the basic and operative aspects of climate services and to collaborate with health
848		sector partners to promote climate services for health.
849	4.	National Adaptation Plans for Climate Change, including recent regional efforts
850		to create Health National Adaptation Plans, may be an opportunity to include a
851		policy or mandate for climate in the health sector, and may be an opportunity to
852		strengthen climate services, applying long-term scenarios for planning in health
853		and other sectors.
854	5.	To strengthen health sector engagement in the region through annual forums
855		focused on climate services and capacity building tailored to the health sector.
856		This could build on existing regional climate meetings like the bi-annual
857		Caribbean Climate Outlook Forum convened by the CIMH.
858	6.	To implement the WHO operational framework for building climate resilient
859		health systems [60], and to implement other mechanisms to integrate climate data,
860		information and knowledge with multiple health and non-health data sources to
861		support decision making.

Climate services for arboviral diseases in the Caribbean

- 862 7. To improve technical GIS and modeling capabilities, and to develop locally
- relevant tailored tools for non-experts, which can be used to inform decisions and
- decision-making processes.
- 865

866 Acknowledgements

- 867 This study was solicited by the Caribbean Institute for Meteorology and Hydrology
- 868 (CIMH) through the United States Agency for International Development's (USAID,
- 869 Grant ID: AID-538-10-14-00001) Programme for Building Regional Climate Capacity in
- the Caribbean (BRCCC Programme: rcc.cimh.edu.bb/brccc) with funding made possible
- by the generous support of the American people. The authors thank Dr. Shelly-Ann Cox
- 872 for her data collection and research support. RL was supported by a Royal Society
- 873 Dorothy Hodgkin Fellowship. The funders had no role in study design, data collection
- and analysis, decision to publish, or preparation of the manuscript.
- 875
- 876 **Competing interests**: The authors have declared that no competing interests exist.

Climate services for arboviral diseases in the Caribbean

877 Supporting information legends

878 S1 Text. Climate and Health Sector Mandates and Competencies. This document

- 879 describes the mandates and competencies of regional (Caribbean) and national (Barbados
- and Dominica) climate and health sectors with respect to arbovirus and vector
- surveillance and control, and climate monitoring and forecasting. Information was
- gathered through face-to-face interviews with key stakeholders.
- 883 S2 Text. Interview and survey instruments. This document contains (1) questions
- about climate information for arboviral control, used in interviews with climate and
- health decision makers, managers and expert practitioners, (2) interview questions
- regarding climate and health data, (3) survey for health sector decision makers, managers,
- and expert practitioners.
- 888 S3 Text. Forecast scenarios discussed in the Barbados stakeholder workshop. This
- activity was conducted at a national consultation at the PAHO in Bridgetown, Barbados,
- in April 2017, with 27 representatives from the national Ministry of Health (MoH) of
- 891 Barbados, the Barbados Meteorological Services, the CIMH, and the PAHO. Participants
- 892 were divided into small groups that included representatives from climate and health
- sectors. Groups were asked to respond to different forecast scenarios (2 week, 3 month,
- and 1 year forecasts of *Aedes aegypti* larval indices and dengue incidence). They were
- asked to identify the actions that they would take in response to alerts at each time scale,
- and they discussed the utility of a vector versus disease forecast. Results were identified
- 897 by coding the transcripts of audio recordings.

898 S4 Table. Types of software currently used in health departments. Results from 899 surveys are shown as % (n).

Climate services for arboviral diseases in the Caribbean

900 S5 Table. Preferred training activities identified by health sector survey

- 901 **respondents.** Results from surveys are shown as % (n).
- 902 S6 Table. Current use of climate information and early warning systems reported
- 903 by survey respondents. Results shown as % (n).
- 904 S7 Table. Preferred way of receiving information from an early warning system that
- 905 **predicts arbovirus epidemics.** Results shown as % (n).

Climate services for arboviral diseases in the Caribbean

907 **References**

908	1.	Ebi KL, Lewis ND, Corvalan C. Climate variability and change and their potential
909		health effects in small island states: information for adaptation planning in the
910		health sector. Environmental Health Perspectives. 2006;114: 1957.
911	2.	PAHO/WHO. Climate change and health in small island developing states: A
912		WHO special initiative in collaboration with UNFCC and the Fijan Presidency of
913		COP-23. SIDS in the Caribbean Region [Internet]. Pan American Health
914		Organization; 2018. Available:
915		https://www.paho.org/hq/index.php?option=com_docman&view=download&
916		category_slug=technical-reports-9862&alias=46262-climate-change-and-
917		health-in-small-island-developing-states-1&Itemid=270⟨=en
918	3.	Briguglio L. Small island developing states and their economic vulnerabilities.
919		World Development. 1995;23: 1615–1632. doi:10.1016/0305-750X(95)00065-
920		К
921	4.	Kelman I, West JJ. Articles Climate Change and Small Island Developing States:
922		A Critical Review.
923	5.	Caribbean Public Health Agency. State of Public Health in the Caribbean Region
924		2014 - 2016; Building resilience to immediate and increasing threats: vector-
925		borne diseases and childhood obesity [Internet]. CARPHA; 2017. Available:
926		http://carpha.org/Portals/0/articles/documents/State-of-Public-Health-in-
927		the-Caribbean-2014-2016.pdf

Climate services for arboviral diseases in the Caribbean

- 928 6. Caribbean Public Health Agency. State of Public Health in the Caribbean Region:
- 929 Inaugural Report [Internet]. CARPHA; 2013. Available:
- 930 http://carpha.org/downloads/CARPHA-
- 931 State_of_Public_Health_Inaugural_Report_2013.pdf
- 932 7. Caribbean Public Health Agency. CARPHA Urges Region to Prepare for the
- 933 Possibility of a Severe Outbreak of Dengue Fever > CARPHA. In: CARPHA
- 934 [Internet]. 17 Jan 2019 [cited 24 Jan 2019]. Available:
- 935 http://carpha.org/articles/ID/196/CARPHA-Urges-Region-to-Prepare-for-the-
- 936 Possibility-of-a-Severe-Outbreak-of-Dengue-Fever
- 937 8. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al.
- 938 The global burden of dengue: an analysis from the Global Burden of Disease
- 939 Study 2013. The Lancet Infectious Diseases. 2016; doi:10.1016/S1473-
- 940 3099(16)00026-8
- 941 9. WHO. Dengue: guidelines for diagnosis, treatment, prevention and control.
- 942 World Health Organization; 2009.
- 943 10. Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al.
- 944 Detecting the impact of temperature on transmission of Zika, dengue, and
- 945 chikungunya using mechanistic models. PLoS Neglected Tropical Diseases.
- 946 2017;11: e0005568.

Climate services for arboviral diseases in the Caribbean

947	11.	Lowe R, Gasparrini A, Van Meerbeeck CJ, Lippi CA, Mahon R, Trotman AR, et al.
948		Nonlinear and delayed impacts of climate on dengue risk in Barbados: A
949		modelling study. PLoS medicine. 2018;15: e1002613.
950	12.	Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A. Vector
951		densities that potentiate dengue outbreaks in a Brazilian city. The American
952		Journal of Tropical Medicine and Hygiene. 2000;62: 378–383.
953	13.	Amarakoon AMD, Chen AA, Rawlins SC, Taylor MA. Dengue epidemics–its
954		association with precipitation and temperature, and its seasonality in some
955		Caribbean countries. West Indian Med J. 2004;53: 60.
956	14.	Depradine CA, Lovell EH. Climatological variables and the incidence of Dengue
956 957	14.	Depradine CA, Lovell EH. Climatological variables and the incidence of Dengue fever in Barbados. International Journal of Environmental Health Research.
	14.	
957	14. 15.	fever in Barbados. International Journal of Environmental Health Research. 2004;14: 429–441.
957 958		fever in Barbados. International Journal of Environmental Health Research. 2004;14: 429–441.
957 958 959	15.	fever in Barbados. International Journal of Environmental Health Research. 2004;14: 429–441. Hamilton, I. Analysis of dengue cases in Barbados (2004-2013). Final analysis
957 958 959 960	15.	fever in Barbados. International Journal of Environmental Health Research. 2004;14: 429–441. Hamilton, I. Analysis of dengue cases in Barbados (2004-2013). Final analysis report V1.3. 20 March 2014.
957 958 959 960 961	15.	fever in Barbados. International Journal of Environmental Health Research. 2004; 14: 429–441. Hamilton, I. Analysis of dengue cases in Barbados (2004-2013). Final analysis report V1.3. 20 March 2014. Amarakoon D, Chen A, Rawlins S, Chadee DD, Taylor M, Stennett R. Dengue

Climate services for arboviral diseases in the Caribbean

965	17.	Ortiz PL, Rivero A, Linares Y, Pérez A, Vázquez JR. Spatial models for prediction
966		and early warning of Aedes aegypti proliferation from data on climate change
967		and variability in Cuba. MEDICC review. 2015;17: 20–28.
968	18.	Barrera R, Amador M, MacKay AJ. Population Dynamics of Aedes aegypti and
969		Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto
970		Rico. PLoS Negl Trop Dis. 2011;5: e1378. doi:10.1371/journal.pntd.0001378
971	19.	Chester G. Moore, Barnett L. Cline, Ernest Ruiz-Tiben, Dwayne Lee, Harry
972		Romney-Joseph, Efrain Rivera-Correa. Aedes aegypti in Puerto Rico:
973		Environmental determinants of larval abundance and relation to dengue virus
974		transmission. American Journal of Tropical Medicine and Hygiene. 1978;27:
975		1225–1231.
976	20.	Johansson MA, Dominici F, Glass GE. Local and Global Effects of Climate on
977		Dengue Transmission in Puerto Rico. PLoS Negl Trop Dis. 2009;3: e382.
978		doi:10.1371/journal.pntd.0000382
979	21.	Chadee DD, Shivnauth B, Rawlins SC, Chen AA. Climate, mosquito indices and
980		the epidemiology of dengue fever in Trinidad (2002–2004). Annals of Tropical
981		Medicine & Parasitology. 2007;101: 69–77.
982	22.	Gharbi M, Quenel P, Gustave J, Cassadou S, Ruche GL, Girdary L, et al. Time
983		series analysis of dengue incidence in Guadeloupe, French West Indies:
984		Forecasting models using climate variables as predictors. BMC Infectious
985		Diseases. 2011;11: 166. doi:10.1186/1471-2334-11-166

Climate services for arboviral diseases in the Caribbean

986	23.	Chen AA, Chadee DD, Rawlins SC. Climate Change Impact on Dengue: The
987		Caribbean Experience: University of the West Indies. Phoenix Printery Ltd,
988		Kingston, Jamaica. 2006;
989	24.	Trotman AR, Mahon R, Shumake-Guillemot J, Lowe R, Stewart-Ibarra AM.
990		Strengthening Climate Services for the Health Sector in the Caribbean. Bulletin
991		of the World Meteorological Organization. 2018;67. Available:
992		https://public.wmo.int/en/resources/bulletin/strengthening-climate-
993		services-health-sector-caribbean
994	25.	Racloz V, Ramsey R, Tong S, Hu W. Surveillance of Dengue Fever Virus: A
995		Review of Epidemiological Models and Early Warning Systems. PLoS Negl Trop
996		Dis. 2012;6: e1648. doi:10.1371/journal.pntd.0001648
997	26.	Ziervogel G, Downing TE. Stakeholder Networks: Improving Seasonal Climate
998		Forecasts. Climatic Change. 2004;65: 73–101.
999		doi:10.1023/B:CLIM.0000037492.18679.9e
1000	27.	Climate Services for Health. In: World Meteorological Organization [Internet]. 9
1001		Jun 2016 [cited 25 Jan 2019]. Available:
1002		https://public.wmo.int/en/media/news/climate-services-health
1003	28.	Morss RE, Wilhelmi OV, Downton MW, Gruntfest E. Flood risk, uncertainty, and
1004		scientific information for decision making: lessons from an interdisciplinary
1005		project. Bulletin of the American Meteorological Society. 2005;86: 1593.

Climate services for arboviral diseases in the Caribbean

1006	29.	Soares MB, Alexander M, Dessai S. Sectoral use of climate information in
1007		Europe: A synoptic overview. Climate Services. 2018;9: 5–20.
1008	30.	Handel AS, Ayala EB, Borbor-Cordova MJ, Fessler AG, Finkelstein JL, Espinoza
1009		RXR, et al. Knowledge, attitudes, and practices regarding dengue infection
1010		among public sector healthcare providers in Machala, Ecuador. Tropical
1011		Diseases, Travel Medicine and Vaccines. 2016;2: 8. doi:10.1186/s40794-016-
1012		0024-у
1013	31.	Health Exemplar to the user interface platform of the Global Framework for
1014		Climate Services (GFCS) [Internet]. Geneva, Switzerland: World Meteorological
1015		Association; 2014. Available: http://www.gfcs-
1016		climate.org/sites/default/files/Priority-Areas/Health/GFCS-HEALTH-
1017		EXEMPLAR-FINAL-14152_en.pdf
1018	32.	Tompkins AM, Di Giuseppe F. Potential predictability of malaria in Africa using
1019		ECMWF monthly and seasonal climate forecasts. Journal of applied
1020		meteorology and climatology. 2015;54: 521–540.
1021	33.	Wimberly MC, Henebry GM, Liu Y, Senay GB. EPIDEMIA-An EcoHealth
1022		Informatics System for integrated forecasting of malaria epidemics. 2014.
1023	34.	Wang M, Liu Y, Wimberly MC. On the Design of EPIDEMIAWeb–A Cloud Based
1024		Disease Monitoring System. IEEE; 2018. pp. 0574–0577.

Climate services for arboviral diseases in the Caribbean

1025	35.	Gould S, Rudolph L. Challenges and Opportunities for Advancing Work on
1026		Climate Change and Public Health. International journal of environmental
1027		research and public health. 2015;12: 15649–15672.
1028	36.	Maibach EW, Chadwick A, McBride D, Chuk M, Ebi KL, Balbus J. Climate Change
1029		and Local Public Health in the United States: Preparedness, Programs and
1030		Perceptions of Local Public Health Department Directors. PLOS ONE. 2008;3:
1031		e2838. doi:10.1371/journal.pone.0002838
1032	37.	Balbus J, Ebi K, Finzer L, Malina C, Chadwick A, McBride D, et al. Are we ready?
1033		Preparing for the public health challenges of climate change. Environmental
1034		Defense Fund. 2008;
1035	38.	Are We Ready? Report 2: Preparing for the Public Health Challenges of Climate
1036		Change. In: US Climate and Health Alliance [Internet]. [cited 16 Mar 2017].
1037		Available: http://usclimateandhealthalliance.org/post_resource/are-we-ready-
1038		report-2-preparing-for-the-public-health-challenges-of-climate-change/
1039	39.	Paterson JA, Ford JD, Ford LB, Lesnikowski A, Berry P, Henderson J, et al.
1040		Adaptation to climate change in the Ontario public health sector. BMC Public
1041		Health. 2012;12: 452.
1042	40.	Wei J, Hansen A, Zhang Y, Li H, Liu Q, Sun Y, et al. Perception, attitude and
1043		behavior in relation to climate change: A survey among CDC health
1044		professionals in Shanxi province, China. Environmental research. 2014;134:
1045		301–308.

Climate services for arboviral diseases in the Caribbean

1046	41.	Macpherson CC, Akpinar-Elci M. Caribbean heat threatens health, well-being
1047		and the future of humanity. Public health ethics. 2015; phv008.
1048	42.	Assessing the Relationship between Human Health and Climate Variability and
1049		Change in the Caribbean. St. Lucia: Caribbean Environmental Health Instiute
1050		(CEHI); 2014.
1051	43.	Heslop-Thoma C, Bailey W, Amarakoon D, Chen A, Rawlins SC, Chadee DD.
1052		Vulnerability to dengue fever in Jamaica. Climate change and vulnerability.
1053		London: Earthscan Publications Ltd; 2008.
1054	44.	Ahmed S, Francis L, Ricketts RP, Christian T, Polson-Edwards K, Olowokure B.
1055		Chikungunya virus outbreak, Dominica, 2014. Emerging infectious diseases.
1056		2015;21:909.
1057	45.	Nsoesie EO, Ricketts RP, Brown HE, Fish D, Durham DP, Mbah MLN, et al.
1058		Spatial and temporal clustering of chikungunya virus transmission in Dominica.
1059		PLoS neglected tropical diseases. 2015;9: e0003977.
1060	46.	Ryan SJ, Carlson CJ, Stewart-Ibarra AM, Borbor-Cordova MJ, Romero MM, Cox S-
1061		A, et al. Outbreak of Zika Virus Infections, Dominica, 2016. Emerging infectious
1062		diseases. 2017;23: 1926.
1063	47.	Ryan SJ, Lippi CA, Carlson CJ, Stewart-Ibarra AM, Borbor-Cordova MJ, Romero
1064		M, et al. Zika Virus Outbreak, Barbados, 2015–2016. The American journal of
1065		tropical medicine and hygiene. 2018;98: 1857.

Climate services for arboviral diseases in the Caribbean

1066	48.	Kumar A,	Gittens-S	St Hilaire	M, Niel	sen AL. 1	Long-term	epidemiolo	gical d	vnamics

- 1067 of dengue in Barbados–one of the English-speaking Caribbean countries.
- 1068 Epidemiology & Infection. 2018;146: 1048–1055.
- 1069 49. Spence B, Emmanuel K. Climate change implications for water resource
- 1070 management in Caribbean tourism. WW Hospitality Tourism Themes. 2009;1:
- 1071 252–268. doi:10.1108/17554210910980594
- 1072 50. Climate change adaptation to protect human health: Barbados [Internet].
- 1073 Public Health and Environment Department (PHE) of the World Health
- 1074 Organization; Available:
- 1075 http://www.who.int/globalchange/projects/adaptation/PHE-adaptation-final-
- 1076 Barbados.pdf?ua=1
- 1077 51. Verret M, Berry P, Fook TCT, Lal A. Assessment of Climate Change and Health
- 1078 Vulnerability and Adaptation in Dominica. 2016 p. 144.
- 1079 52. Dominica: The impact of Hurricane Maria Disaster Profile January 2018 -
- 1080 Dominica. In: ReliefWeb [Internet]. [cited 5 Dec 2018]. Available:
- 1081 https://reliefweb.int/report/dominica/dominica-impact-hurricane-maria-
- 1082 disaster-profile-january-2018
- 1083 53. Saldana J. An introduction to codes and coding. The coding manual for
- 1084 qualitative researchers. 2009; 1–31.

Climate services for arboviral diseases in the Caribbean

1085	54.	Saldaña J. The Coding Manual for Qualitative Researchers. Second Edition
1086		edition. Los Angeles: SAGE Publications Ltd; 2012.
1087	55.	Huang C, Vaneckova P, Wang X, FitzGerald G, Guo Y, Tong S. Constraints and
1088		barriers to public health adaptation to climate change: a review of the
1089		literature. American journal of preventive medicine. 2011;40: 183–190.
1090	56.	Mahon R, Greene C, Cox S-A, Guido Z, Gerlak AK, Petrie J-A, et al. Fit for
1091		purpose? Transforming National Meteorological and Hydrological Services into
1092		National Climate Service Centers - ScienceDirect. Climate Services.
1093		doi:https://doi.org/10.1016/j.cliser.2019.01.002
1094	57.	WHO/WMO. Improving public health decision-making in a new climate.
1095		L.Fernandez-Montoya. JS-G and, editor. 2016.
1096	58.	World Meteorological Organization 2014. Health Exemplar to the User
1097		Interface Platform of the Global Framework for Climate Services. Geneva:
1098		World Meteorological Organization; 2014.
1099	59.	World Health Organization. Climate-resilient water safety plans: Managing
1100		health risks associated with climate variabilitly and change [Internet]. WHO;
1101		2017. Available:
1102		https://www.who.int/water_sanitation_health/publications/climate-resilient-
1103		water-safety-plans/en/

Climate services for arboviral diseases in the Caribbean

1104	60.	World Health Organization. Operational framework for building climate
1105		resilient health systems [Internet]. WHO; 2015. Available:
1106		https://www.who.int/globalchange/publications/building-climate-resilient-
1107		health-systems/en/
1108	61.	PAHO/WHO. Caribbean Ministers of Health meet to approve plan on health
1109		system resilience in the face of climate change [Internet]. 16 Oct 2018 [cited 6
1110		Mar 2019]. Available:
1111		https://www.paho.org/hq/index.php?option=com_content&view=article&id=1
1112		4736:caribbean-ministers-of-health-meet-to-approve-plan-on-health-system-
1113		resilience-in-the-face-of-climate-change&Itemid=1926⟨=en
1114	62.	Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Sá Carvalho M, et al.
1115		Spatio-temporal modelling of climate-sensitive disease risk: Towards an early
1116		warning system for dengue in Brazil. Computers & Geosciences. 2011;37: 371–
1117		381. doi:10.1016/j.cageo.2010.01.008
1118	63.	Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, et al. The
1119		development of an early warning system for climate-sensitive disease risk with
1120		a focus on dengue epidemics in Southeast Brazil. Statistics in medicine.
1121		2013;32: 864–883.
1122	64.	Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R, et al. Dengue
1123		outlook for the World Cup in Brazil: an early warning model framework driven

Climate services for arboviral diseases in the Caribbean

	1124 ł	real-time seasonal climate forecasts. The Lancet Infectious Diseases.
--	--------	---

- 1125 2014;14: 619–626.
- 1126 65. Lowe R, Coelho CA, Barcellos C, Carvalho MS, Catao RDC, Coelho GE, et al.
- 1127 Evaluating probabilistic dengue risk forecasts from a prototype early warning
- system for Brazil. Elife. 2016;5: e11285.
- 1129 66. Lowe R, Stewart-Ibarra AM, Petrova D, García-Díez M, Borbor-Cordova MJ,
- 1130 Mejía R, et al. Climate services for health: predicting the evolution of the 2016
- dengue season in Machala, Ecuador. The Lancet Planetary Health. 2017;1:
- 1132 e142-e151. doi:10.1016/S2542-5196(17)30064-5
- 1133 67. Schreiber KV. An investigation of relationships between climate and dengue
- using a water budgeting technique. International Journal of Biometeorology.
- 1135 2001;45: 81–89. doi:10.1007/s004840100090
- 1136 68. Yu H-L, Yang S-J, Yen H-J, Christakos G. A spatio-temporal climate-based model
- 1137 of early dengue fever warning in southern Taiwan. Stochastic Environmental
- 1138 Research and Risk Assessment. 2011;25: 485–494. doi:10.1007/s00477-010-
- 1139 0417-9
- 1140 69. Gasparrini A. Modeling exposure-lag-response associations with distributed
 1141 lag non-linear models. Statistics in medicine. 2014;33: 881–899.
- 1142 70. Agreement P. United nations framework convention on climate change. Paris,
 1143 France. 2015;

Climate services for arboviral diseases in the Caribbean

1144	71.	Nations U. Transforming our world: The 2030 agenda for sustainable
1145		development. Resolution adopted by the General Assembly. 2015;
1146	72.	Segger M-CC. Advancing the Paris Agreement on Climate Change for
1147		Sustainable Development. Cambridge J Int'l & Comp L. 2016;5: 202.
1148	73.	Nilsson M, Griggs D, Visbeck M. Policy: Map the interactions between
1149		Sustainable Development Goals. Nature News. 2016;534: 320.
1150		doi:10.1038/534320a
1151	74.	Green Climate Fund. Project FP060: Water Sector Resilience Nexus for
1152		Sustainability in Barbados (WSRN S-Barbados) [Internet]. [cited 6 Mar 2019].
1153		Available:
1154		https://www.greenclimate.fund/projects/fp060?inheritRedirect=true&redirec
1155		t=%2Fwhat-we-do%2Fprojects-
1156		programmes%3Fp_p_id%3D101_INSTANCE_Hreg2cAkDEHL%26p_p_lifecycle
1157		%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3D_1
1158		18_INSTANCE_4ZRnUzRWpEqOcolumn-
1159		2%26p_p_col_pos%3D1%26p_p_col_count%3D2%26_101_INSTANCE_Hreg2cA
1160		kDEHL_delta%3D30%26_101_INSTANCE_Hreg2cAkDEHL_keywords%3D%26_
1161		101_INSTANCE_Hreg2cAkDEHL_advancedSearch%3Dfalse%26_101_INSTANC
1162		E_Hreg2cAkDEHL_andOperator%3Dtrue%26p_r_p_564233524_resetCur%3Df
1163		alse%26_101_INSTANCE_Hreg2cAkDEHL_cur%3D2

Climate services for arboviral diseases in the Caribbean

1164	75.	McNie E. Delivering Climate Services: Organizational Strategies and
1165		Approaches for Producing Useful Climate-Science Information. Weather,
1166		Climate, and Society. 2012;
1167	76	Miles EL, Snover AK, Binder LCW, Sarachik ES, Mote PW, Mantua N. An
	70.	
1168		approach to designing a national climate service. 2006;
1169	77.	CIMH, CARDI, CDEMA, CARHA, CTO, CHTA, et al. Consortium of Regional
1170		Sectoral Early Warning Information across Climate Timescales (EWISACTs)
1171		Coordination Partners' Terms of Reference [Internet]. Bridgetown, Barbados;
1172		2016 Aug. Available: https://rcc.cimh.edu.bb/files/2016/10/TOR-Sectoral-
1173		EWISACTs-Consortium-and-5-Sectoral-Partners.pdf
1174	78.	A Caribbean strategy to cope with climate change United Nations Educational,
1175		Scientific and Cultural Organization [Internet]. [cited 31 Jan 2019]. Available:
1176		http://www.unesco.org/new/en/media-services/single-
1177		view/news/a_caribbean_strategy_to_cope_with_climate_change/
1178	79.	Mahon R, Farrell D, Cox S-A, Trotman A, Van Meerbeeck CJ, Barnwell G. Climate
1179		Services and Caribbean Resilience: A Historical Perspective. Social and
1180		Economic Studies Journal The University of the West Indies at Mona, Jamaica.
1181		2018;67:239–260.
1182	gn	Implementation Plan of the Global Framework for Climate Services [Internet].
	00.	
1183		World Meteorological Association; 2014. Available:

Climate services for arboviral diseases in the Caribbean

1184	http://www.wm	o int/gfcs/sites	/default/files	/implementation-	nlan//GFCS-
1101		Since Fiest Sices	/ actually mes	mprementation	piun, jui uu

- 1185 IMPLEMENTATION-PLAN-FINAL-14211_en.pdf
- 1186 81. Street R, Jacob D, Parry M, Runge T, Scott J. A European research and
- 1187 innovation roadmap for climate services. European Commission. 2015;
- 1188 82. PAHO WHO | Dengue | Annual Cases Reported of Dengue | PAHO/WHO Data,
- 1189 Maps and Statistics [Internet]. [cited 18 Jul 2017]. Available:
- 1190 http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6
- 1191 290&Itemid=40734
- 1192 83. PAHO. Number of Reported Cases of Chikungunya Fever in the Americas, by
- 1193 Country or Territory. [Internet]. Available:
- 1194 http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=5
- 1195 927&Itemid=40931&lang=en