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Abstract (max. 125 words) 53 

Soil organisms are crucial for ecosystem services that support human life. However, little is 54 

known about the distribution, diversity and threats facing them. Here, we compiled a global 55 

dataset of sampled earthworm communities from over 7000 sites in 56 countries to predict 56 

patterns in earthworm diversity, abundance, and biomass. Further, we identify the 57 

environmental drivers shaping these patterns. Local species richness and abundance typically 58 

peaked at higher latitudes, while biomass peaked in the tropics, patterns opposite to that 59 

observed in many aboveground taxa. But similar to many aboveground taxa, climate variables 60 

were more important in shaping earthworm communities than variables relating to soil or habitat 61 

cover. These findings highlight that, while the environmental drivers are similar, conservation 62 

strategies to conserve aboveground biodiversity might not be appropriate for earthworm 63 

diversity. 64 

Main Text 65 

Despite repeated calls for large-scale biogeographic studies of soil organisms (1–3), global 66 

biodiversity patterns remain relatively unknown, with most efforts focused on soil microbes (4–67 

6), the smallest of the soil organisms. Consequently, the drivers of soil biodiversity, particularly 68 

soil fauna, remain unknown at global scales. Nevertheless, soils harbour high biodiversity (7–69 

11), and are responsible for a large number of ecosystem functions and services that we rely 70 

upon for our well-being (9, 10, 12, 13).  71 

 72 

Here we analyse global patterns in diversity, abundance and biomass of earthworms (hereafter 73 

‘community metrics’). Earthworms are considered ecosystem engineers (14) in many habitats, 74 

and contribute to soil quality (e.g., nutrient availability through decomposition 15–17). They also 75 

directly provide a variety of vital ecosystem functions and services (18). Whereas most 76 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587394doi: bioRxiv preprint 

https://doi.org/10.1101/587394


biodiversity-ecosystem functioning studies focus on species richness as a diversity measure 77 

(19–21), the provisioning of ecosystem functions by earthworms is likely to vary depending on 78 

abundance (22), biomass (23–25), and ecological group of the earthworm species (24, 26, 27; 79 

see Supplementary Materials and Methods). Consequently, understanding global patterns in 80 

community metrics for earthworms is critical. 81 

 82 

Our ecological understanding of global biodiversity patterns (e.g., latitudinal diversity gradients 83 

28, 29) are largely based on the distribution of aboveground taxa only. For many aboveground 84 

taxa, variables relating to climate (30–33) or energy (e.g., primary productivity 34; 85 

evapotranspiration 35, 36) are often the most important predictors of diversity across large 86 

scales. At large scales, climatic drivers also shape belowground communities (5, 37–41), but 87 

the response to these drivers in belowground communities may differ from those seen 88 

aboveground (5, 42, 43). For example, mean annual temperature positively correlates 89 

aboveground diversity (44), but negatively correlates with the diversity of many classes of fungi 90 

(5), likely due to the optimum temperature of the latter being exceeded (45).  91 

 92 

From small scale field studies we know that soil properties such as pH and soil carbon will 93 

influence earthworm diversity (40, 46, 47). For example, lower pH values constrain the diversity 94 

of earthworms by reducing calcium availability (48), and soil carbon provides resources that 95 

sustain diversity (46). Alongside the many interacting soil properties (40), there are a variety of 96 

other drivers can shape earthworm diversity, such as climate and habitat cover (46, 49, 50). 97 

However, to date, no single framework focused on soil fauna has integrated a comprehensive 98 

set of environmental drivers to identify the most important ones.  99 

 100 

As many soil organisms have shown global diversity patterns that differ from aboveground 101 

organisms (5, 42, 43, 51), we anticipate that earthworm community metrics (particularly 102 
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diversity) will not follow global patterns seen aboveground. This would be consistent with 103 

previous studies at smaller scales, which have shown that species richness of earthworms 104 

increases with latitude (40, 50). Because studies have shown that local earthworm communities 105 

are highly influenced by soil properties, we furthermore expect soil properties (e.g., pH and soil 106 

organic carbon) to be key environmental drivers of earthworm communities. 107 

 108 

We collated 181 earthworm diversity datasets from the literature and unpublished field studies 109 

(162 and 19, respectively) to create a dataset spanning 56 countries (all continents except 110 

Antarctica) and 7048 sites (Figure 1a). We used this raw data to explore key characteristics of 111 

earthworm communities (species richness, abundance and biomass), and determine the 112 

environmental drivers that shape earthworm biodiversity. We then used the relationships 113 

between earthworm community metrics and environmental drivers to predict local earthworm 114 

communities across the globe. Here, we present the first global maps describing earthworm 115 

biodiversity, distilled into three earthworm community metrics: diversity, abundance, and 116 

biomass.  117 

 118 

Three mixed effects models were constructed for each of the three community metrics; species 119 

richness (calculated within a site, ~1m2), abundance per m2, and biomass per m2. Each model 120 

contained 12 environmental variables as main effects (Supplementary Table 2) which were 121 

grouped into six themes; ‘soil’, ‘precipitation’, ‘temperature’, ‘water retention’, ‘habitat cover’ and 122 

‘elevation’ (see Supplementary Materials and Methods). Within each theme, each model 123 

contained interactions between the variables. Following model simplification, all models retained 124 

most of the original variables, but some interactions were removed (Supplementary Table 3). All 125 

models performed well in cross-validation (Supplementary Figure 2) with relatively high R2 126 

values (Supplementary Table 4 a and c, see Supplementary Material for further details).  127 

 128 
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 129 

Predicting across global environmental data layers, local diversity of earthworms was estimated 130 

to range between 1 and 4 species across most of the terrestrial globe (Figure 1b) (mean: 1.98 131 

species; SD: 0.55). These values are in line with previous suggestions (47). The lowest values 132 

of species richness occurred across the boreal/subarctic regions, which was expected based on 133 

aboveground biodiversity patterns. However, low diversity also occurred in subtropical and 134 

tropical areas, such as India and Indonesia, in contrast with commonly observed 135 

macroecological patterns. This low earthworm diversity could be due to these regions typically 136 

being outside of the optimal temperature range (12-20˚C 52) for earthworms. Areas of high local 137 

d 

 

 Figure 1 (a) Map of the distribution of data, showing any record that was used in at least one of the three 

models (species richness, abundance, and biomass). Each black dot represents the centre of a ‘study’ (i.e., a 

set of data with consistent methodology, see Supplementary Materials and Methods). In total, 229 studies 

were included (from 181 datasets), which equated to 7048 sites across 56 countries. (b-d): The globally 

predicted values from the three biodiversity models, species richness (within site, ~1m2; panel b), abundance 

(panel c; individuals per m2), and biomass (panel d; grams per m2). Areas of high diversity are shown in yellow 

colours, and areas of low diversity are shown in dark purple colours. Grey areas are habitat cover categories 

which lacked samples of earthworm commuties, thus lack predictions. To prevent outliers skewing the 

visualization of results, the colour of maps were curtailed at the extreme low and high values. Curtailing was 

based on where the majority of values laid. Thus, values lower or higher than that number marked on the scale 

are coloured the same but may represent a large range of values. 
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species richness were at mid-latitudes, such as the southern tip of South America, and the 138 

southern regions of Australia and New Zealand. Europe (particularly north of the Black Sea) and 139 

northeastern USA also had particularly high local species richness. While this pattern contrasts 140 

with the latitudinal diversity patterns found in many aboveground organisms (28, 29, 53), it is 141 

consistent with patterns found in some belowground organisms (ectomycorrhizal fungi 5, 142 

bacteria 41, nematodes 54, 55), but not all (arbuscular mycorrhizal fungus 39, oribatid mites 143 

56). The mismatch between above- and belowground biodiversity has been predicted (42, 51, 144 

57). This work highlights the fact that it is important that soil organism diversity patterns are 145 

examined in concert with those of aboveground taxa if we want to fully understand large-scale 146 

patterns of biodiversity and their underlying drivers (43, 58). 147 

 148 

However, the patterns seen could be as a result of past climates, in particular glaciation in the 149 

last ice age. With the expectation that regions in the mid- to high latitudes that were previously 150 

glaciated would be re-colonised by earthworm species with high dispersal capabilities and large 151 

geographic ranges (50). Thus mid-latitude communities would have high local diversity but 152 

minimal beta-diversity, and the opposite would be true in the tropical regions. When the number 153 

of unique species within each 5 degree latitude band was calculated (i.e., regional richness, 154 

Figure 2a) there was no evidence of a latitudinal diversity gradient once sampling effects have 155 

been accounted for (Figure 2b). This highlights that even with relatively low sampling effort in 156 

the tropics (Figure 2a), endemism of earthworms (59) and beta diversity within the region (i.e., 157 

across the sites; 50, 60) must be considerably higher than within the well-sampled temperate 158 

region. 159 

 160 

Across the globe, predicted total abundance of the local community of earthworms typically 161 

ranged between 5 and 150 individuals per m2, in line with estimates from Curry (46) (Figure 1c; 162 

mean: 57.00 individuals per m2; SD: 43.59). There was a slight tendency for areas of higher  163 
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 164 

community abundance to not be in the tropics, but in temperate areas such as Europe 165 

(particularly the UK, France and Ukraine), New Zealand, and part of the Pampas and 166 

surrounding region (South America). Lower community abundance occurred in many of the 167 

tropical and sub-tropical regions, such as Brazil, central Africa, and parts of China. In regions of 168 

lower earthworm abundance the relationship between community abundance and ecosystem 169 

function (61–63) implies a lower provision of the ecosystem services performed by these 170 

organisms. Further research is needed to disentangle whether these functions are in fact 171 

reduced or whether they are carried out by other soil taxa (64).   172 

 173 

The predicted total biomass of the local earthworm community across the globe typically ranged 174 

between 1 g and 150 g per m2 (Figure 1d; mean: 380.86g; SD: 47684.3, see Supplementary 175 

Materials and Methods for discussion in regards to extreme values). The areas of high 176 

earthworm biomass were spread across the globe, but concentrated in the tropics (particularly  177 

 

Figure 2 (a) The number of unique species within each 5 degree latitude band (grey bars) and the number of 

sampled sites within the same latitude band (red line). (b) Sampled-based rarefied species richness within each 5 

degree latitude band. Latitude bands with less than 22 sites were not included in the analysis. 
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Indonesia, parts of Coastal West Africa, Southern Central America, much of Colombia and 178 

Western Venezuela), some regions of North America and the Eurasian Steppe. In some 179 

regions this was almost the inverse of the abundance patterns (Figure 1c), thus these results 180 

may relate to the fact that earthworms decrease in body size towards the poles (65, 66), unlike 181 

other animals (e.g., birds and mammals 67). This decrease in earthworm body size might be 182 

due to smaller-bodied earthworms with greater dispersal capabilities recolonising northern 183 

regions following deglaciation post-ice age (50). In northern North America, where there are no 184 

native earthworms (68, 69), high density and, in some regions, high biomass of earthworms 185 

likely reflects the earthworm invasion of these regions. The invasive smaller European 186 

earthworm species likely encounter an enormous unused resource pool, which leads to 187 

 

Figure 3: Based on RandomForest models, the importance of the six variable themes from the three biodiversity 

models. Each row shows the results of each model (top: species richness, middle: abundance, bottom: biomass). 

Each column represents a theme of variables that was present in the simplified biodiversity model. In the main plot 

area, the most important variable group has the largest circle. Within each row, the circle size of the other variable 

themes are scaled in size depending on the relative change in importance. Thus, the circle size should only be 

compared within a row. Variable theme importance, calculated from the node impurity, was the weighted average 

of all variables within each theme, following simplification.  
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exceptionally high population sizes (70). In contrast, in Brazil, where we had a relatively higher 188 

sampling density (Figure 1a), patterns of abundance and biomass corresponded with the 189 

earthworm species that have been documented there. There are a number of giant earthworm 190 

species (71) within Brazil (and other countries in the tropics, such as Indonesia, where a similar  191 

 pattern is shown). These giant earthworms normally occur at low densities and low species 192 

richness (72), causing the patterns observed of high biomass but low abundance. 193 

 194 

For all three of the community metric models (species richness, abundance, and biomass), 195 

climatic variables were the most important drivers (the ‘temperature’ theme being the most 196 

important for both species richness and total biomass models, and ‘precipitation’ theme for the 197 

community abundance model; Figure 3). The importance of climatic variables is consistent with 198 

many aboveground taxa (e.g., plants 31, reptiles/amphibians/mammals 34) and belowground 199 

taxa (bacteria and fungi 5, 41, nematodes 55, springtails 73) when examined at large scales. 200 

This suggests that climate related methods and data, which are typically used for the estimation 201 

of aboveground biodiversity by macroecologists, may also be suitable for estimating earthworm 202 

communities. However, the strong link between climatic variables and earthworm community 203 

metrics is cause for concern, as climate has been and will continue to change due to 204 

anthropogenic activities over the coming decades (74). Our findings further highlight that  205 

 changes in temperature and precipitation are likely to influence earthworm diversity (75–77) 206 

and their distributions (40, 78). The expansion or shifts in distributions may be particularly 207 

problematic in the case of invasive earthworms, such as in North America (68, 79). However, a 208 

change in climate will most likely affect abundance and biomass of the earthworm communities 209 

before diversity, as shifts in the latter depend upon dispersal capabilities, which are relatively 210 

low in earthworms: 10m per year (80) compared to 600m per year for the average terrestrial 211 

organism (81). This underscores the need to study earthworms in terms of multiple community 212 

metrics in order to accurately assess responses of communities to climate change.  213 
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 214 

Habitat cover and soil properties still influenced the earthworm community (Supplementary 215 

Figure 3 a and b) and in the case of habitat cover, especially the community structure in relation 216 

to the three ecological groups (epigeic, endogeics and anecics, see Supplementary Material 217 

and Methods and Supplementary Figure 4). Across larger scales, climate will influence both the 218 

habitat cover and the soil properties, all of which will affect earthworm communities. Being able 219 

to account for this indirect effect with appropriate methods and data may alter the perceived 220 

importance of soil properties and habitat cover (e.g., with pathway analysis 33). In addition, for 221 

soil properties, the mismatch in scale between community metrics and soil properties taken from 222 

global layers (for sites where sampled soil properties were missing; see supplementary methods 223 

and materials) could also reduce the apparent importance of the theme.  224 

 225 

By compiling a global dataset of earthworm communities we show, for the first time, the global 226 

distribution of earthworm diversity, abundance and biomass, and identify key environmental 227 

drivers responsible for these patterns. Our findings suggest that climate change might have 228 

significant and serious effects on earthworm communities and the functions they provide. 229 

Despite earthworm communities being driven by similar environmental drivers as aboveground 230 

communities (31, 33), this relationship results in different patterns of diversity. We highlight the 231 

need to integrate belowground organisms into the global biodiversity paradigm to fully 232 

understand global patterns of biodiversity. Our study creates an avenue for future research: 233 

given that climate was the most important predictor of earthworm communities, it is possible for 234 

ecologists who have previously focused on modelling aboveground diversity to use similar 235 

methods belowground. By modelling both realms, aboveground/belowground comparisons are 236 

possible, potentially allowing a clearer view of the biodiversity distribution of whole ecosystems.  237 

 238 
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