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Abstract 9 

An effective and efficient cell-querying method is critical for integrating existing scRNA-seq 10 

data and annotating new data. Herein, we present Cell BLAST, an accurate and robust cell-11 

querying method. Powered by a well-curated reference database and a user-friendly Web 12 

server, Cell BLAST (http://cblast.gao-lab.org) provides a one-stop solution for real-world 13 

scRNA-seq cell querying and annotation.14 
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Main Text 15 

Technological advances during the past decade have led to rapid accumulation of large-scale 16 

single-cell RNA sequencing (scRNA-seq) data. Analogous to biological sequence analysis1, 17 

identifying expression similarity to well-curated references via a cell-querying algorithm is 18 

becoming the first step of annotating newly sequenced cells. Tools have been developed to 19 

identify similar cells using approximate cosine distance2 or LSH Hamming distance3, 4 20 

calculated from a subset of carefully selected genes. Such an intuitive approach is efficient, 21 

especially for large-scale data, but may suffer from nonbiological variation across datasets 22 

(batch effect5, 6). Meanwhile, multiple data harmonization methods have been proposed to 23 

remove such confounding factors during alignment, for example, via warping canonical 24 

correlation vectors7 or matching mutual nearest neighbors across batches6. While these 25 

methods can be applied to align multiple reference datasets, computation-intensive 26 

realignment is required to map query cells to the (pre-)aligned reference data space. 27 

 28 

To address these challenges, we introduce a new customized deep generative model together 29 

with a novel cell-to-cell similarity metric specifically designed for cell querying (Fig. 1a, 30 

Method). Differing from canonical variational autoencoder (VAE) models8-11, adversarial 31 

batch alignment is applied to correct batch effect during low-dimensional embedding of 32 

reference datasets. Such a design also enables a special “online tuning” mode that can handle 33 

batch effect between query and reference data when necessary. Moreover, by exploiting the 34 

model’s universal approximator posterior to model uncertainty in latent space, we implement 35 

a distribution-based metric to measure cell-to-cell similarity. Finally, we also provide a well-36 

curated multispecies single-cell transcriptomics database (ACA) and an easy-to-use Web 37 

interface for convenient exploratory analysis. 38 

 39 

To assess our model’s capability of capturing biological similarity in the low-dimensional 40 

latent space, we first benchmarked against several popular dimension reduction tools8, 12, 13 41 

using real-world data (Supplementary Table 1) and found that our model is overall among 42 

the best performing methods (Supplementary Fig. 1-2). We further compared batch effect 43 

correction performance using combinations of multiple datasets with overlapping cell types 44 

profiled (Supplementary Table 1). Our model achieves significantly better dataset mixing 45 

(Fig. 1b) while maintaining comparable cell type resolution (Fig. 1c). Latent space 46 
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visualization also demonstrates that our model can effectively remove batch effect for 47 

multiple datasets with a considerable difference in cell type distribution (Supplementary 48 

Fig. 3). Notably, we found that the correction of inter-dataset batch effect does not 49 

automatically generalize to that within each dataset, which is most evident in the pancreatic 50 

datasets (Supplementary Fig. 3c-d, Supplementary Fig. 4a-c). For such complex scenarios, 51 

our model is effective in removing multiple levels of batch effect simultaneously 52 

(Supplementary Fig. 4d-h). 53 

 54 

While the unbiased latent space embedding derived by the nonlinear deep neural network 55 

effectively removes confounding factors, the network’s random components and nonconvex 56 

optimization procedure also lead to serious challenges, especially false-positive hits when 57 

cells outside reference types are provided as query. Thus, we propose a novel posterior 58 

distribution-based cell-to-cell similarity metric in the latent space, which we term 59 

“normalized projection distance” (NPD). Distance metric ROC analysis (Method) shows that 60 

our posterior NPD metric is more accurate and robust than Euclidean distance which is 61 

commonly used in other neural network-based embedding tools (Fig. 1d, Supplementary 62 

Fig. 4k). Additionally, we exploit the stability of query-hit distance across multiple models to 63 

improve specificity (Method, Supplementary Fig. 4l). An empirical p-value is computed for 64 

each query hit as a measure of “confidence” by comparing the posterior distance to the 65 

empirical NULL distribution obtained from randomly selected pairs of cells in the queried 66 

data. 67 

 68 

The high specificity of Cell BLAST is especially important for discovering novel cell types. 69 

Two recent studies (“Montoro”14 and “Plasschaert”15) independently reported a rare tracheal 70 

cell type named pulmonary ionocyte. We artificially removed ionocytes from the “Montoro” 71 

dataset and used it as a reference to annotate query cells from the “Plasschaert” dataset. In 72 

addition to accurately annotating 95.9% of query cells, Cell BLAST correctly rejected 12 of 73 

19 “Plasschaert” ionocytes (Fig. 1e). Moreover, it highlights the existence of a putative novel 74 

cell type as a well-defined cluster with large p-values among all 156 rejected cells (Fig. 1f-g). 75 

Further examination shows that this cluster actually corresponds to ionocytes 76 

(Supplementary Fig. 6a; also see Supplementary Fig. 5 for more detailed analysis on the 77 

remaining 7 ionocytes). By contrast, scmap-cell2 only rejected 7 “Plasschaert” ionocytes 78 

despite the higher overall rejection number of 401 (i.e., more false negatives; 79 

Supplementary Fig. 6b-e). 80 
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 81 

We further systematically compared the performance of query-based cell typing with scmap-82 

cell2 and CellFishing.jl4 (Method) using four groups of datasets, each including both positive 83 

control and negative control queries (first 4 groups in Supplementary Table 2). Of interest, 84 

while Cell BLAST shows superior performance than scmap-cell and CellFishing.jl under the 85 

default setting (Supplementary Fig. 7a-c, 8-10), detailed ROC analysis reveals that the 86 

performance of scmap-cell could be further improved to a level comparable to Cell BLAST 87 

by employing higher thresholds, while ROC and optimal thresholds of CellFishing.jl show 88 

large variation across different datasets (Supplementary Fig. 7d). Cell BLAST presents the 89 

most robust performance with a default threshold (p-value < 0.05) across different datasets, 90 

which will significantly benefit real-world application. Additionally, we assessed their 91 

scalability using reference data varying from 1,000 to 1,000,000 cells. Both Cell BLAST and 92 

CellFishing.jl scale well with increasing reference size, while scmap-cell’s querying time 93 

rises dramatically for larger reference datasets with more than 10,000 cells (Supplementary 94 

Fig. 7e). 95 

 96 

Moreover, our deep generative model combined with posterior-based latent-space similarity 97 

metric enables Cell BLAST to model the continuous spectrum of cell states accurately. We 98 

demonstrate this using a study profiling mouse hematopoietic progenitor cells (“Tusi”16) in 99 

which computationally inferred cell fate distributions are available. For the purpose of 100 

evaluation, cell fate distributions inferred by the authors are recognized as ground truth. We 101 

selected cells from one sequencing run as query and the other as reference to test whether we 102 

can accurately transfer continuous cell fate between experimental batches (Fig. 2a-b). 103 

Jensen-Shannon divergence between predicted cell fate distributions and ground truth shows 104 

that our prediction is again more accurate than scmap (Fig. 2c). 105 

 106 

Besides batch effect among different reference datasets, bona fide biological similarity could 107 

also be confounded by large, undesirable bias between query and reference data. Exploiting 108 

the dedicated adversarial batch alignment, we implemented a particular "online tuning" mode 109 

to handle such an often-neglected confounding factor. Briefly, the combination of reference 110 

and query data is used to fine-tune the existing reference-based model, with the query-111 

reference batch effect added as an additional component to be removed by adversarial batch 112 

alignment (Method). Using this strategy, we successfully transferred cell fate from the above 113 

“Tusi” dataset to an independent human hematopoietic progenitor dataset (“Velten”17) (Fig. 114 
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2d). The expression of known cell lineage markers validates the rationality of transferred cell 115 

fates (Supplementary Fig. 11a-f). By contrast, scmap-cell incorrectly assigned most cells to 116 

monocyte and granulocyte lineages (Supplementary Fig. 11g). As another example, we 117 

applied “online tuning” to Tabula Muris18 spleen data, which exhibit significant batch effect 118 

between 10x- and Smart-seq2-processed cells. The ROC of Cell BLAST improved 119 

significantly after “online tuning”, achieving high specificity, sensitivity and Cohen’s κ (a 120 

measure of prediction accuracy corrected for chance, see Methods for more details)2 at the 121 

default cutoff (Supplementary Fig. 11h, last group in Supplementary Table 2). 122 

 123 

A comprehensive and well-curated reference database is crucial for the practical application 124 

of Cell BLAST. Based on public scRNA-seq datasets, we curated ACA, a high-quality 125 

reference database. With 986,305 cells in total, ACA currently covers 27 distinct organs 126 

across 8 species, offering the most comprehensive compendium for diverse species and 127 

organs (Fig. 2e, Supplementary Fig. 12a-b, Supplementary Table 3). To ensure a unified 128 

and high-resolution cell type description, all records in ACA are collected and annotated 129 

using a standard procedure (Method), with 98.9% of datasets manually curated with Cell 130 

Ontology, a structured controlled vocabulary for cell types. We trained our model on all ACA 131 

datasets. Notably, we found that the model works well in most cases with minimal 132 

hyperparameter tuning (latent space visualizations, self-projection coverage and accuracy 133 

available on our website, Supplementary Fig. 12e). 134 

 135 

A user-friendly Web server is publicly accessible at http://cblast.gao-lab.org, with all curated 136 

datasets and pretrained models available. Based on the wealth of resources, our website 137 

provides “off-the-shelf” querying service. Users can obtain querying hits and visualize cell 138 

type predictions with minimal effort (Supplementary Fig. 12c-d). For advanced users, a 139 

well-documented Python package implementing the Cell BLAST toolkit is also available, 140 

which enables model training on custom references and diverse downstream analyses. 141 

 142 

By explicitly modeling multilevel batch effect as well as uncertainty in cell-to-cell similarity 143 

estimation, Cell BLAST is an accurate and robust querying algorithm for heterogeneous 144 

single-cell transcriptome datasets. In combination with a comprehensive, well-annotated 145 

database and an easy-to-use Web interface, Cell BLAST provides a one-stop solution for 146 

both bench biologists and bioinformaticians.  147 
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Software availability 148 

The full package of Cell BLAST is available at http://cblast.gao-lab.org. Code necessary to 149 

reproduce results in the paper is deposited at https://github.com/gao-lab/Cell_BLAST and 150 

https://github.com/gao-lab/Cell_BLAST-notebooks. 151 
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Figure. 1 Cell BLAST benchmarking and application to trachea datasets. 168 
(a) Overall Cell BLAST workflow. (b) Extent of dataset mixing after batch effect correction in four groups of 169 
datasets, quantified by the Seurat alignment score. A high Seurat alignment score indicates that local 170 
neighborhoods consist of cells from different datasets uniformly rather than from the same dataset only. Error 171 
bars indicate mean ± s.d. Methods that did not finish under the 2-hour time limit are marked as N.A. (c) Cell 172 
type resolution after batch effect correction, quantified by cell type mean average precision (MAP). MAP can be 173 
thought of as a generalization to nearest neighbor accuracy, with larger values indicating higher cell type 174 
resolution, thus more suitable for cell querying. Error bars indicate mean ± s.d. Methods that did not finish 175 
under the 2-hour time limit are marked as N.A. (d) ROC curve of different distance metrics in discriminating 176 
cell pairs with the same cell type from cell pairs with different cell types. (e) Sankey plot comparing Cell 177 
BLAST predictions and original cell type annotations for the “Plasschaert” dataset. (f) t-SNE visualization of 178 
Cell BLAST-rejected cells, colored by unsupervised clustering. (g) Average p-value distribution of each cluster 179 
in (f).  180 
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Figure. 2 Application to hematopoietic progenitor datasets. 181 
(a, b) UMAP visualization of latent space learned on the “Tusi” dataset, colored by sequencing run (a) and cell 182 
fate (b). The model is trained solely on cells from run 2 and used to project cells from run 1. Each of the seven 183 
terminal cell fates (E, erythroid; Ba, basophilic or mast; Meg, megakaryocytic; Ly, lymphocytic; D, dendritic; 184 
M, monocytic; G, granulocytic neutrophil) is assigned a distinct color. The color of each single cell is then 185 
determined by the linear combination of these seven colors in hue space, weighed by the cell fate distribution 186 
among these terminal fates. (c) Distribution of Jensen-Shannon divergence between predicted cell fate 187 
distributions and author-provided “ground truth”. (d) UMAP visualization of the “Velten” dataset, colored by 188 
Cell BLAST-predicted cell fates. (e) Number of organs covered in each species for different single-cell 189 
transcriptomics databases, including the Single Cell Portal (https://portals.broadinstitute.org/single_cell), 190 
Hemberg collection2, SCPortalen19, and scRNASeqDB20.191 
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Methods 192 

The deep generative model 193 

The model we used is based on the adversarial autoencoder (AAE)21. Below, we denote the 194 

gene expression profile of a cell as 𝒙 ∈ ℝ$ , where 𝐺 is the number of genes. The data 195 

generative process is modeled by a continuous latent variable 𝒛 ∈ ℝ'	(𝐷 ≪ 𝐺) with standard 196 

Gaussian prior 𝒛 ∼ 𝑁(𝟎, 𝐼') which models continuous cell states, as well as a one-hot latent 197 

variable 𝒄 ∈ {0,1}7  , 𝒄8𝒄 = 1 with categorical prior 𝒄 ∼ 𝐶𝑎𝑡(𝐾) which aims to model cell 198 

type clusters. A unified latent vector is then determined by 𝒍 = 𝒛 + 𝐻𝒄, where 𝐻 ∈ ℝ'×7 . A 199 

neural network (decoder, denoted by Dec below) maps the cell embedding vector 𝒍 to two 200 

parameters of the negative binomial distribution 𝝁,𝜽 = Dec(𝒍) that models the distribution of 201 

expression profile 𝒙: 202 

 𝑝(𝒙|𝒛, 𝒄; Dec,𝐻) = 𝑝(𝒙|𝝁, 𝜽) =J𝑝K𝑥MN𝜇M, 𝜃MQ
$

MRS

 (1) 

 

𝑝K𝑥MN𝜇M, 𝜃MQ = 

ΓK𝑥M + 𝜃MQ
ΓK𝜃MQΓK𝑥M + 1Q

U
𝜇M

𝜃M + 𝜇M
V
WX

U
𝜃M

𝜃M + 𝜇M
V
YX

 
(2) 

where 𝝁 and 𝜽 are the mean and dispersion of the negative binomial distribution, 203 

respectively. Theoretically, the negative binomial model should be fitted on raw count data8, 204 
13, 22. However, for the purpose of cell querying, datasets have to be normalized to minimize 205 

the influence of capture efficiency and sequencing depth. We empirically found that, using 206 

normalized data, the negative binomial model still produced better results than alternative 207 

distributions like the log-normal distribution. To prevent numerical instability during training 208 

caused by normalization that breaks the mean-variance relationship of the negative binomial 209 

model, we additionally included the variance of the dispersion parameter as a regularization 210 

term. 211 

Training objectives for the adversarial autoencoder are: 212 

 
min

]^_,`a_,b
−𝔼𝒙∼efghg(𝒙)i𝔼𝒛∼j(𝒛|𝒙;`a_),𝒄∼j(𝒄|𝒙;`a_) log𝑝(𝒙|𝒛, 𝒄; Dec,𝐻) + 𝜆o

⋅ 𝔼𝒛∼j(𝒛|𝒙;`a_) logDo(𝒛) + 𝜆q ⋅ 𝔼𝒄∼j(𝒄|𝒙;`a_) logDq(𝒄)r 
(3) 

 max
]u

𝜆o ⋅ K𝔼𝒛∼e(𝒛) logDo(𝒛) + 𝔼𝒙∼efghg(𝒙)𝔼𝒛∼j(𝒛|𝒙;`a_) logK1 − Do(𝒛)QQ (4) 

 max
]v

𝜆q ⋅ K𝔼𝒄∼e(𝒄) logDq(𝒄) + 𝔼𝒙∼efghg(𝒙)𝔼𝒄∼j(𝒄|𝒙;`a_) logK1 − Dq(𝒄)QQ (5) 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/587360doi: bioRxiv preprint 

https://doi.org/10.1101/587360
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

𝑞(𝒛|𝒙; Enc) and 𝑞(𝒄|𝒙; Enc) are “universal approximator posteriors” parameterized by 213 

another neural network (encoder, denoted by Enc). Expectations with regard to 𝑞(𝒛|𝒙; Enc) 214 

and 𝑞(𝒄|𝒙; Enc) are approximated by sampling 𝒙’ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝒙) and feeding to the 215 

deterministic encoder network. The choice of Poisson noise is arbitrary as the encoder learns 216 

to map this arbitrary noise distribution to an appropriate posterior distribution during training. 217 

Do and Dq are discriminator networks for 𝒛 and 𝒄, respectively, which output the probability 218 

that a latent sample is from the prior rather than from the posterior. Effectively, adversarial 219 

training between the encoder (Enc) and discriminators (Do and Dq) drives the encoder output 220 

to match prior distributions of latent variables 𝑝(𝒛) and 𝑝(𝒄). 𝜆o and 𝜆q are hyperparameters 221 

that control prior matching strength. The model is much easier and more stable to train than 222 

canonical GANs because of the low dimensionality and simple distribution of 𝒛 and 𝒄. 223 

At convergence, the encoder learns to map the data distribution to latent variables that follow 224 

their respective prior distributions, and the decoder learns to map latent variables from prior 225 

distributions back to the data distribution. The key element we use for cell querying is vector 226 

𝒍 on the decoding path because it defines a unified latent space in which biological 227 

similarities are well captured. The model also works if no categorical latent variable is used, 228 

in which case 𝒍 = 𝒛 directly. 229 

Some architectural designs are learned from scVI8, including logarithm transformation before 230 

encoder input, and softmax output scaled by the library size when computing 𝝁. Stochastic 231 

gradient descent with minibatches is applied to optimize the loss functions. Specifically, we 232 

use the “RMSProp” optimization algorithm with no momentum term to ensure stability of 233 

adversarial training. The model is implemented using the Tensorflow23 Python library. 234 

Adversarial batch alignment 235 

As a natural extension to the prior matching adversarial training strategy described in the 236 

previous section, and following recent work in domain adaptation24-26, we propose the 237 

adversarial batch alignment strategy to align the latent space distribution of different batches. 238 

We denote the batch membership of each cell as 𝒃 ∈ {0,1}�, 𝒃8𝒃 = 1. The distribution 𝑝(𝒃) 239 

is categorical: 240 

 𝑝(𝑏� = 1) = 𝑤�, �𝑤�

�

�RS

= 1 (6) 

Adversarial batch alignment introduces an additional loss: 241 

 min
]^_,`a_,b

𝔼𝒃∼e(𝒃),𝒙∼e(𝒙|𝒃)𝔼𝒛∼j(𝒛|𝒙;`a_),𝒄∼j(𝒄|𝒙;`a_)[ℒ���� + 𝜆� ⋅ 𝒃8 logD� (𝒍)] (7) 
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 max
]�

𝔼𝒃∼e(𝒃),𝒙∼e(𝒙|𝒃)𝔼𝒛∼j(𝒛|𝒙;`a_),𝒄∼j(𝒄|𝒙;`a_)[𝜆� ⋅ 𝒃8 logD�(𝒍)] (8) 

ℒ����  denotes the loss function in (3). D� is a multiclass batch discriminator network that 242 

outputs the probability distribution of batch membership based on the embedding vector 𝒍. 𝜆� 243 

is a hyperparameter controlling batch alignment strength. Additionally, the generative 244 

distribution is extended to condition on 𝒃 as well: 245 

 

𝑝(𝒙|𝒛, 𝒄, 𝒃; Dec) = 𝑝(𝒙|𝝁, 𝜽) 

𝝁,𝜽 = Dec(𝒍, 𝒃) 

𝒍 = 𝒛 + 𝐻𝒄 

(9) 

Below, we focus on batch alignment and discard the first ℒ����  term and scaling parameter 246 

𝜆�. We extend the derivation in the original GAN paper27 to show that adversarial batch 247 

alignment converges when embedding space distributions of different batches are aligned. 248 

To simplify notation, we fuse the data distribution and encoder transformation and replace 249 

the minimization over encoder to minimization over batch-embedding distributions: 250 

 min
e(𝒍)

�𝑤�𝔼𝒍∼e�(𝒍) logD��(𝒍)
�

�RS

 (10) 

 max
]�

�𝑤�𝔼𝒍∼e�(𝒍) logD��(𝒍)
�

�RS

 (11) 

Here D��(𝒍) denotes the ith dimension of the discriminator output, i.e., the probability that the 251 

discriminator “thinks” a cell is from the ith batch. D� is assumed to have sufficient capacity, 252 

which is generally reasonable in the case of neural networks. The global optimum of (11) is 253 

reached when D� outputs optimal batch membership distribution at every 𝒍: 254 

 max
]��(𝒍)

𝑤�𝑝�(𝒍) logD��(𝒍) , 𝑠. 𝑡.�D��(𝒍)
�

�RS

= 1 (12) 

The solution to the above maximization is given by: 255 

 D�∗�(𝒍) =
𝑤�𝑝�(𝒍)

∑ 𝑤�𝑝�(𝒍)�
�RS

 (13) 

Substituting D�∗(𝑙) back into (10), we obtain: 256 
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�
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≥�𝑤� log𝑤�

�
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(14) 

Thus, ∑ 𝑤� log𝑤��
�RS  is the global minimum, reached if and only if 𝑝�(𝒍) = 𝑝M(𝒍), ∀𝑖, 𝑗. The 257 

minimization of (10) is equivalent to minimizing a form of generalized Jensen-Shannon 258 

divergence among multiple batch-embedding distributions. 259 

Note that in practice, model training balances between ℒ����  and pure batch alignment. 260 

Aligning cells of the same type induces a minimal cost in ℒ���� , while improperly aligning 261 

cells of different types could cause ℒ����  to rise dramatically. During training, the gradient 262 

from both batch discriminators and decoder provide fine-grain guidance to align different 263 

batches, leading to better results than “hand-crafted” alignment strategies like CCA7 and 264 

MNN6. Empirically, given proper values for 𝜆�, the adversarial approach correctly handles 265 

difference in cell type distribution among batches. If multiple levels of batch effect exist, e.g., 266 

within-dataset and cross-dataset, we use an independent batch discriminator for each 267 

component, providing extra flexibility. 268 

Data preprocessing for benchmarks 269 

Most informative genes were selected using the Seurat7 function “FindVariableGenes”. We 270 

set the argument “binning.method” to “equal_frequency” and left other arguments as default. 271 

If within-dataset batch effect exists, genes are selected independently for each batch and then 272 

pooled together. By default, a gene is retained if it is selected in at least 50% of batches. 273 

Downstream benchmarks were all performed using this gene set, except for scmap and 274 

CellFishing.jl, which provide their own gene selection method. GNU parallel28 was used to 275 

parallelize and manage jobs throughout the benchmarking and data processing pipeline. 276 
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Benchmarking dimension reduction 277 

PCA was performed using the R package irlba29 (v2.3.2). ZIFA12 was downloaded from its 278 

Github repository, and hard coded random seeds were removed to reveal actual stability. 279 

ZINB-WaVE13 (v1.0.0) was performed using the R package zinbwave. scVI8 (v0.2.3) was 280 

downloaded from its Github repository, and minor changes were made to the original code to 281 

address PyTorch30 compatibility issues. Our modified versions of ZIFA and scVI are 282 

available upon request. 283 

For PCA and ZIFA, data were logarithm transformed after normalization and adding a 284 

pseudocount of 1. Hyperparameters of all methods above were left as default. For our model, 285 

we used the same set of hyperparameters throughout all benchmarks. 𝜆o and 𝜆q were both set 286 

to 0.001. All neural networks (encoder, decoder and discriminators) used a single layer of 287 

128 hidden units. Learning rate of the RMSProp optimizer is set to 0.001, and minibatches of 288 

size 128 were used. For comparability, the target dimensionality of each method was set to 289 

10. All benchmarked methods were repeated multiple times with different random seeds. 4 290 

random seeds were used for PCA, ZIFA and ZINB-WaVE, while 16 random seeds were used 291 

for scVI and our model, since neural network-based models are typically considered less 292 

stable. Run time was limited to 2 hours, after which the jobs were terminated. 293 

Cell type nearest neighbor mean average precision (MAP) was computed with K nearest 294 

neighbors of each cell based on low-dimensional space Euclidean distance. If we denote the 295 

cell type of a cell as 𝑦, and the cell types of its ordered nearest neighbors as 𝑦S, 𝑦�, … 𝑦� . The 296 

average precision (AP) for that cell is defined as: 297 

 AP =
∑ 1¡R¡¢ ⋅

∑ 1¡R¡¢£
�
�£RS

𝑘
7
�RS

∑ 1¡R¡¢
7
�RS

 (15) 

Mean average precision is then given by: 298 

 MAP =
1
𝑁�AP�

¦

�RS

 (16) 

Note that when 𝐾 = 1, MAP reduces to the nearest neighbor accuracy. We set 𝐾 to 1% of the 299 

total cell number throughout all benchmarks. 300 

Benchmarking batch effect correction 301 

We merged multiple datasets according to shared gene names. If datasets to be merged are 302 

from different species, Ensembl ortholog31 information was used to map genes to ortholog 303 
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groups before merging. To obtain informative genes in merged datasets, we take the union of 304 

informative genes from each dataset, and then intersect the union with the intersection of 305 

detected genes from each dataset. 306 

CCA7 and MNN6 alignments were performed using the R packages Seurat7 (v2.3.3) and 307 

scran32 (v1.6.9), respectively. Hard-coded random seeds in Seurat were removed to reveal 308 

actual stability. The modified version of Seurat is available upon request. For comparability, 309 

we evaluated cell type resolution and batch mixing in a 10-dimensional latent space. For 310 

MNN alignment, we set the argument “cos.norm.out” to false and left other arguments as 311 

default. PCA was applied to reduce the dimensionality to 10 after obtaining the MNN-312 

corrected expression matrix. For CCA alignment, we used the first 10 canonical correlation 313 

vectors. Run time was limited to 2 hours, after which the jobs were terminated. Seurat 314 

alignment score was computed exactly as described in the CCA alignment paper7. For our 315 

own model, we consistently used 𝜆� = 0.01, and all other hyperparameters remain the same 316 

as in dimension reduction benchmarks. 4 random seeds were used for PCA, CCA and MNN, 317 

while 16 random seeds were used for scVI and our model, since neural network-based 318 

models are typically considered less stable. 319 

Cell querying based on posterior distributions 320 

We evaluated cell-to-cell similarity based on the posterior distribution distance. Similar to the 321 

training phase, we obtained samples from the “universal approximator posterior” by sampling 322 

𝒙’ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝒙) and feeding to the encoder network. To obtain a robust estimation of the 323 

distribution distance with a small number of posterior samples, we project the posterior 324 

samples of two cells onto the line connecting their posterior point estimates in the latent 325 

space and use the projected scalar distribution distance to approximate the true distribution 326 

distance. Wasserstein distance is computed on normalized projections to account for 327 

nonuniform density across the embedding space: 328 

 𝑁𝑃𝐷(𝑝, 𝑞) =
1
2 ⋅ ¨𝑊S ª𝑧e(𝑝), 𝑧e(𝑞)¬ +𝑊S ª𝑧j(𝑝), 𝑧j(𝑞)¬­ (17) 

Where 329 

 

𝑊S(𝑢, 𝑣) = inf
±∈²(³,´)

µ|𝑥 − 𝑦|𝑑𝜋(𝑥, 𝑦) 

𝑧³(𝑣) =
𝑣 − 𝔼(𝑢)

¸𝑣𝑎𝑟(𝑢)
 

(18) 
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We term this distance metric normalized projection distance (NPD). By default, 50 samples 330 

from the posterior are used to compute NPD, which produces sufficiently accurate results 331 

(Supplementary Fig. 4i-j). The definition of posterior NPD does not imply an efficient 332 

nearest neighbor searching algorithm. To increase speed, we first use Euclidean distance-333 

based nearest neighbor searching, which is highly efficient in the low-dimensional latent 334 

space, and then compute posterior distances only for these nearest neighbors. The empirical 335 

distribution of posterior NPD for a dataset is obtained by computing posterior NPD on 336 

randomly selected pairs of cells in the reference dataset. Empirical p-values of query hits are 337 

computed by comparing the posterior NPD of a query hit to this empirical distribution. 338 

We note that even with the querying strategy described above, querying with single models 339 

still occasionally leads to many false-positive hits when cell types on which the model has 340 

not been trained are provided as query. This is because embeddings of such untrained cell 341 

types are mostly random, and they could localize close to reference cells by chance. We 342 

reason that embedding randomness of untrained cell types could be utilized to identify and 343 

correctly reject them. Practically, we train multiple models with different starting points (as 344 

determined by random seeds) and compute query hit significance for each model. A query hit 345 

is considered significant only if it is consistently significant across multiple models. To 346 

acquire predictions based on significant hits, we use majority voting for discrete variables, 347 

e.g., cell type, or averaging for continuous variables, e.g., cell fate distribution. 348 

Distance metric ROC analysis 349 

Our model and scVI8 were fitted on reference datasets and applied to positive and negative 350 

control query datasets in the pancreas group of Supplementary Table 2. We then randomly 351 

selected 10,000 query-reference cell pairs. A query-reference pair is defined as “positive” if 352 

the query cell and reference cell are of the same cell type, and “negative” otherwise. Each 353 

benchmarked similarity metric was then computed on all sampled query-reference pairs and 354 

used as predictors for “positive”/“negative” pairs. AUROC values were computed for each 355 

benchmarked similarity metric. In addition to the Euclidean distance, we also computed 356 

posterior distribution distances for scVI (Supplementary Fig. 4k). NPD was computed as 357 

described in (17), based on samples from the posterior Gaussian. JSD was computed in the 358 

original latent space without projection. 359 
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Benchmarking query-based cell typing 360 

Cell ontology annotations in ACA were used as ground truth. Cells without cell ontology 361 

annotations were excluded in the analysis. For each querying method, cell type predictions 362 

for query cells were obtained based on query hits with a minimal similarity cutoff, i.e., query 363 

cells with no significant hits are rejected, while cells not rejected are further assigned cell 364 

type predictions. Sensitivity, specificity and Cohen’s κ are computed as follows: 365 

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1 −
#	𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑	𝑞𝑢𝑒𝑟𝑦	𝑐𝑒𝑙𝑙𝑠

#	𝑞𝑢𝑒𝑟𝑦	𝑐𝑒𝑙𝑙𝑠	𝑡ℎ𝑎𝑡	𝑚𝑎𝑡𝑐ℎ	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒𝑠
 (19) 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
#	𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑	𝑞𝑢𝑒𝑟𝑦	𝑐𝑒𝑙𝑙𝑠

#	𝑞𝑢𝑒𝑟𝑦	𝑐𝑒𝑙𝑙𝑠	𝑡ℎ𝑎𝑡	𝑑𝑜	𝑛𝑜𝑡	𝑚𝑎𝑡𝑐ℎ	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒𝑠
 (20) 

 𝐶𝑜ℎ𝑒𝑛À𝑠	𝜅 = 1 −
1 − #	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

1 − #	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑐ℎ𝑎𝑛𝑐𝑒
 (21) 

Predictions are considered correct if they exactly match the ground truth, i.e., no flexibility 366 

based on cell type similarity. This prevents unnecessary bias introduced in the selection of 367 

cell type similarity measure. Cells were inversely weighed by the size of the corresponding 368 

dataset when computing average sensitivity, specificity and Cohen’s κ. AUROC was 369 

computed using linear interpolation. For scmap2, we varied the minimal cosine similarity 370 

requirement for nearest neighbors. For Cell BLAST, we varied the maximal p-value cutoff 371 

used in filtering hits. For CellFishing.jl4, the original implementation does not include a 372 

dedicated cell type prediction function, so we used the same strategy as that for our own 373 

method (majority voting after distance filtering) to acquire final predictions, in which we 374 

varied the Hamming distance cutoff used in distance filtering. Finally, 4 random seeds were 375 

tested for each cutoff and each method to reflect stability. Several other cell querying tools 376 

(CellAtlasSearch3, scQuery33, scMCA34) were not included in our benchmark because they 377 

do not support custom reference datasets. 378 

Benchmarking querying speed 379 

To evaluate the scalability of querying methods, we constructed reference datasets of varying 380 

sizes by subsampling from the 1M mouse brain dataset35. For query data, the “Marques” 381 

dataset36 was used. Benchmarking was performed on a workstation with 40 CPU cores, 382 

100GB RAM and GeForce GTX 1080Ti GPU. For all methods, only the querying time was 383 

recorded, not including the time consumed to build reference indices. 384 
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Application to trachea datasets 385 

We first removed cells labeled as “ionocytes” in the “Montoro_10x”14 dataset and used 386 

“FindVariableGenes” from Seurat to select informative genes in the remaining cells. Four 387 

models with different starting points were trained on the tampered “Montoro_10x” dataset. 388 

We used a cutoff of empirical p-value > 0.1 to reject query cells from the “Plasschaert”15 389 

dataset as potential novel cell types. We clustered rejected cells using spectral clustering 390 

(Scikit-learn37 v0.20.1) after applying t-SNE38 to latent space coordinates. The average p-391 

value for a query cell was computed as the geometric mean of p-values across all hits. 392 

Online tuning 393 

When significant batch effect exists between reference and query, we support further aligning 394 

query data with the reference data in an online-learning manner. All components in the 395 

pretrained model, including the encoder, decoder, prior discriminators and batch 396 

discriminators, are retained. The reference-query batch effect is added as an extra component 397 

to be removed using adversarial batch alignment. Specifically, a new discriminator dedicated 398 

to the reference-query batch effect is added, and the decoder is expanded to accept an extra 399 

one-hot indicator for reference and query. The expanded model is then fine-tuned using the 400 

combination of reference and query data. Two precautions are taken to prevent a decrease in 401 

specificity caused by over-alignment. First, adversarial alignment loss is constrained to cells 402 

that have mutual nearest neighbors6 between reference and query data in each SGD 403 

minibatch. Second, we penalize the deviation of tuned model weights from the original 404 

weights. 405 

Application to hematopoietic progenitor datasets 406 

For the within- “Tusi”16 query, we trained four models using only cells from sequencing run 407 

2, and cells from sequencing run 1 were used as query cells. PBA inferred cell fate 408 

distributions provided by the authors, which are 7-dimensional categorical distributions 409 

across 7 terminal cell fates, were used as the ground truth. We took the average cell fate 410 

distributions of significant querying hits (p-value < 0.05) as predictions for query cells. 411 

Regarding scmap-cell, we filtered nearest neighbors according to a default cosine similarity 412 

cutoff of 0.5. Jensen-Shannon divergence (JSD) between true and predicted cell fate 413 

distributions was computed as below: 414 
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1
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𝑝� + 𝑞�
2

+ 𝑞� log
𝑞�

𝑝� + 𝑞�
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 (22) 

For cross-species querying between “Tusi” and “Velten”17, we mapped both mouse and 415 

human genes to ortholog groups. Online tuning with 200 epochs was used to increase 416 

sensitivity and accuracy. Latent space visualization was performed using UMAP39, 40. 417 

ACA database construction 418 

We searched Gene Expression Omnibus (GEO)41 using the following search term:  419 
( 420 
 "expression profiling by high throughput sequencing"[DataSet Type] OR 421 
 "expression profiling by high throughput sequencing"[Filter] OR 422 
 "high throughput sequencing"[Platform Technology Type] 423 
) AND 424 
"gse"[Entry Type] AND 425 
( 426 
"single cell"[Title] OR 427 
"single-cell"[Title] 428 
) AND 429 
("2013"[Publication Date] : "3000"[Publication Date]) AND 430 
"supplementary"[Filter] 431 

Datasets in the Hemberg collection (https://hemberg-lab.github.io/scRNA.seq.datasets/) were 432 

merged into this list. Only animal single-cell transcriptomic datasets profiling samples of 433 

normal conditions were selected. We also manually filtered small-scale or low-quality data. 434 

Additionally, several other high-quality datasets missing in the previous list were included for 435 

comprehensiveness.  436 

The expression matrices and metadata of selected datasets were retrieved from GEO, 437 

supplementary files of the publication or by directly contacting the authors. Metadata were 438 

further manually curated by adding additional descriptions in the paper to acquire the most 439 

detailed information of each cell. We unified raw cell type annotation by Cell Ontology42, a 440 

structured controlled vocabulary for cell types. Closest Cell Ontology terms were manually 441 

assigned based on the Cell Ontology description and context of the study. 442 

Building reference panels for the ACA database 443 

Two types of searchable reference panels are built for the ACA database. The first consists of 444 

individual datasets with dedicated models trained on each, while the second consists of 445 
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datasets grouped by organ and species, with models trained to align multiple datasets 446 

profiling the same species and same organ. 447 

Data preprocessing follows the same procedure as in previous benchmarks. Both cross-448 

dataset batch effect and within-dataset batch effect are manually examined and removed 449 

when necessary. For the first type of reference panels, datasets too small (typically < 1,000 450 

cells sequenced) are excluded because of insufficient training data. These datasets are still 451 

included in the second type of panels, where they are trained jointly with other datasets 452 

profiling the same organ in the same species. For each reference panel, four models with 453 

different starting points are trained. 454 

Web interface 455 

For conveniently performing and visualizing Cell BLAST analysis, we built a one-stop Web 456 

interface. The client-side was made from Vue.js, a single-page application Javascript 457 

framework, and D3.js for cell ontology visualization. We used Koa2, a web framework for 458 

Node.js, as the server side. The Cell BLAST Web portal with all accessible curated datasets 459 

is deployed on Huawei Cloud.460 
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Supplementary Fig. 1 Comparing low-dimensional space cell type resolutions of different dimension 461 
reduction methods. 462 
Nearest neighbor cell type mean average precision (MAP) is used to evaluate how well biological similarity is 463 
captured. MAP can be thought of as a generalization to nearest neighbor accuracy, with larger values indicating 464 
higher cell type resolution and, thus, more suitable for cell querying. Error bars indicate mean ± s.d. Methods 465 
that did not finish under the 2-hour time limit are marked as N.A.  466 
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Supplementary Fig. 2 t-SNE visualization of latent spaces learned by our model. 467 
(a) “Muraro”43, (b) “Adam”44, (c) “Guo”45, (d) “Plasschaert”15, (e) “Baron_human”46, (f) “Bach”47, (g) 468 
“Macosko”48.  469 
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Supplementary Fig. 3 t-SNE visualization of latent spaces learned by our model on combinations of 470 
multiple datasets, with batch effect corrected. 471 
Figures in the left column color cells by cell type, while figures in the right column color cells by dataset. (a-b) 472 
“Baron_human”46 and “Baron_mouse”46; (c-d) “Baron_human”46, “Muraro”43, “Enge”49, “Segerstolpe”50, 473 
“Xin_2016”51 and “Lawlor”52; (e-f) “Montoro_10x”14 and “Plasschaert”15; (g-h) “Quake_Smart-seq2”18 and 474 
“Quake_10x”18.475 
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Supplementary Fig. 4 Multilevel batch effect correction and Cell BLAST strategy optimization. 476 
(a-c) Latent space learned with only cross-dataset batch effect correction, colored by (a) donor in 477 
“Baron_human”46, (b) donor in “Enge”49, (c) donor in “Muraro”43. (d-h) Latent space learned with both cross-478 
dataset and within-dataset batch effect correction, colored by (d) donor in “Baron_human”46, (e) donor in 479 
“Enge”49, (f) donor in “Muraro”43, (g) cell type, (h) dataset. (i) Standard deviation decreases as the number of 480 
samples from the posterior increases. (j) Relationship between Euclidean distance and NPD in 481 
“Baron_human”46 data. The orange points represent cell pairs that are of the same cell type (“positive pairs”), 482 
while the blue points represent cell pairs of different cell types (“negative pairs”). (k) AUROC of different 483 
distance metrics in discriminating cell pairs with the same cell type from cell pairs with different cell types. Box 484 
plots indicate the median (center lines), interquantile range (hinges), and 1.5 times the interquantile range 485 
(whiskers). Note that the posterior distribution distances for scVI only lead to a decrease in performance, 486 
possibly due to improper Gaussian assumption in the posterior. (l) Accuracy, Cohen’s κ (a measure of 487 
prediction accuracy corrected for chance, see Methods for more details)2, specificity and sensitivity all increase 488 
as the number of models used for cell querying increases, among which the improvement of specificity is the 489 
most significant. Error bars indicate mean ± s.d.  490 
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Supplementary Fig. 5 Ionocytes predicted to be club cells are potentially doublets or of an intermediate 491 
cell state. 492 
(a) Cell-cell correlation heatmap for several cell types of interest. Cells labeled as “<X>” are reference cells in 493 
the “Montoro”14 dataset. Cells labeled as “X->Y” are cells annotated as “X” in the original “Plasschaert”15 494 
dataset but predicted to be “Y”. (b-d) Expression levels of several club cell markers in the cell groups of 495 
interest. (e-g) Expression levels of several ionocyte markers in the cell groups of interest.496 
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Supplementary Fig. 6 Rejected cells in the “Montoro” - “Plasschaert” query. 497 
(a) t-SNE visualization of Cell BLAST-rejected cells, colored by cell type. (b) Sankey plot of scmap prediction. 498 
(c, d) t-SNE visualization of scmap-rejected cells, colored by unsupervised clustering (c) and cell type (d). (e) 499 
scmap similarity distribution in each cluster of scmap-rejected cells. The rejected ionocytes do not have the 500 
lowest cosine similarity scores to draw sufficient attention.  501 
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Supplementary Fig. 7 Benchmarking query-based cell typing. 502 
(a-c) Querying specificity (a), sensitivity (b) and Cohen’s κ (c) for different methods under the default setting. 503 
Error bars indicate mean ± s.d. (d) ROC curve of cell querying in four different groups of test datasets. Cohen’s 504 
κ values in the bottom left of each subpanel correspond to the optimal point on the ROC curve. Points 505 
corresponding to each method’s default cutoff (scmap: cosine distance = 0.5, CellFishing.jl: Hamming distance 506 
= 110, Cell BLAST: p-value = 0.05) are marked as triangles. Note that CellFishing.jl does not provide a default 507 
cutoff, so we chose a Hamming distance of 110, which is the closest to balancing sensitivity and specificity, but 508 
it is still far from being stable across different datasets. (e) Querying speed on reference datasets of different 509 
sizes subsampled from the 1M mouse brain dataset35. Error bars indicate mean ± s.d.   510 
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Supplementary Fig. 8 Sankey plots for Cell BLAST in the cell-querying benchmark.  511 
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Supplementary Fig. 9 Sankey plots for scmap in the cell-querying benchmark.  512 
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Supplementary Fig. 10 Sankey plots for CellFishing.jl in the cell-querying benchmark.  513 
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Supplementary Fig. 11 Using “online tuning” in hematopoietic progenitor and Tabula Muris18 spleen 514 
data. 515 
UMAP visualization of the “Velten”17 dataset, colored by the expression of known lineage markers, including 516 
CA1 for the erythrocyte lineage (a), GP1BB for the megakaryocyte lineage (b), DNTT for the B-cell lineage (c), 517 
TGFBI for monocyte and dendritic cell lineages (d), CLC for eosinophil, basophil, and mast cell lineages (e), 518 
MPO for the neutrophil lineage (f), and scmap predicted cell fate distribution (g). (h) ROC curve of cell 519 
querying in Tabula Muris18 spleen data. Cohen’s κ values in the bottom left of each subpanel correspond to the 520 
optimal point on the ROC curve. Points corresponding to each method’s default cutoff (scmap: cosine distance 521 
= 0.5, CellFishing.jl: Hamming distance = 110, Cell BLAST: p-value = 0.05) are marked as triangles.  522 
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Supplementary Fig. 12 ACA database and Cell BLAST Web portal. 523 
(a) Comparison of cell numbers in different single-cell transcriptomics databases. (b) Composition of different 524 
single-cell sequencing platforms in ACA. (c) Home page of the Cell BLAST Web interface. (d) Web interface 525 
showing the results of a sample query. (e) A full list of ACA reference panels available in our Web interface.526 
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Dataset Name Organism Organ Profiled Experimental 
Platform Used In 

Guo45 

Human 

Testis 10x53 DR 

Muraro43 

Pancreas 

CEL-Seq254 DR, BC 

Xin_201651 SMARTer55 BC 

Lawlor52 SMARTer55 BC 

Segerstolpe50 Smart-seq256 BC 

Enge49 Smart-seq256 BC 

Baron_human46 inDrop57 DR, BC 

Baron_mouse46 

Mouse 

inDrop57 BC 

Adam44 Kidney Drop-seq48 DR 

Plasschaert15 
Trachea 

inDrop57 DR, BC 

Montoro_10x14 10x53 BC 

Macosko48 Retina Drop-seq48 DR 

Bach47 Mammary Gland 10x53 DR 

Quake_Smart-
seq218 20 Organs Smart-seq256 BC 

Quake_10x18 12 Organs 10x53 BC 

 527 

Supplementary Table 1. Datasets used in dimensionality reduction and batch effect 528 

correction benchmarking. 529 

DR, dimension reduction benchmarking; BC, batch effect correction benchmarking.  530 
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Group Role Dataset Name Organism Organ Profiled Experimental 
Platform 

Pancreas 

Reference 

Baron_human46 

Human 

Pancreas 

inDrop57 

Xin_201651 SMARTer55 

Lawlor52 SMARTer55 

Positive 
control 
query 

Muraro43 CEL-Seq254 

Segerstolpe50 Smart-seq256 

Enge49 Smart-seq256 

Negative 
control 
query 

Wu_human58 Kidney 10x53 

Zheng53 PBMC 10x53 

Philippeos59 Skin Smart-seq256 

Trachea 

Reference Montoro_10x14 

Mouse 

Trachea 

10x53 

Positive 
control 
query 

Plasschaert15 inDrop57 

Negative 
control 
query 

Baron_mouse46 Pancreas inDrop57 

Park60 Kidney 10x53 

Bach47 Mammary 
Gland 10x53 

Macosko48 Retina Drop-seq48 

Mammary 
Gland 

Reference Bach47 

Mouse 

Mammary 
Gland 

10x53 

Positive 
control 
query 

Giraddi_10x61 10x53 

Quake_Smart-seq2_ 
Mammary_Gland18 Smart-seq256 

Quake_10x_ 
Mammary_Gland18 10x53 

Negative 
control 
query 

Baron_mouse46 Pancreas inDrop57 

Park60 Kidney 10x53 

Plasschaert15 Trachea inDrop57 

Macosko48 Retina Drop-seq48 
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Lung 

Reference Quake_10x_ 
Lung18 

Mouse 

Lung 

10x53 

Positive 
control 
query 

Quake-Smart-seq2_ 
Lung18 Smart-seq256 

Negative 
control 
query 

Baron_mouse46 Pancreas inDrop57 

Park60 Kidney 10x53 

Bach47 Mammary 
Gland 10x53 

Plasschaert15 Trachea inDrop57 

Spleen 

Reference Quake_10x_ 
Spleen18 

Mouse 

Spleen 

10x53 

Positive 
control 
query 

Quake_Smart-seq2_ 
Spleen18 Smart-seq256 

Negative 
control 
query 

Baron_mouse46 Pancreas inDrop57 

Park60 Kidney 10x53 

Macosko48 Retina Drop-seq48 

Bach47 Mammary 
Gland 10x53 

 531 

Supplementary Table 2. Datasets used in cell query benchmarking. 532 

 533 
Supplementary Table 3. Raw data of benchmarking results. 534 
 535 

Supplementary Table 4. Datasets in ACA.536 
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