
 1 

Quantitation of cis-translational control by general mRNA sequence 
features in five eukaryotes 
 
 
Jingyi Jessica Li1*, Guo-Liang Chew2 and Mark D. Biggin3* 
 
1 Department of Statistics, Department of Biomathematics, and Department of Human Genetics, 
University of California, Los Angeles, CA 90095. 
2 Computational Biology Program, Public Health Sciences and Basic Sciences Division, Fred 
Hutchinson Cancer Research Center, Seattle, WA 98109. 
3 Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, 
CA 94708. 
 
* Corresponding authors. jli@stat.ucla.edu (JL)  mdbiggin@lbl.gov (MDB) 
 
 
 
short title: General translational control elements 
 
Keywords: Translation / cis-control / RNA structure / codon usage / collinear control 
 
 
 
 
 
ABSTRACT 
Background: General translational cis-elements are present in the mRNAs of all genes and affect 
the formation and progress of preinitiation complexes and the ribosome under many physiological 
states. These elements are: mRNA folding, upstream open reading frames, specific nucleotides 
flanking the initiating AUG codon, protein coding sequence length, and codon usage. The 
quantitative contributions of these sequence features and how and why they coordinate together 
to control translation rates are not well understood.  
 
Results: Here we show that these sequence features specify 42%–81% of the variance in 
translation rates in S. cerevisiae, S. pombe, Arabidopsis thaliana, M. musculus, and H. Sapiens. 
We establish that control by RNA secondary structure is chiefly mediated by highly folded 25–60 
nucleotide segments within mRNA 5’ regions; that changes in tri-nucleotide frequencies between 
highly and poorly translated 5’ regions are correlated between all species; and that control by 
distinct biochemical processes is strongly correlated as is control by a single process acting in 
different parts of the same mRNA.  
 
Conclusions: Our work shows that general features control a much larger fraction of the variance 
in translation rates than previously realized. We provide a more detailed and accurate 
understanding of the aspects of RNA structure that direct translation in diverse eukaryotes. In 
addition, we propose that the correlated control we observe between and within cis-control 
features will cause more even densities of translational complexes along each mRNA and 
therefore more efficient use of the translation machinery by the cell.  
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BACKGROUND 
The rates at which mRNAs are translated are determined by two classes of cis-acting elements: 
general translational control features and gene/condition specific elements [1-11]. The general 
features are secondary structure in the 5’ portion of the mRNA; upstream open reading frames 
(uORFs), which lie 5’ of the protein coding sequence (CDS); specific nucleotides immediately 
flanking the initiating AUG codon (iAUG) at the 5’ of the CDS; CDS length; and codon usage. 
These five sequence features are each present in all or many mRNAs and function by affecting 
the formation and progress of preinitiation complexes or the ribosome. As such they act in a wide 
array of physiological states and tissues. Gene or condition specific elements, in contrast, are 
short sequences recognized by trans-acting factors such as micro RNAs or regulatory proteins. 
A given type of specific element is present in only a subset of genes, and its cognate trans-acting 
factor only functional in a subset of cells or conditions.  
 
Here we focus on general translational control elements. Our major goal is to estimate the 
contributions of each of these sequence features—and their associated biochemical 
mechanisms—to the total variance in translation rates, singly and in combination. We argue that 
from this one can, in addition, approximate from the unexplained variance the contribution of 
specific elements, or at least set an upper limit on that contribution. By optimizing models that 
predict the contribution of each general element, we also aim to better understand the nucleic 
acid sequences that encode them. Further, to establish common principles we have analyzed in 
parallel data from five model eukaryotes. 
 
The general sequence features have long been known to affect the translation rates of individual 
genes. The quantitative contributions of these elements to the variance in genome wide 
translation rates, however, have not been thoroughly characterized. The correlation of subsets of 
these sequence features with ribosome profiling translation rate data has been estimated in S. 
cerevisiae and several animal models [4, 10, 12-16] (Additional file 1). In addition, the effect of 
large numbers of artificial sequence mutations on translation has been determined for 10–50 
nucleotide segments proximal to the iAUG codon in S. cerevisiae and H. sapiens [12, 17-21] 
(Additional file 1). The role of RNA folding energy on translation of S. cerevisiae 5’ untranslated 
regions (5’UTRs) in vitro has also been addressed [22]. A prior study that we conducted was the 
only one to assess the contributions of all five features [10]. This work established that mRNA 
folding, uORFs, iAUG proximal sequence elements (APEs), and CDS length explains 58% of the 
variance in translation rates among S. cerevisiae genes, presumably due to their impact on the 
initiation rate. When the effect of codon usage on elongation by the ribosome is also taken into 
account, 80% of the variance can be explained.  
 
Here we have developed new models that characterize in detail the mRNA secondary structures 
and sequence motifs that control translation rates. By applying our models to five well studied 
eukaryotes and by examining correlations in control between general features and between 
different parts of the same mRNA, we identify key principles common to all five species as well 
as phyla specific differences.  
 
RESULTS 
Datasets  
We chose five model eukaryotes for study: S. cerevisiae, S. pombe, Arabidopsis thaliana, M. 
musculus, and H. Sapiens. Translation rates were determined from ribosome profiling data as 
prior work has shown that the density of ribosomes per mRNA (i.e. the translational efficiency) is 
a useful estimate of the rate  [13, 23]. For each species, we chose an example dataset to analyze 
in most detail [4, 13, 24-26]. In addition, key analyses were repeated on further datasets of three 
species for other tissues or biological replicas [4, 14, 27, 28]. Figure 1 presents the distributions 
of translation rates, 5’UTR length, and CDS lengths for the five example datasets. Additional file 
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2: Figure S1 shows the variation in translation rates for all ten datasets examined. The lengths of 
5’UTRs vary among the species, with the average for S. cerevisiae being the shortest and that 
for the two mammals and S. pombe the longest. By contrast, the ranges of CDS lengths are more 
consistent among the five eukaryotes. The variance in translation rates is relatively narrow for all 
species and conditions. The mRNA sequences, translation rates, and other primary information 
for each dataset are given in Additional file 3.  Table 1 provides a glossary of abbreviations used.  
 
Control by 5’ mRNA secondary structures 
Computational predictions of mRNA secondary structure are fairly accurate: the algorithm we 
employed having 74% recall (% of true positive base pairs identified) and 79% precision (% of 
base pairs identified that are true positives) [29]. Previous work has shown that the free energies 
of RNA folding predicted by this or similar algorithms positively correlate with translation rates 
(Additional file 1), supporting the view that the preinitiation complex and ribosome must unfold 
RNA structures. Our preliminary analyses, however, showed that these prior studies had 
underestimated the contribution of mRNA folding to translation. We therefore systematically 
assessed which aspects of secondary structure are most important in determining translational 
efficiency and used this information to improve predictive models of rates. 
 
Figure 2 shows the mean and the [25th percentile—75th percentile] interval for the free folding 
energies of 35 nucleotide windows for two cohorts of genes: the 10% of genes with the highest 
translation rates (high TR) and the 10% with the lowest (low TR). Within the 5’UTR, the low TR 
cohort have smaller folding energies (i.e. are more folded) than the high TR cohort, consistent 
with repression of preinitiation complexes by RNA structure. For S. cerevisiae, S. pombe, and 
Arabidopsis the differences between the two cohorts are largest from -35 to +35, -35 to +1, and -
120 to +35 respectively. For mouse and human, the differences are largest towards the 5’ cap. In 
the CDS region 3' of +30, the relationship of RNA folding energy and translation rate is not 
consistent, with either a strong negative correlation in S. pombe; a weak negative correlation in 
S. cerevisiae, Arabidopsis, and M. musculus; or a positive correlation in H. sapiens. Prior analysis 
in S. cerevisiae implied that strongly folded RNA structures in the CDS are associated with more 
stable mRNAs and that the negative correlation of CDS folding energy with translation is indirect, 
being due to the positive correlation between translation and mRNA abundance and the negative 
effect of RNA turnover on mRNA abundance [10]. Given this and a lack of evidence that RNA 
structure affects the elongating ribosome, we have limited our models to the 5’UTR and the 5' 
most part of CDS, where folding energy values and translation rates correlate positively. We term 
the combination of the 5'UTR and the short 5' CDS segment the 5' region.  
 
Along the 5' regions of individual mRNAs free energy values vary dramatically (Additional file 2: 
Figure S2), reflecting mRNA stem/loop structures at some locations and unfolded regions at 
others. Despite the mean tendencies shown in Figure 2, Additional file 2: Figure S2 reveals that 
individual genes can have folded or unfolded regions at almost any location.  
 
To capture and exploit these complex distributions, we devised a number of features that each 
score every gene using some aspect of predicted RNA folding energy. We also constructed three 
multivariate linear models that combine multiple features to form feature-sets. The coefficient of 
determination correlation coefficient (R2) was then calculated between each feature or feature-
set and the translation rates (Figure 3; Additional file 4). One feature was defined as the folding 
energy for the contiguous sequence from the 5’ cap to +35 (“whole”). The other features were 
determined for each of 19 window lengths varying from 6 to 100 nucleotides, the 5’ ends of the 
windows tiling from the 5’ cap to -1 (Figure 3). Our most accurate prediction of translation derived 
from a multivariate linear model that was selected by Bayesian Information Criteria (BIC) and that 
contains 9–33 features of whichever window length(s) provided the most useful information 
(“RNAfold”, Figure 3; Additional file 5). These “RNAfold” feature-sets explain between 11%–33% 
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of the variance in rates and as such have over twice the predictive power (R2) of models used by 
other groups (Additional file 1). 
 
Most features employed windows identified based on their free energy values. A substantial 
proportion of control by RNA secondary structure—often greater than a half—can be explained 
by the single window that has the minimum free energy within each mRNA (i.e. by the window 
that has the most folded structure) (“min”, Figures 3 and 4). Less folded windows each have 
progressively reduced explanatory power compared to the “min” window (“10%”, “25%”, “75%”, 
“90%”, and “max”, Figure 4). Likewise, features that sum Gibbs energies for the most folded 
window with the energies of other strongly folded segments (“sum≤5%”, “sum≤10%”, or 
“sum≤20%”) have more explanatory power than features that sum the energies of less well folded 
segments (“sum>90%” and “sum>80%”) (Figure 3). A similar relationship is also seen for features 
that determine the percent of windows in each mRNA that pass some threshold on the energies 
of all windows in the dataset ("%≤20%" vs “%>80%” and “%>90%”) (Figure 3). These results 
collectively suggest that translation rates are much more strongly influenced by differences 
among the more folded segment(s) within 5’ regions than by differences among their less folded 
sequences.  
 
Additional results imply that base-pairing between sequences separated by more than 60 
nucleotides does not play a dominant role in regulating translation. Because the “whole” feature 
includes the full 5’ region, it accounts for all long range interactions. Models that contain all 
features, however, perform little better than ones lacking “whole” (Figure 3, compare “models all” 
to “models all-1”).  
 
To further define the secondary structures that control translation, we focused on the most folded 
window as these are strongly predictive in all species. The optimum length of "min" window ranges 
from 25–35 nucleotides in the two yeasts to 55–60 in the two mammals (Figure 3). Windows 
shorter than the optimum are less predictive presumably because they exclude important 
secondary structures; whereas windows longer than the optimum include unfolded sequences 
that "dilute" the control information. The optimum-length “min” windows generally contain either 
one or two stem/loops of varying sizes, some of which include mismatched or single nucleotide 
bulges within their stems (Additional file 6). For all species, the longest contiguous run of paired 
nucleotides within a stem contains much of the regulatory information (Figure 5). With the 
exception of S. pombe, however, the total number of nucleotide pairs in the window is more 
predictive of translation than the number of nucleotide pairs in the longest contiguous run or in 
the longest stem (Figure 5). This suggests that most nucleotide pairs in "min" windows are 
controlling, including those within smaller secondary-stem/loops. The different result for S. pombe 
may well be because its "min" windows have shorter optimum lengths than those of other species 
(25 vs 35–60 nucleotides) and tend to have only one major stem/loop (Additional file 6). Finally, 
It is striking that between cohorts of highly translated and lowly translated genes, while free 
energies and loop sizes vary significantly, the number of nucleotide pairs in contiguous runs, 
longest stems, or full windows are similar for all five species (Figure 6). 
 
We also defined a location-specific group of features that use the fold energy of a single window 
whose 5’ end is at a defined location: either at the 5’ of the mRNA (“5’cap”) or at a location relative 
to the iAUG (“-65" to “-1”) (Figure 3). These features give results consistent with the distributions 
of RNA folding energies shown in Figure 2. For example, in M. Musculus and H. sapiens features 
using windows located at the 5' cap have more predictive power than those at or near the iAUG. 
While most of features selected by BIC for the “RNAfold” feature-set used windows identified by 
their free energies, several others belonged to the location-specific group (Additional file 5). By 
combining these two feature classes, we are able to more fully capture how mRNA secondary 
structure controls translation. 
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Sequence motifs in 5’ regions 
One feature we used previously to explain translation rates in S. cerevisiae exploited sequence 
differences between highly and poorly translated mRNAs without regard to the biochemical 
mechanism(s) of control [10]. This approach proved powerful, showing that nucleotides flanking 
the iAUG from -35 to +28—a region termed the AUG proximal element (APE)—explain a third of 
the variance in rates [10]. To extend this strategy to the other four species, we first compared 
Position Weight Matrices (PWMs) for sequences -80 to +35 for the most highly translated (high 
TR) and most poorly translated (low TR) 10% of genes (Figure 7a; Additional file 7). The S. pombe 
and Arabidopsis PWMs resemble those of S. cerevisiae: for example, A nucleotides are enriched 
5’ of the iAUG in high TR genes vs low TR genes, while Gs are depleted. M. musculus and H. 
sapiens mRNAs, by contrast, are GC rich, and sequence differences between high and low TR 
cohorts are less readily apparent. Following the strategy used earlier for S. cerevisiae (see 
Materials and Methods), we assigned a score to each gene based on PWMs of varying lengths 
in high TR genes and defined APE boundaries by maximizing the R2 between the PWM scores 
and translation rates (Figure 7b; Additional file 2: Figure S4). Arabidopsis has, like S. cerevisiae, 
an extended APE, spanning nucleotides -65 to +33, whereas S. pombe and the two mammals 
have shorter APEs that span -6 to +13 or less.  
 
To increase these PWM based models’ predictive power, we used BIC to select subsets of di- 
and tri-nucleotides whose frequencies in each mRNA most strongly explain translation. Di- and 
tri-nucleotide frequency features were selected for the portion of APE upstream of the iAUG 
(uAPE) and separately for the portion downstream of the iAUG (dAPE), 4–16 di- and tri-
nucleotides being selected per region (Additional file 2: Figure S5, Additional file 5). In the 
resulting multivariate models, S. cerevisiae, S. pombe and Arabidopsis APEs exert stronger 
control than their mammalian counterparts, the former explaining 16%–33% of the variance in 
translation, the latter only 3–4% (Additional file 2: Figure S5). 
 
Because the above models capture only part of the 5’ region, we also examined motifs in the area 
that extends from just 5’ of the APE to the 5’ cap (5’ofAPE). We found that an effective model for 
this 5’ofAPE region included a five nucleotide length PWM at the 5’ cap and a subset of di- and 
tri-nucleotide frequencies for the full region that was selected using BIC (Additional file 5; 
Additional file 2: Figure S6). In non-mammalian species 5’ofAPE sequences are much less 
predictive of translation than the APE, whereas in mammals the reverse is found (Figure 8). 
Multivariate models that combine 5’ofAPE and APE motifs provide our most accurate prediction 
of translation rates using 5’ region sequence motifs (feature-set “5’motifs”, Figure 8).  
 
To determine if control sequences are similar within and between species, we divided each mRNA 
into four parts: 5’ofAPE, uAPE, dAPE, and the CDS 3’ of the APE (CDS 3’ofAPE). We then 
calculated the frequencies of each tri-nucleotides in each region of each gene for the high TR and 
low TR cohorts separately and took the ratio of the means of these values, yielding “high TR / low 
TR ratios”. Five results stand out: 
i. In 5’ofAPEs and uAPEs, AUG has one of the smallest (high TR / low TR) ratios of any tri-
nucleotide, suggesting that our motifs detect the inhibition of initiation at the CDS that results from 
translation of uORFs (Figure 9 and Additional file 2: Figure S7).  
ii. Within each of the two species that have extended APE sequences—S. cerevisiae and 
Arabidopsis—the uAPE and dAPE share strong sequence similarities, as shown by the positive 
correlation between their (high TR / low TR) tri-nucleotide ratios (r=+0.41 and +0.70; Figure 10).  
iii. As expected, the CDS 3’ofAPEs show little similarity to 5’UTRs (r<0.1; Figure 10).  
iv. Some of the strongest correlations are between the uAPEs of the three non-mammals 
(r>0.65) and separately between the 5'ofAPEs of M. musculus and H. sapiens (r=0.8) (Figure 11). 
There are also, however, lower but clear correlations between the 5' regions of mammalian and 
non-mammalian species (Figure 11). Hence, while the mRNA GC contents of these two groups 
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of eukaryotes differ greatly, the variations in 5' region sequences that direct translation are related 
across the five species. 
v. The CDS3'ofAPE shows a positive correlation in (high TR /low TR) tri-nucleotide ratios 
between all species except H. sapiens, which shows a negative correlation with the other species 
(Figure 11). This probably reflects a previously characterized negative correlation in tRNA 
abundances—and as a consequence in optimum codon usage—between cancerous cell lines 
and other cell types [30] rather than a difference between species as the H. sapiens dataset was 
derived from cancerous HeLa cells.  
 
A model for control by 5’ regions 
mRNA 5’ regions control translation in part through their secondary structures and uORFs, both 
of which reduce the frequency of preinitiation complexes that reach the iAUG. Our motif models 
for 5’ regions likely include sequence information for these two general features as well as 
capturing general machinery contacts close to the iAUG and, potentially, other cis-elements also. 
It is interesting, therefore, to quantitate the overlap of regulatory information in models for RNA 
structure, for uORFs and for 5' sequence motifs. 
 
For this purpose, we represented control by RNA structure using the “RNAfold” feature-set; 
repression by uORFs using the number of upstream AUGs (uAUGs) present in 5’UTRs (“uAUG”); 
and the combination of these two using a further multivariate model: “5'biochem”. To calculate the 
overlap of the three resulting biochemical feature-sets with “5’motifs”, three further models were 
constructed that paired “5’motifs” with each biochemical feature-set (Figure 12). Regulatory 
overlap is given by the percent of the variance in translation that is collinear (i.e. shared) between 
feature-sets. Control information in “5'motifs” overlaps strongly with that in “uAUG”, “RNAfold”, 
and “5'biochem” and vice versa (Figure 12). For example, 39%–78% of the explanatory power of 
“5’motifs” is collinear with “5'biochem”. At the same time, “uAUG”, “RNAfold”, and “5’motifs” each 
contain unique cis-regulatory information not captured by the other. For instance, 48%–72% of 
the information in the model combining “5'biochem” and “5'motifs” is uniquely obtained from 
models that employ only one of these two feature-sets, making the combined model our most 
complete for explaining 5’ region control.  
 
The contributions of general features to translation rates 
In addition to the 5’ region general features, two others control translation rates: CDS length and 
codon frequency. CDS lengths are inversely correlated with translation because ribosomal 
subunits released from mRNAs are recycled from the stop codon to the 5' cap (40S) or iAUG 
(60S) within single mRNA molecules, and this process is more efficient for a shorter CDS [9]. 
Codon frequencies in highly expressed mRNAs more closely match the concentrations of amino 
acylated tRNAs than do those in poorly expressed mRNAs, which leads to more efficient use of 
the pool of translational machinery in the cell [10, 13, 30-32]. 
 
Therefore, we calculated features-sets that capture control by codon frequency and CDS length 
(features “codon” and “CDS length”) and built a model that combines them with the feature-sets 
that describe control by the 5’ region. Results were calculated for the five example datasets, for 
a second S. pombe dataset, and for data from two additional tissues each for Arabidopsis and M. 
musculus. The combined models explain 37%–81% of the variance of translation, depending on 
the dataset, and at least 42% for the best predicted dataset from each species (Figure 13b; 
Additional file 8; Additional file 2: Figure S8). These results are robust to variations in data as 
shown by the narrow 95% confidence limits from a 1,000 x bootstrap (Figure 13b). Our results 
thus suggest a considerably larger role for the general features than previous models implied 
(Additional file 1). We have also compared the individual contributions of the general features as 
the percent of either the sum of their five R2 values vs translation (Figure 13a) or the R2 value of 
a model combining all five features (Additional file 2: Figure S9). By either approach, the 
contributions of each feature vary more between the species than between different datasets from 
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the same organism, suggesting that aspects of translational control alter quantitatively between 
species.  
 
Collinear control 
The sum of the variances in translation rates predicted by each of the general features separately 
is 157%–203% of the variance explained by the model that combines all five features (Additional 
file 2: Figure S9). Four of the features each represent a separate biochemical process (the 
exception being “5’motifs”, which captures information redundant with “RNAfold” and “uAUG”, see 
Figure 12). The cis-elements that direct these four biochemical processes must, therefore, have 
coevolved to work in a correlated manner.  
 
To quantitate the overlap in control, we calculated collinearity between pair-wise combinations of 
general features within each species. "5'motifs" was excluded, though, to avoid its redundancy 
with “RNAfold” and “uAUG” (Figure 14). All feature-pairs tested show collinearity. This  collinearity 
is due to inherent correlations among the general mRNA features because if we randomly 
permute each feature’s observed values independent of other features, the collinearity among 
features is expected to go down to zero. The overlap in control is largest in the two yeasts, where 
five out of the six pairs have 47%–100% overlap, and smallest in the two mammals, where five of 
the six pairs have 22%–59% overlap. Some feature-pairs are strongly collinear in all species: for 
example, "CDS length" and “codon”, which show 45%–62% overlap. Other pairs show dramatic 
differences: for example, “uAUG” is ³70% collinear with “RNAfold” in S. cerevisiae, S. pombe, 
and Arabidopsis, but only 7% in M. musculus.  
 
The collinearity between features in the 5' region and either "codon" or "CDS length" occurs 
between physically distinct parts of the mRNA. Our earlier analysis of 5’ region motifs provides 
additional evidence of correlated control between distinct mRNA segments: for example, in the 
two species with long APEs, tri-nucleotide frequencies correlate strongly between the 5’ofAPE, 
the uAPE, and the dAPE (Figures 9 and 10). To characterize the collinearity between physically 
distinct parts of mRNAs further, we identified the second and third most folded windows within 5’ 
regions that do not overlap with each other or the most folded window. 63–98% of control exerted 
by the second most folded window is correlated with that by the most folded window (Figure 15a). 
Similarly, 67%–92% of control by the third most folded window is collinear with that of the most of 
folded window (Figure 15b). We also tested for collinearity within the CDS by calculating codon 
frequencies in N-terminal halves and separately in C-terminal halves. Control by the C-terminal 
half is 49%–85% collinear with that by the N-terminal half (Figure 15c).  
 
The correlation of codon frequency with translation rates is determined both by the frequencies 
of amino acid in proteins and by preference for some synonymous codons versus others [10, 33]. 
Synonymous codon preferences and amino acid content are logically independent of each other, 
i.e. in the absence of empirical data one cannot assume a priori that their variation between genes 
is related (Figure 16a). It is possible, then, that their control of translation could be either collinear 
or non-collinear. To test for any collinearity, we calculated for each gene both the frequency of 
each amino acid (“AA”, 20 features in total) and the synonymous preference ratio for each codon 
(“syn.codon”, 61 features in total) (Figure 16a). As expected, control by both “AA” and “syn.codon” 
correlates with tRNA abundances (Additional file 2: Figure S10) [10, 13, 30-32], and, importantly, 
control by these two feature-sets is strongly collinear in all species (Figure 16b).  
 
Our various analyses thus reveal strong and complex co-evolution of control between distinct 
biochemical processes and between different segments of mRNA.  
 
DISCUSSION AND CONCLUSIONS 
Here we have sought to better understand how and why differences in translation rates among 
genes are controlled at steady state by focusing on general mRNA sequence features. Through 
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optimizing methods to predict translation using mRNA structures, sequence motifs, uORFs, CDS 
length, and codon usage, we find that these general features together control 81% and 65% of 
the variance in rates in S. cerevisiae and S. pombe respectively and 42%–46% in Arabidopsis, 
M. musculus and H. sapiens (Figure 13). This is significantly higher than earlier estimates 
(Additional file 1). For example, prior work suggested that general features explained 39% of the 
variance in S. cerevisiae [13] and 14% in M. musculus [16].  
  
The part of the variance in measured translation rates that is unexplained by our models for 
general features is likely due to a combination of: 
i. Gene/condition specific control by miRNAs and sequence specific RNA binding proteins, which 
our models do not detect. 
ii. Failure of our models to fully capture control by the general features due to, for example, 
uncertainty in fully predicting RNA structures. 
iii. Measurement error in the translation rate data. 
It is also possible that our models have exaggerated control by the general features due to 
“overfitting", which would lead to aberrant capture of some part(s) of i. and/or iii. Our conservative 
approach of fitting linear models to features that score known biochemical processes or simple 
motifs should limit this, however. The likelihood of overfitting is reduced further by our use of 
Bayesian Information Criterion for feature selection, which we found typically selected fewer 
features than other approaches, such as ten-fold cross validation (unpublished data). Our models, 
thus, probably have underestimated true control by the general features by the—unknown—
percent of the variance in the translation rate data that is due to ii. and iii.  
 
It is noteworthy that our general feature models predict translation rates more effectively in S. 
cerevisiae and S. pombe than in multicellular eukaryotes. miRNAs are not present in the two 
yeasts, whereas Arabidopsis encodes ~420 miRNAs and M. musculus and H. sapiens >1,800 
each [34, 35]. Likewise, the multicellular eukaryotes encode over three times more sequence 
specific RNA binding proteins than S. cerevisiae and S. pombe (>350 vs ~100; http://cisbp-
rna.ccbr.utoronto.ca [36, 37]). Thus the general features may well play a larger role in the two 
yeasts than in the multi-cellular eukaryotes as the latter are expected to suffer greater gene and 
condition specific control.  
 
5' mRNA secondary structure 
Our analysis provides a more precise understanding of the mRNA secondary structures that 
regulate translation within 5’ regions. We have found that the most folded 25–60 nucleotide 
segments contain far more regulatory information than the less folded parts of 5’ regions in all five 
species (Figures 3 and 4). Previous studies, by contrast, relied on the mean of the folding energies 
of short windows that tile the region, on the folding of a single large window encompassing the 
entire region, or on windows at fixed locations (Additional file 1). Our analysis indicates that the 
most folded windows alone are more predictive than these prior approaches and that models that 
combine highly folded windows with location specific ones are even more effective (Figure 3;  
Additional file 5). Control by the most folded segment is dominated by the longest contiguous run 
of paired nucleotides within a stem (Figure 5). This control is enhanced by additional nucleotide 
pairs that lie beyond any mismatched nucleotides or single nucleotide bulges to form a longer 
stem and by smaller satellite stem loops that reside within the segment (Figure 5). Pairings 
between nucleotides that are separated by >25–60 nucleotides have only a minimal effect on 
control (Figure 3). The differences in structures that distinguish translation rates are surprisingly 
small: only 0.7–1.6 nucleotide pairs on average differentiate the most folded segments in highly 
translated mRNAs from those in poorly translated mRNAs across all species (Figure 6). 
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Conserved 5' sequence motifs 
One of the approaches that we have used to define cis-control elements is an unbiased method 
that simply categorizes differences in 5' region sequence motifs between highly and poorly 
translated mRNAs (Figures 7–11). Non-mammalian species have A/T rich 5' regions, whereas 
those of mammals are G/C rich. Despite these differences, we find that when judged by the ratios 
of tri-nucleotides in highly and in poorly translated mRNAs, there are marked correlations between 
the cis-control sequences in the 5’ regions of mammalian and non-mammalian eukaryotes (Figure 
11).  
 
This correlation in 5’ motifs between distant species occurs in part because our motif model 
captures control by uORFs via the higher density of uAUGs in poorly translated mRNA (Figures 
11 and 12). It also likely results because our 5’ motifs model captures control by evolutionarily 
conserved nucleotides that are adjacent to the iAUG and contact the ribosome (Figure 7) [38-41]. 
Additionally, the correlation is probably due to the fact that di- and tri-nucleotides have differing 
propensities to form mRNA secondary structures because to their respective base pairing and 
stacking energies [29, 42-44]. The important role of RNA structure in controlling translation will 
thus drive similar changes in nucleotide content between highly and poorly translated mRNAs in 
all species. Indeed, 38%–66% of translational control explained by our 5’ motifs model is collinear 
with control by our model for RNA folding (Figure 12), and those mRNA regions that show the 
greatest conservation of tri-nucleotide ratios between highly diverged eukaryotes also have the 
largest differences in RNA folding energies between highly and poorly translated mRNAs (Figures 
2, 3, and 11). It remains to be determined if our 5’ motifs models have captured additional 
mechanisms of cis-control, and if any such are conserved across highly diverged eukaryotes. 
 
Collinear control between processes and between mRNA segments 
Another striking observation is that there is a strong correlation in control (i.e. collinearity) between 
features that act through distinct biochemical processes and also between different parts of the 
mRNA. For example, all pair-wise combinations of biochemical process show collinear control of 
translation, many by >50% (Figure 14). Also, the predicted Gibbs energies of the second and third 
most folded mRNA segment within 5’ regions share 63%–98% control with those of the most 
folded segment; and codon frequencies in the C-terminal half of CDSs share 49%–85% control 
with those in the N-terminal half (Figure 15). Finally, control by synonymous codon preferences 
is 37%–70% collinear with that by amino acid content, even though the two determinants of codon 
usage are logically independent of each other (Figure 16).  
 
Collinearity between different sections of the mRNA keeps the rate of progress of the translation 
machinery more constant and thus the density of translational complexes more uniform along any 
given mRNA (Figure 17a). Uncorrelated control, by contrast, would lead to a more uneven 
distribution of complexes (Figure 17b). There are two known selective pressures that favor—or 
force—uniform densities of complexes and thus collinear control over non-collinear control.  
 
i. Non-collinear control would increase the frequency of particle collisions when pre-initiation 
complexes or ribosomes that are moving rapidly down an mRNA enter a region whose control 
sequences signal a slower rate of progress (Figure 17b, bottom). Ribosomal collisions lead to 
translational termination and No-Go RNA decay or simply slow the mean elongation rate [45-47]. 
Collinear control between mRNA segments thus reduces the frequency of these deleterious 
events. Earlier work has shown that the rate of translation is slower near the N-terminus of the 
CDS, then increases further 3' [13, 31]. This arrangement has been proposed to reduce collision 
frequency [31]. Our results extend this prior model to suggest that it is important to keep a 
relatively even flux of translational complexes—avoiding strong stops—from the assembly of the 
preinitiation complex at the 5’ cap all the way to the termination of translation at the stop codon.  
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ii. Collinear control requires fewer ribosomal subunits per cell than non-collinear control to 
achieve a given set of translation rates (compare Figure 17 a and b). This is important as the 
translational machinery is limiting for protein synthesis and cell growth [48-50]: for example, a 
twofold reduction in the abundances of any one of a number of ribosomal proteins greatly reduces 
cell division rates in Drosophila [48], and under many conditions ³90% of ribosomal subunits are 
bound to mRNA and active at any instance [51, 52] and/or are present at locally high 
concentrations in the vicinity of each mRNA due to CDS-length dependent recycling [9]. There is 
thus a strong selective pressure to use the set of ribosomal subunits in the cell most efficiently. 
As Figure 16 shows, this requires collinear control of the complete translation cycle, including the 
recycling step. 
 
In addition to the two above explanations, a general pressure to increase or decrease protein 
production from a given gene could lead to multiple, independent mutations affecting different 
processes or the same process in different mRNA regions. This too would result in collinear 
control. However, we suggest instead that the discovery of strong collinear control supports other 
evidence that gene specific translation rates are not determined for the most part by the need to 
achieve a certain protein abundance. First, translation rates only correlate poorly with protein 
abundance (R2 ~0.08 in S. cerevisiae and M. musculus) [10, 53]. Second, while CDS length is an 
important determinant of translation rates (Figure 13), the length of a protein is unlikely to be 
selected only to control translation. Protein length is presumably set largely by protein function. 
Third, codon frequency—and thus its correlation with translation—is determined by the amino 
acid content of proteins as well as by preferences for codons synonymous for the same amino 
acid (Figure 16). Amino acid contents probably result from selection for protein function rather 
than for translational control. Synonymous codon frequencies in highly abundant mRNAs are 
selected to optimize use of the total pool of amino acylated tRNAs in the cell [10, 13, 30-32] 
(Additional file 2: Figure S10); the effect that codon usage has on ribosomal elongation rates could 
be a secondary consequence, one that is, besides, rather small [13]. 
 
Thus both CDS length and codon frequencies are likely driven in part by forces external to the 
need to determine protein abundances, yet combined the two constitute a significant fraction of 
control by the general features (Figures 13). The proposed need for collinearity to ensure efficient 
use of ribosomes by the cell will then force the other three general features to coordinate their 
control with CDS length and codon frequency. This may explain why translation is not well 
correlated with protein abundance. Translation rates are determined by multiple selective 
pressures. In contrast, the selective pressure on protein abundance dominantly affects 
transcription [10, 54].  
 
S. cerevisae and other yeasts have larger effective population sizes than Arabidopsis, M. 
musculus and H. sapiens. As a result, the former have lower mutational loads and have been 
able to better optimize their genome sequences for energy efficient cell growth than have the 
latter [55, 56]. These results from population genetics provide an additional explanation for our 
observation that the general features play a more prominent role in S. cerevisae and S. pombe 
than in the three multicellular eukaryotes: the general features should be more important in 
organisms with larger effective population sizes, an idea that has been suggested previously for 
synonymous codon preference [55, 57] and which we now extend to the other general features. 
 
High throughput mutant assays 
A separate approach to identify translational cis-elements has tested large numbers of 
heterologous reporter genes bearing random mutations in 10 to 50 nucleotide segments  proximal 
to the iAUG [12, 17-21]. In some studies models have been developed that explain ~70%–90% 
of the variance in translation resulting from these mutations (Additional file 1). 
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It is difficult to relate the results of these reporter gene experiments to control of endogenous 
mRNA. The regions mutated in the heterologous reporter assays are smaller than or lie outside 
of the regions where our analysis indicate that regulatory secondary structures are prevalent. 
Thus the reporter assays have not captured normal control by RNA folding, let alone control by 
CDS length and codon usage, which are invariant in a reporter assay. In addition, the consensus 
sequences for uAUGs associated with repression in a heterologous assay differ dramatically from 
those identified by studies of uORFs in intact natural transcripts. The high throughput mutational 
approach identified strong enrichment of A or G at nucleotide -3 relative to uAUGs, similar to the 
Kozak consensus for the iAUG [20]. In endogenous mRNAs, by contrast, no specific nucleotides 
are strongly associated with repressive uAUGs at location -3 [16, 25, 58]. Thus the sequences of 
the cis-elements driving translation in the heterologous assays differ strongly from those acting in 
endogenous mRNAs.  
 
One S. cerevisiae study did measure protein production from natural 5’UTRs £ 50 nucleotides in 
length fused upstream of a reporter gene [21]. Although this study successfully modelled 60% of 
the variance in measured output, we find that this output correlates poorly with ribosome profiling 
data for the corresponding endogenous genes (R2 = 0.09, Additional file 9). Thus at least (60-
9)/60 = 85% of the variance in reporter expression predicted by the model cannot be explained 
by measured endogenous translation rates. 
 
Our analysis suggests that there is strong coordination (collinearity) between control by distinct 
parts of the mRNA and between multiple steps in the translation cycle. Heterologous reporter 
constructs that include only short segments of mRNAs thus fail to correctly capture cis-elements 
in part because they miss the normal interactions between steps and between differently located 
cis-elements. It will be necessary to design alternative mutant series to understand cis-
translational control of endogenous transcripts.  
 
MATERIALS AND METHODS 
Data and code 
An example dataset was chosen from each of the five species to present figures for all analyses: 
S. cerevisiae [13]; S. pombe 2 [26]; Arabidopsis leaf (dark) [25]; M. musculus NIH3T3 cell line [4]; 
and H. sapiens HeLa cell line [24]. Results from five additional datasets are shown for a subset 
of analyses: S. pombe 1 [4]; Arabidopsis root and Arabidopsis shoot [27]; and M. musculus liver 
and M. musculus kidney [14, 28].  
 
Where replica data was available from a study, genes without data in all replicas were removed; 
for each gene, its data were then averaged across all replicas; and if the data in the original 
publication had not be thresholded, genes with mRNA abundances <1 RPKM were excluded. For 
all datasets, genes for which data on poly-A tail length were not available from Subtelny et al, 
2014 were removed. Additional file 3 provides per gene ribosome profiling data and mRNA 
abundances as well as scores for each of the general features for the set of genes analyzed for 
each dataset.  
 
The R code used in this analysis is provided in Additional file 10. We also provide a URL for the 
complete code files for reproducing the results presented. These files include the R code, input 
data, processed files, preliminary figures, etc.  
 
https://drive.google.com/file/d/1Zjxg-DbSptfSo7xEKR1vTJEf_ebOregV/view?usp=sharing 
 
Common aspects of models 
Translation rate (TR) is defined as Translation Efficiency (TE) values from ribosome profiling data 
or in the case of S. cerevisiae as Initiation Efficiency (IE) values, which are corrected TE values 
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that take into account codon specific elongation rates [13]. Log10 transformed TR values were 
used in all regressions.  
 
All models employed single part, multivariate linear regressions for S. pombe, M. musculus and 
H. sapiens; two part, multivariate linear regressions of Arabidopsis; and three part, multivariate 
linear regressions for S. cerevisiae. The multi part regressions were employed in the latter two 
species to allow optimal scoring of their extended APE PWMs, described below. Of necessity, 
multi part regression then had to be employed for all other features in these species to allow a 
model that combines all general features. For the multi part regressions, genes were divided into 
groups based on lengths of 5’ untranslated regions (UTRs), with the number of groups equal to 
the number of parts. For Arabidopsis, genes were grouped into those with 5’UTRs <65 nucleotides 
and those with 5’UTRs ³65 nucleotides. For S. cerevisiae, genes were grouped into those with 
5’UTRs <20 nucleotides; those with 5’UTRs ³20 nucleotides but <35 nucleotides; and those with 
5’UTRs ³35 nucleotides. Each part corresponds to a separate multivariate linear model fitted to 
the corresponding group of genes, with the intercept and feature coefficients allowed to differ 
between parts. Single part regressions included all genes in the dataset.  
 
The Coefficient of Determination R2 coefficient was based on the Ordinary Least Squares (OLS) 
in all cases. The R2 calculated in this way is equal to the square of the Pearson correlation 
between the observed response values and the predicted response values, and it measures the 
goodness of fit or the predictive power of a model.  
 
Control by RNA folding (RNAfold) 
To predict control of TR by RNA folding in the 5’ region, a series of features were developed using 
predicted Gibbs free energies generated by ViennaRNA RNAfold [16, 29] (Figure 3). Most 
features were calculated in 19 variants based on one nucleotide offset sliding windows of lengths 
varying from 6 to 100 nucleotides (Figure 3). For these window based features, the 5' regions 
used span from the 5' cap to that part of the CDS that is covered by the  window whose 5’ end 
maps to position -1. The features are: 
Single window features 
5’ cap, -65, -30, -35, -6, -1: the free energy of the window whose 5' nucleotide lies at the position 

specified. 
min, 10%, 25%, 75%, 90%, max: the free energy of the window with the minimum, the 10th 

percentile, the 25th percentile, the 75th percentile, the 90th percentile, or the maximum energy 
of the all windows in the 5' region of the mRNA. 
Note that windows corresponding to different single window features are allowed to overlap.  

Multi window features 
mean: the mean free energy of windows of the specified length. 
%≤20%, %≥=90%, % ≥80%: the percent of windows in a 5' region that have free energy ≤ the 20th 

percentile, ≥ the 90th percentile, or ≥ the 80th percentile of the free energy of all windows of all 
genes in the dataset. Some genes will thus have scores of 0 as they lack any windows defined 
by these thresholds. 

sum≤5%, sum≤10%, sum≤20%, sum≥80%, sum≥90%:  the sum of free energies defined by 
these thresholds out all windows of all genes in the datasets. Some genes will thus have 
scores of 0 as they lack any windows defined by these thresholds. 

Whole 5’ region 
whole: free energy of a fold of the entire sequence from the 5’ cap to +35. 
feature-sets 
Feature-sets fit multivariate linear models (possibly multi part, depending on the species) between 
log10 TR and multiple of the above features. 
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All – 1: combines all features of a given window length. 
All: combines all features of a given window length and in addition includes the “whole” feature. 
RNAfold: uses forward selection with Bayesian Information Criterion (BIC) to identify an effective 

subset of features to predict log10 TR. The model is allowed to select different length windows 
for different features. In the case of S. pombe, prior to BIC selection all windows with 
sequences that extend 3’ of +30 were removed to avoid elements whose Gibbs energies have 
a strong negative correlation with TR. “RNAfold” is our most accurate model for control of TR 
by RNA structures (Figure 3). Its BIC selected features are listed in Additional file 5. 

 
Control by sequence motifs (5’motifs) 
Defining an optimum PWM for the iAUG proximal elements (APEs) 
Various length position weight matrices (PWMs) were calculated using the 10% of genes with the 
highest TR scores (Figure 7a, high TR cohorts). The mRNA sequences of these sets of genes 
were aligned such that nucleotide +1 corresponds to the A of the iAUG. The frequencies of A, U, 
C, and G at every position from -100 to + 35 were calculated (Additional file 7). Sequences of all 
high TR genes were used, including those with 5’UTRs shorter than 100 nucleotides, these short 
5’UTR genes contributing only to the frequencies at the 5’UTR positions they contained. 
A series of PWMs were constructed that all contained position nucleotide -1 and positions 5’ of 
that in five nucleotide steps to -100: i.e. -5 to -1 PWM, -10 to -1 PWM, -15 to -1 PWM etc. Variants 
of each of these PMWs were constructed that also included nucleotide +4 and positions 3’ in 5 or 
10 nucleotide steps within the protein coding sequence (CDS) to +33. i.e. -5 to +13 PWM, -5 to 
+23 PWM, -10 to +13 PWM etc. Given each PWM, say a PWM for m nucleotides from the 5’UTR 
and for n nucleotides of the CDS, we calculated the PWM scores of all the genes in a dataset as 
follows: score of gene g = log$% ∏ 𝑝	(nucleotide at position	𝑖	of gene	𝑔)-

./01
.2%

. 

We then calculated the R2 correlation coefficient between the PWM scores based on each PWM 
boundary and the log10 TR values. The results are plotted in Figure 7b. The locations of the 
approximately optimum APE PWMs are shown boxed (Figure 7a). 
An APE feature-set 
The APE was divided into the part 5’ of +1 (uAPE) and the part 3’ of +3 (dAPE). The optimum 
length PWMs defined above were divided into two (e.g. S. cerevisiae uAPE PWM -35 to -1 and 
dAPE PWM +4 to +28). All genes were scored with the dAPE PWM. In single regression species, 
all genes were also scored the corresponding uAPE. In S. cerevisiae, genes with 5’UTRs ³35 
nucleotides were scored with uAPE PWM -35 to -1; genes with 5’UTRs ³20 nucleotides but <35 
nucleotides were scored with uAPE PWM -20 to -1; and genes with 5’UTRs <20 nucleotides with 
uAPE PWM -5 to -1. In Arabidopsis, genes with 5’UTRs ³65 nucleotides were scored with uAPE 
PWM -65 to -1, and genes with 5’UTRs <65 nucleotides with uAPE PWM -5 to -1.  
In addition, we calculate the 16 dinucleotide frequencies and 64 trinucleotide frequencies in the 
uAPE region for every gene as well as the 16 dinucleotide frequencies and 64 trinucleotide 
frequencies in the dAPE region for every gene. Then we fit a multivariate linear model (possibly 
multi part, depending on the species) between the log10 TR (response) and all features for the 
uAPE (i.e. uAPE PWM + 16 dinucleotide frequencies + 64 trinucleotide frequencies) and 
separately all features for the dAPE, and selected features by forward selection with Bayesian 
Information Criterion. This results in a subset of features that form the uAPE feature-set and the 
dAPE feature-set (Additional file 2: Figure S5; Additional file 5). In addition, we combined the 
selected uAPE and dAPE feature-sets to define the APE feature-set (Additional file 2: Figure S5). 
A 5’ofAPE feature-set 
A 5’cap PWM was defined using various length PWMs calculated using the 10% of genes with 
the highest TR scores in a procedure similar to that used to define the APE (Additional file 2: 
Figure S6a, high TR cohorts). All 5’cap PWMs share a common 5’ end at the 5’ cap site and differ 
only in length. The R2 correlation coefficients between these PWM scores and log10 TR values 
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show a local peak from 3 to 15 nucleotides from the 5’ cap (Additional file 2: Figure S6b). To 
simplify our model while taking into account the low R2 values (<1.2%), a 5’cap PWM was defined 
as the first 5 nucleotides of the transcript in all species.  
In addition, we calculate the 16 dinucleotide frequencies and 64 trinucleotide frequencies in the 
region 5’ of the APE. Then we fit a multivariate linear model (possibly multi part, depending on 
the species) between the log10 TR (response) and all features for this 5’ofAPE region (i.e. 5’cap 
PWM + 16 dinucleotide frequencies + 64 trinucleotide frequencies), and selected features by 
forward selection with Bayesian Information Criterion. The BIC selected features for 5’ofAPE, are 
listed in Additional file 5 and their R2 correlation coefficients vs TR are shown in Figure 8. 
A 5’motif feature-set 
A “5’motifs” feature set was defined by combining the 5’ofAPE, uAPE, and dAPE feature-sets 
(Figure 8).  
 
Control by upstream open reading frames (uAUG) 
For each gene, the number of AUGs upstream of the iAUG of the CDS was calculated. This 
feature is designated “uAUG”, and its contribution to the prediction of log10 TR is due to the 
repression of CDS translation by translation of upstream open reading frames (Figure 13; 
Additional file 2: Figure S9). 
 
Control by CDS length (CDS length) 
For each gene, the log10(number of CDS amino acids) was calculated. This feature is designated 
“CDS length”, and its contribution to the prediction of log10 TR is due to the impact of CDS length 
on the recycling of ribosomal subunits (Figure 13; Additional file 2: Figure S9). 
 
Control by codon frequencies (codon) 
For each gene, we calculate the frequencies of the 61 nonstop codon frequencies in its CDS 
nucleotide sequence. These 61 features together define the feature-set “codon” (Figure 13; 
Additional file 2: Figure S9). 
 
Control by poly-A tail length 
For each gene, we took the poly-A tail length defined by Subtelny et al, 2014. For all ten datasets, 
we find that poly-A length is weakly negatively correlated with translation rates. Prior evidence 
suggests that this negative correlation does not necessarily reflect a direct control of translation 
rates, but is instead a result of two phenomenon: the stabilization of mRNAs against degradation 
by shorter poly-A tails, and the fact that translation rates are positively correlated with mRNA 
abundance [4, 59]. For this reason, we have not included poly-A length as a feature in our study. 
Note that there is a much stronger, positive correlation of poly-A tail length with translation rates 
in pregastrula embryos that likely reflects direct control of translation [4, 15]. 
 
Control by 5'UTR length 
5’UTR length has been used as a feature to capture control by 5’ regions in some prior studies 
[10, 13, 14, 16, 22, 60] (Additional file 1). We have found, however, that models that combine 
5’UTR length with the “5’motifs”, "uAUGs", and "RNAfold" features only explain an additional 
0.03%–0.62% of the variance in translation rates, compared with models that do not include 
5’UTR length. This suggests that 5’UTR length is not a direct determinant of translation rates, but 
is instead largely a co-correlate of other sequence features that do directly control translation. The 
fact that control by RNA folding is largely determined by most folded regions, not by less folded 
regions (Figures 3 and 4), further supports this conclusion. We, therefore, have not included 
5’UTR length as a feature in our final models.  
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A general feature model using five features 
To determine the variance in translation rates explained by “RNAfold”, “5’motifs”, “uAUG”, “CDS 
length” and “codon”, a multivariate model (possibly multi part, depending on the species) was 
used to regress log10 TR on all five feature-sets together (Figure 13; Additional file 2: Figure S8). 
The resulting R2 correlation coefficient estimates the degree of translational control exerted by 
these general features.  
 
Control by amino acid frequencies (AA) and synonymous codon preferences (syn.codon) 
For each gene, we calculated the frequencies of the 20 amino acid frequencies in its CDS 
nucleotide sequence. These 20 features together was defined to be the feature-set “AA” (Figure 
16). Then for each of the 61 nonstop codons, we defined a synonymous codon preference as its 
frequency divided by the sum of the frequencies of synonymous codons that code the same amino 
acid. For example, AAA, AAT, AAC, and AAG code the same amino acid, so we computed their 
synonymous codon preferences as AAA/(AAA+AAT+AAG+AAC), AAT/(AAA+AAT+AAG+AAC), 
AAC/(AAA+AAT+AAG+AAC), and AAG/(AAA+AAT+AAG+AAC). These 61 synonymous codon 
preferences together define the feature-set “syn.codon” (Figure 16). 
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Table 1 
 

Abbreviation Explanation 
APE AUG Proximal Element: control sequences that flank the iAUG 

dAPE downstream APE: that part of the APE located downstream (3’) of the iAUG 

uAPE upstream APE: that part of the APE located upstream (5’) of the iAUG 

5’ofAPE the 5’UTR sequences that lie 5’ of the APE 

iAUG initiating AUG: the AUG codon at the 5’ end of the CDS 

uAUG upstream AUG: an AUG codon in the 5’ UTR, i.e. an AUG at the 5’ end of an uORF  

BIC  Bayesian Information Criteria: a method to select an efficient set of model features 

5’ cap the 5’ most nucleotide of the mRNA 

CDS coding sequence: the protein coding portion of the mRNA 

CDS 3’ofAPE that part of the CDS that lies 3’ of the APE 

MFE minimum free energy: the Gibbs free energy of folding for a defined segment of RNA 

uORF upstream open reading frame: an uAUG containing open reading frame in the 5’UTR 

PWM Position Weight Matrix: the fraction of A, U, G and Cs at each nucleotide position 

5’region the region spanning the 5’UTR and the 5’ most ~30 nucleotides of the CDS 

5’UTR 5’ untranslated region: all mRNA nucleotides 5’ of the CDS 

TR translation rate: rate of translation per mRNA molecule at steady state 

high TR the 10% of genes with the highest translation rates 

low TR the 10% of genes with the lowest translation rates 
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FIGURES 

Figure 1. Example datasets for five eukaryotes. (a) The distribution of translation rates for example 
datasets representing five eukaryotes. Translation rates are defined by the density of ribosomes per mRNA 
molecule. The log10 transformed data have been scaled to have the same median while retaining their 
original variance. (b) The distributions of lengths of 5’ untranslated regions (UTRs). (c) The distributions of 
protein coding sequence (CDS) lengths.  
 
Figure 2.  Different distributions of 
secondary structures in the 5’ 
portions of mRNAs. The predicted 
RNA folding energy (DG kcal/mol) of 
35 nucleotide windows (y-axis) are 
plotted for the 10% most highly 
translated mRNAs (high TR, black) 
and the 10% most poorly translated 
(low TR, red). The x-axis shows the 
position of the 5’ most nucleotide of 
each window. Windows for every one 
nucleotide offset were calculated. At 
each location the free energies for the 
mean (continuous lines) and the 
interval between the 25th and 75th 
percentile (shading) are shown. 
mRNAs were aligned at their 5’ cap 
(left), at the iAUG (center), or at the 3' 
of the CDS (right). In S. cerevisiae, S. 
pombe and Arabidopsis, the 
differences between the two cohorts 
are greatest proximal to the iAUG. In 
the two mammals, the differences are 
greatest towards the 5' cap. 
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Figure 3. Translation rates are 
optimally determined by a 
combination of RNA folding 
features. The R2 coefficients of 
determination between log10 translation 
rates (TR) and a variety of single 
features and feature-sets based on 
RNA folding energies. Nine features 
use the free energy value of a single 
window per gene (left): windows “5’ 
cap” thru “-1” were identified by the 
location of their 5’ most nucleotide, 
while windows “min” thru “max” were 
identified by the rank of their free 
energy. Nine additional features were 
each calculated using multiple windows 
per gene (center): “mean”, the mean of 
all windows in a gene; “%≤20%”, 
“%≥=90%”, and “% ≥80%”, the percent 
of windows in a given gene that respect 
a threshold on the free energy of all 
windows for all genes; and “sum≤5%”, 
“sum≤10%”, “sum≤20%”, “sum≥80%”, 
and “sum≥90%”, the sum of free 
energies of windows in a given gene 
that respect a threshold on the free 
energy of all windows for all genes. 19 
window lengths from 6 to 100 
nucleotides were employed for each of 
the above features. In addition, a final 
feature, “whole” (right), was calculated 
from the free energy of folding of the 
contiguous sequence from the 5’cap to 
+35 for each mRNA. Three multivariate 
feature-sets were also determined 
(right): “model all-1” combined all 
window based features for a given 
window length; “model all” included in 
addition the “whole” feature; while 
“RNAfold” used Bayesian Information 
Criteria to select features from the 
complete set of features, using 
whichever window length variant(s) 
provided the most useful information. 
“RNAfold” was additionally constrained 
for S. pombe by removal of all windows 
that extend 3’ of +30 nucleotides to 
avoid sequences showing a strong 
negative correlation of free energy 
values and TR. Additional file 4 
provides the R2 values for all features. 
Additional file 5 provides details of the 
features selected for the “RNAfold” 
model.  
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Figure 4. The most folded window controls translation more strongly than less folded windows. The 
correlation between log10 translation rates (TR) and a single windows within mRNA 5’ regions. Six windows 
were selected based on the rank of their free energy: “min”, “10%”, “25%”, “75%”, “90%” and “max”, where 
“min” is the most folded (smallest free energy) and “max” the least folded. The values plotted are the R2 
coefficients of determination expressed as a percent of the R2 coefficient for the “min” window. The window 
length was the optimum for each species: S. cerevisiae, 35; Arabidopsis, 40; and M. musculus, 55; H. 
sapiens, 60; and S. pombe, 25. 
 
 

 
 

Figure 5. Number of nucleotide pairs describe 
the regulatory potential of the most folded 
window. The number of paired nucleotides was 
calculated in the most folded (“min”) window of each 
gene for the longest contiguous stem without 
mismatches or single nucleotide bulges (contig 
stem, light blue); the longest stem (max stem, mid 
blue); and for all pairs within the window, including 
those not in the longest stem (all, dark blue). The 
Pearson correlation coefficients between each of 
these three measures and log10 translation rates are 
plotted on the y-axis for the five example datasets. 
The lengths of the most folded widows are also 
given. For all but S. pombe, the correlation 
coefficients are more negative for measures that 
include more nucleotide pairs. The primary data are 
provided in Additional file 6. 
 

Figure 6. The number of nucleotide pairs 
controlling translation are similar across diverse 
eukaryotes. Metrics for “min” windows in the 10% 
most highly translated mRNAs (high TR) were 
subtracted from metrics for “min” windows in the 
10% most poorly translated mRNAs (low TR), y-
axis. The metrics are the means of minimum free 
energy (MFE); log10 translation rate (TR); number of 
unpaired nucleotides linking the longest stem (loop); 
number of nucleotide pairs in the part of the longest 
stem that contains no mismatches or single 
nucleotide bulges (contig. stem); number of all 
nucleotide pairs in the longest stem (max stem); the 
total number of nucleotide pairs in the “min” window 
(all). See Additional file 6 for the primary data. The 
distributions of the total number of “min”-window 
nucleotide pairs in high and low TR cohorts are 
shown in Additional file 2: Figure S3. 
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Figure 7. The 5’ and 3’ boundaries of AUG proximal elements. (a) Position Weight Matrices (PWMs) 
for the 10% of mRNAs with the highest translation rate (high TR cohort) and the 10% with the lowest rate 
(low TR cohort). Sequence logos show the frequency of each nucleotide at each position relative to the first 
nucleotide of the iAUG. The location of the AUG proximal element (APE) is indicated with a black box. (b) 
The R2 coefficients of determination between log10 translation rates (TR) and PWM scores. PWMs of 
varying lengths were built from the sequences of the high TR cohort, the PWMs extending 5’ from -1 in 5 
nucleotide increments and extending 3’ from +4 in 5 or 10 nucleotide increments. Log odds scores were 
then calculated for all mRNAs that completely contained a given PWM. Additional file 2: Figure S4 shows 
more detailed mapping of the 5’ and 3’ boundaries for M. musculus and H. sapiens.  
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Figure 8. AUG proximal elements (APEs) and the sequences 5’ of these elements (5’ofAPEs) are 
differently important in mammals and non-mammalian eukaryotes. The R2 coefficients of 
determination between log10 translation rate (TR) and models describing the APE; 5’ofAPE; and the 
combination of these two models (5’motifs). The models are described in Additional file 5. 
 
 

 
Figure 9. Correlations between regulatory regions in Arabidopsis mRNAs. The four heat maps show 
the frequency of each tri-nucleotide in the most highly translated 10% of genes divided by its frequency in 
the most poorly translated 10% of genes ((TR high / TR low) ratio). Ratios were calculated for four separate 
parts of the mRNA: 5’ofAPE; uAPE; dAPE; and the CDS 3’ofAPE. Scatter plots show the correlation in 
high/low ratios between selected regions. The Pearson correlation is given. Data points for four tri-
nucleotides are indicated (GGG, AUG, CAA, AAC). Strong positive correlates are seen between 5’ofAPE 
and uAPE and between uAPE and dAPE. CDS 3’ofAPE only correlate weakly with the other regions, 
consistent with its different function.  
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Figure 10. Correlations between translational cis-regulatory elements within a species. The Pearson 
correlation coefficients between the (TR high / TR low) tri-nucleotide ratios for different portions of mRNAs 
are shown. The correlations were calculated from pairwise comparisons such as those shown in Figure 9. 
The color intensities are scaled to the correlation coefficient.  
 
 
 

 
Figure 11. Correlations between translational cis-regulatory sequences in different species. (a) 
Scatter plots showing strong correlations between (TR high / TR low) tri-nucleotide ratios for selected 
genomic regions from different species. The Pearson correlations (r) are indicated. (b) Pearson correlation 
coefficients between each of four mRNA regions among the five species. The color intensities are scaled 
to the correlation coefficient. Clear correlations are observed in many cases.  
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Figure 12. Control by “RNAfold” and “uAUG” is collinear with that by “5’motifs”. Two 5' features 
each partially capture control by a biochemical process: “uAUG”, repression due to translation of uORFs; 
and “RNAfold”, inhibition by RNA secondary structure. A third feature, “5’motifs”, captures 5’ sequences 
that correlate with translation, without regard to biochemical mechanism. To determine how similar 
information captured by “5’motifs” is to that in “uAUG” and “RNAfold”, three multivariate models were 
constructed that combined “5’motifs” either with “uAUG”, with “RNAfold”, or with a third feature (“5'biochem") 
that combines both “uAUG” and “RNAfold". The R2 coefficients of these feature-sets vs TR are shown (top). 
The percent of the R2 values contributed by “5’motifs” (grey) or the biochemical process(es) (orange) is 
shown by length along the y-axis. Because some of this information is collinear, the R2 coefficient of the 
combined models are less than that of the sum of the individual contributions. This collinear portion is shown 
by the darker orange shading, while the lighter orange and the grey shading show the unique contributions. 
 

 
Figure 13. The contributions of general cis-control features in five species and several 
tissues. (a) For each feature or feature-set separately, its R2 coefficient of determination vs log10 
translation rate (TR) is given as a percent of the sum of the R2 coefficients for all five features. (b) 
The R2 coefficients between log10 TR and models that combine the five features. The 95% 
confidence limits are shown for 1,000x bootstraps with replacement. The R2 values and the values 
plotted for each feature and the combined model are given in Additional file 8.   
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Figure 14. Distinct biochemical processes control translation collinearly. For two features 
A and B, the R2 coefficient of a model that combines both features vs log10 translation rate (TR) 
was defined as R2AB, while the R2 coefficients of each feature separately vs log10 TR were defined 
as R2A and R2B. The larger of (R2A+R2B-R2AB)/R2A or (R2A+R2B-R2AB)/R2B is given and 
represents the percent in overlap of regulatory control. The overlap in regulatory information 
varies widely between different pairs, both within and between species. 
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Figure 15. Collinear control between differently located RNA segments. (a) A model was 
built for the combined control of translation rate (TR) by both the most highly folded window (“min”) 
and the non-overlapping second most highly folded window (“2ndmin”). The R2 coefficients for 
these combined features vs log10 TR are given (top). The percent of the unique and collinear 
contributions of “min” and “2ndmin” to the total variance in translation explained by the model for 
both features is shown by length on the y-axis. The percent of control of TR by “2ndmin” that is 
collinear with control by “min” is shown in red text. The percent of genes in the dataset whose 5' 
regions are long enough to contain the two non-overlapping windows used in the analysis are 
indicated (top). (b) The collinearity between the most highly folded window (“min”) and the non-
overlapping third most highly folded window (“3ndmin”) is displayed as described in panel "a". (c) 
The collinearity between control of translation by codon frequency in the N-terminal half of each 
protein (“N-codon”) and C-terminal half of each protein (“C-codon”) is shown as described in panel 
"a",  except that the percent of control of TR by “C-codon” that is collinear with control by “N-
codon" is shown (red text), and 100% of genes in each dataset were used (top). 
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Figure 16. Collinear control by amino acid frequency and synonymous codon preference. 
(a) The frequency of a codon in a gene is the product of its cognate amino acid frequency (AA) 
and its synonymous codon preference (syn.codon), where the latter = (number of occurrences of 
the codon) / (number of occurrences all codons for the cognate amino acid). Examples for the 
two codons for Phenylalanine (Phe) are shown. A priori, there is no necessity for "AA" and 
"syn.codon" to be correlated. (b) A model was built for control of translation rates (TR) by the 
combination of “syn.codon” (61 features) and “AA” (20 features). The R2 coefficients for this model 
are given (top). The percent of the unique and collinear contributions of “AA” and “syn.codon” to 
the total variance in log10 TR explained by the combined model is shown by length on the y-axis. 
The percent control of TR by “syn.codon” that is collinear with that by “AA” is shown in red text. 
The percent of the dataset that contains all 20 amino acids and thus could be used to calculate 
“syn.codon” is also shown (top). This set of genes was used for all analyses.  
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Figure 17. Collinear control results in more uniform particle densities than non-collinear 
control. (a) Collinear control. The upper, high translation rate (TR) mRNA has multiple small 
mRNA stem/loops, no uORFs, a short CDS, and optimal codon frequency. The bottom, low TR 
mRNA has multiple larger mRNA stem/loops, uORFs, a long CDS, and non-optimal codon 
frequency. As a result both mRNAs have relatively even densities of translational complexes 
along their length. The CDS length dependent rate of ribosome subunit recycling also matches 
their respective translation rates. (b) Non-collinear control. Both mRNAs have multiple small 
mRNA stem/loops and no uORFs resulting in a high density of pre-initiation complexes on the 
5’UTR. The top mRNA has a short CDS and optimal codon frequency, which results in a high 
density of ribosomes along the CDS and efficient ribosome subunit recycling. The bottom mRNA 
has a suboptimal ribosomal contacts at the iAUG, which reduces the efficiency with which pre-
initiation complexes convert to active ribosomes. As a result, the density of ribosomes along the 
CDS and in the recycling step is lower than that directed by the 5'UTR. The density of translational 
complexes along this mRNA is thus uneven. The rates of translation of mRNAs in scenarios (a) 
and (b) are the same. The total number of translation machinery complexes needed in a cell, 
however, is greater in the non-collinear scenario than in a cell employing collinear control.  
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