
Fully-sensitive Seed Finding in Sequence
Graphs Using a Hybrid Index

Ali Ghaffaari1,2 and Tobias Marschall1,2

1Center for Bioinformatics, Saarland Informatics Campus E2.1, 66123 Saarbrücken, Germany, and
2Max Planck Institute for Informatics, Saarland Informatics Campus E1.4, 66123 Saarbrücken, Germany

{ghaffari, marschall}@mpi-inf.mpg.de

Abstract

Motivation: Sequence graphs are versatile data structures that are, for instance,
able to represent the genetic variation found in a population and to facilitate genome
assembly. Read mapping to sequence graphs constitutes an important step for many
applications and is usually done by first finding exact seed matches, which are then
extended by alignment. Existing methods for finding seed hits prune the graph in
complex regions, leading to a loss of information especially in highly polymorphic
regions of the genome. While such complex graph structures can indeed lead to
a combinatorial explosion of possible alleles, the query set of reads from a diploid
individual realizes only two alleles per locus—a property that is not exploited by
extant methods.
Results: We present the Pan-genome Seed Index (PSI), a fully-sensitive hybrid
method for seed finding, which takes full advantage of this property by combining
an index over selected paths in the graph with an index over the query reads. This
enables PSI to find all seeds while eliminating the need to prune the graph. We
demonstrate its performance with different parameter settings on both simulated
data and on a whole human genome graph constructed from variants in the 1000
Genome Project data set. On this graph, PSI outperforms GCSA2 in terms of index
size, query time, and sensitivity.
Availability: The C++ implementation is publicly available at:
https://github.com/cartoonist/psi.

1 Introduction
The reference genome of a species is intended to be the representative genome of its
population. The “linear” reference genomes in use today, at best, reflect a consensus
genome of all individuals, but do not capture small variants and structural diversity of a
population (Church et al., 2015). When mapping reads to such references, this leads to a
reference bias: reads supporting the reference allele have a higher chance of being aligned

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://github.com/cartoonist/psi
https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

compared to reads supporting an alternative allele (Paten et al., 2017; Garrison et al.,
2018; Rakocevic et al., 2019). This limitation hampers the performance of downstream
analyses such as variant calling. In particular, short reads coming from highly divergent
regions, such as the human leukocyte antigen (HLA) genes, often remain unmapped or
misaligned (Dilthey et al., 2015).
At the same time, advances in high-throughput sequencing technologies have enabled

gathering extensive catalogues of genetic variation, for instance by the 1000 Genomes
Project (1KGP) (Auton et al., 2015). With the advent of long read technologies, the de
novo assembly of individual human genomes has now become feasible, which additionally
uncovers substantial amounts of structural variation missed in short-read based studies
(Chaisson et al., 2015, 2017; Audano et al., 2019). Importantly, such assembly-based
approaches are able to resolve the full sequences of alternative alleles. Translating this
growing knowledge about genomic diversity in humans into improved analysis pipelines
for (re-)sequencing data constitutes a pressing challenge in bioinformatics.
Consequently, there is a growing interest in data structures capable of representing a

species’ pan-genome, that is, to encode a comprehensive amount of sequence found in
the genomes of a population (Computational Pan-Genomics Consortium, 2018). Pan-
genomes can be represented in different ways that come with varying computational
advantages and limitations. One simple approach consists in augmenting the refer-
ence genome with alternative alleles for important loci, a strategy that is implemented
(to a limited extend) in the current version of the human reference genome GRCh38
(Church et al., 2015). Graph-based representations, in contrast, can express polymor-
phisms more flexibly and succinctly, but introduce substantial computational challenges
(Paten et al., 2017; Computational Pan-Genomics Consortium, 2018). Initial studies
have demonstrated clear benefits, including a reduced reference bias (Garrison et al.,
2018; Rakocevic et al., 2019), enhanced variant calling (Eggertsson et al., 2017), as well
as improved allele inference of difficult loci such as the HLA genes (Dilthey et al., 2015,
2016).
Despite these successes, considerable algorithmic challenges remain. In particular, we

are not aware of any read alignment tool able to map reads to (arbitrary) graphs at
speeds comparable to tools for mapping reads to linear sequences. Most read aligners,
both for mapping to linear sequences and for mapping to graphs, rely on a seed-and-
extend approach (Li and Homer, 2010; Reinert et al., 2015). That is, they first find short
(exact or approximate) matches, called seed hits, and subsequently extend these seed
hits to obtain alignments. The seed finding step can be fundamentally more challenging
on graphs than on sequences, because complex regions in the graph can give rise to a
combinatorial explosion in the number of possible paths. Notably, the process of aligning
reads to graphs is not disturbed by this, and efficient algorithms for aligning sequences
to graphs exist (Myers and Miller, 1989; Navarro, 2000; Rautiainen et al., 2019). In this
paper, we therefore focus on the seed finding step with a particular focus on handling
variant-dense regions in the input graph.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.1 Related Work
Collections of similar sequences can be indexed using Burrows-Wheeler-Transform (BWT)
based techniques (Mäkinen et al., 2010), which exploit similarities between the sequences
in order to save space. We refer the reader to the review by Gagie and Puglisi (2015) for
further discussion of related techniques for indexing collections of sequences and focus
on specific techniques to index sequence-labeled graphs in the following.
Most existing indexing schemes for sequence graphs attempt to index k-mers in the

graph, and they can broadly be categorized as being either hashing-based or BWT-
based. The first hashing-based approach was introduced by Schneeberger et al. (2009),
and several related approaches based on hashing k-mers have been put forward since
then (Danek et al., 2014; Limasset et al., 2016; Eggertsson et al., 2017; Petrov et al.,
2018).
Instead of hashing methods, de Bruijn graphs can be used as a basis for indexing k-

mers occurring in sequence graphs. The XBW transform (Ferragina et al., 2009), which
is an extension of the FM index (Ferragina and Manzini, 2005) to labeled trees, has
inspired approaches like Succinct de Bruijn graphs by Bowe et al. (2012), kFM-index
by Rødland (2013), and GCSA by Sirén et al. (2014). Later, GCSA2 (Sirén, 2017) was
introduced to improve the original GCSA by employing the ideas of succinct de Bruijn
graphs. This modification relaxed the constraints on cycles in the graph while it imposed
an upper-bound limit on the length of query searches.
The key limitation of all above approaches is the combinatorial explosion of the k-mer

space as more variants are added to the sequence graph. Thus, the index size can grow
exponentially which, consequently, increases the memory footprint and run-time of the
read alignment. In order to handle human genomes, these methods therefore need to
prune the input graph, which can potentially lead to breaking haplotype paths, or to
removing known variants from the sequence graph.

1.2 Contributions
In this article, we propose the first scalable, fully-sensitive method for finding seeds in a
node-labeled directed graph. We call our approach PSI, which is short for Pan-genome
Seed Index. PSI is a hybrid approach that utilizes the indexes of both reference graph
and query reads. We leverage the idea that the k-mer space in the read library is much
more limited than that in the graph. In particular, it is independent of the number of
variants in the graph.
In a preprocessing phase, we construct a collection of paths through the graph and

index them using a conventional FM index. Our method for selecting these paths is
designed to cover as many k-mers present in the graph as possible. Our evaluation
shows that this path index alone outperforms GCSA2—a highly optimized indexing
method proposed by (Sirén, 2017)—in terms of index size, query time, and sensitivity
when indexing all SNVs with allele frequency above 1% found in the 1000 Genomes
Project.
Still, our path index does not reach full sensitivity; that is, it misses k-mers in variant-

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

S
eq

u
en

ce
 G

ra
p

h

S e e d f i n d i n g
C

h
u

n
k

P r e - p r o c e s s i n g
G

ra
p

h
P

at
h

s

Path Sequences

Splitting
into chunks

Seeding
with specified distance

Finding Seeds on Paths
by traversing both path and chunk indexes

Chunk Index
Path Index

Finding Uncovered Loci
by the selected paths

Indexing Paths
using FM-index

by traversing graph and chunk index

ATG TTGAT

Uncovered locus

Uncovered loci

Sequence Graph

Path Index

Patching
compressing path sequences

Selecting Paths
covering maximum number of loci

Seeds

Indexing Seeds
using lazy-constructed suffix tree

CAAATAAG TTG AAATTTTCTGG
A

G

T

C

A

G

I N P U T S
R

ead
s

R
ead

s L
ib

rary

Chunk Index

Chunk Index

Finding Seeds off Paths

Figure 1. Conceptual overview of the PSI approach. A sequence graph and a set of reads are
provided as inputs (yellow). The graph is preprocessed to create a path index (left / dark blue).
The read set is split into chunks and seeds are indexed (right / red). Seed finding proceeds in
two stages (middle / light blue).

dense regions of the graph. We refer to such loci in the graph where the path index
misses k-mers as uncovered loci. To rescue missed k-mers at uncovered loci, we index
a chunk (=subset) of input reads at a time. We then traverse the graph, starting from
all uncovered loci, and the read index in parallel. The full workflow is illustrated in
Figure 1. This approach turns out to be efficient in practice for multiple reasons: (i) by
traversing read index and graph simultaneously, k-mers that are not represented in the
read set are avoided, circumventing extra k-mers present in the graph; (ii) even when
including all variants from the 1000 Genomes Project, the number of these uncovered
loci remains manageable; and (iii) the size of the chunks is a tuning parameter that
can be adjusted such that the read index fits into the processor cache, which makes
traversing it very fast. As a result, our hybrid indexing strategy reaches full sensitivity
at a moderate overhead compared to the path-only index, and is (to our knowledge) the
first scalable technique providing full sensitivity for large, variant-dense graphs.

2 Background
2.1 Notation
A sequence S of length n is a tuple S ∈ Σn where Σ is a finite set Σ = {0, . . . , σ−1} called
alphabet. The alphabet set for a DNA sequence can be defined as ΣDNA = {A, C, G, T, N},
where N represents an unknown or ambiguous nucleotide. Since we primarily focus on

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

DNA sequences in this study, the alphabet set is assumed to be the nucleotide alphabet
denoted by Σ for simplicity throughout the article. The ith element of the sequence
can be referred to as si and the sequence can be represented by concatenating all its
elements s0s1 . . . sn−1. The text string T is a sequence terminated by a sentinel $ /∈ Σ. A
substring of sequence S is indicated by S[i . . . j] = si . . . sj . The substring S[0 . . . j], and
S[j . . . n − 1] are called prefix and suffix of S and are denoted by S[. . . j] and S[j . . .],
respectively. The term k-mer refers to any substring of length k in a string.

2.2 Sequence Graphs
Given an alphabet Σ, a tuple G = (V,E, λ) is a sequence graph over Σ; where V =
{v1, . . . , v|V |} is a set of nodes, E ⊆ V × V is a set of directed edges, and λ : V → Σ∗
is a function that maps each node in the graph to a label (see Figure 3a). We define
`(v) := |λ(v)| as a short-hand for the label length of node v. We additionally assume
that the graph is “deterministic”, in the sense that two outgoing edges starting at the
same node are assumed to never target two nodes whose labels start with the same
character. For a given node v ∈ V , the out-degree of v is the number of outward edges
from v, denoted by Gout(v), and in-degree Gin(v) is the number of incoming edges. Any
base c in the graph can be located by a tuple (v, o) where v ∈ V is the corresponding
node containing c and o ∈ {0, . . . , `(v)−1} is the offset of c in λ(v). We call such a tuple
l = (v, o) a locus in the graph.

In the literature, sequence graphs are sometimes defined such that each node implicitly
represents a sequences and its reverse complement. For simplicity, we stick to the simpler
definition here and consider the graph representing only the forward strand. However, it
can be easily extended to bi-directed sequence graphs. Alternatively, this complication
can be avoided by additionally querying the reverse complement seeds.
A path P in the graph is a sequence of nodes (u, . . . , w); where any two consecutive

nodes in the path are connected by an edge in the graph. We define the sequence
corresponding to the path P as the concatenation of its nodes: λ(P) = λ(u) . . . λ(w). A
path in the graph that starts at offset l of the first node and ends at offset r − 1 of the
last node is indicated by P r

l .
The sequence graph of a species usually consists of multiple connected components

corresponding to the multiple chromosomes. For each connected component M , we
augment the graph with two additional nodes: a head node hM and a tail node tM with
label λ(hM) = λ(tM) = ε, where ε denotes the empty string. We also add edges (h, v)
for all v ∈ VM which has zero in-degree and edges (v, t) for all v ∈ VM that has zero
out-degree. There are some special paths of interest: A spanning path of the component
M is a path starting from head node hM and ending in tail node tM . For any locus
l = (v, o) in the graph G = (V,E, λ), a k-path is defined to be a path starting at l whose
corresponding sequence length is k.

3 Methods
We consider a set of reads R ⊂ Σ+. First, a seed set Q is extracted from R:

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1 Path selection
Require: sequence graph G = (V,E, λ), path count N

1: function SelectNextNode(p, P)
2: p′ ← p.CoverableFrontierPath(|P |)
3: v ← p.LastNode()
4: covmin ←∞
5: vc ← 0
6: for u in G.Adjacent(v) do
7: cov ← P.Coverage(p′ · u)
8: if covmin > cov then
9: covmin ← cov

10: vc ← u

11: report vc

12: function SelectPaths(G, N)
13: P ← empty set
14: while P contains less than N paths do
15: p← G.HeadNode()
16: while p can be extended do
17: c← SelectNextNode(p, P)
18: p.Append(c)
19: report P

Definition 1 (Seed set). Given the set R of reads sequences, a length k > 0 and a
distance d > 0. The seed set Qk,d(R) is defined as the set of all k-mers starting at
positions md in the read sequences for any m ∈ N0.
Note that for d = 1, the seed set Qk,d(R) is simply the set of all k-mers in reads r ∈ R,

while for d = k it contains all non-overlapping k-mers. We now formalize the problem
of seed finding as follows.
Problem 2 (Seed finding). Given a set R of read sequences, a sequence graph G, and
parameters k > 0, d > 0. Find all occurrences of seeds q ∈ Qk,d(R) in paths in the graph
G, where Qk,d(R) is the seed set according to Definition 1.

As discussed above, seed finding is a filtering strategy to limit the search space of
sequence alignment algorithms. The choice of the seed length k controls the trade-
off between specificity and sensitivity of this filter. Longer seeds increase specificity
while reducing sensitivity. In this paper, we assume the value of k to be given as
a parameter, which is usually chosen dependent on read length and error rate of the
underlying sequencing technology.

3.1 Path Index
In the preprocessing phase, we create a path index of the genome graph (Figure 1,
left/dark blue). The path index is essentially a compressed full-text index of a set of

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

selected paths through the graph. Once constructed, it can be re-used for fast queries
to find exact matches on these paths. The number of paths N is a tuning parameter of
our indexing strategy; it can range from zero, which turns the path index off and seed
finding happens purely in the traversal phase, to high numbers that lead to covering
every k-path present in the graph. Constructing the path index proceeds in multiple
steps:

Path Selection

The first step for constructing the path index is selecting a set of N paths. This step
aims to cover as many k-paths in the graph as possible.

Definition 3 (Path Set Coverage). A path p′ is covered by another path p if the node
sequence of p′ is a contiguous subsequence of the node sequence of p. We can generalize
this to path sets: A set of paths P covers another path p′ if and only if there is a path
p ∈ P such that p covers p′. We define the coverage of path p′ by set P as the number
of paths in P that cover p′.

Definition 4. A set of paths P in the graph k-covers a locus l = (v, o) if and only if,
for all k-paths p starting at l, there is a path in P that covers p.

vp

i-coverable
frontier sub-path

Greedy choices

u

w
p'

Figure 2. Illustration of path selection algo-
rithm. The path p that is currently being gener-
ated is shown in dark blue. The i-coverable fron-
tier sub-path is indicated in yellow. The product
of the out-degrees on this path (1 · 3 · 2 = 6) is
smaller than i.

Based on Definition 4, P partitions the
loci in the graph into two sets of covered
and uncovered loci (for a given value of k).
Every uncovered locus lowers the sensitiv-
ity of our path index. In order to reach full
sensitivity, all uncovered loci later need to
be visited in the graph traversal phase,
which we discuss below in Section 3.3.
Consequently, maximizing the number of
loci covered by the N selected paths min-
imizes the number of loci to be traversed.
On the other hand, longer paths, ideally
spanning paths, represent all covered k-
paths in a more memory efficient way than
shorter paths covering the same set of k-
paths. So, the goal of path selection is finding a subset of P ⊂ U such that the number
of loci covered by P would be maximized, where U is the set of all possible paths that
start from the head node h and end at tail node t. More precisely, we seek to select N
paths for each connected components of the graph (e.g. corresponding to the different
chromosomes), resulting in a set P = {p1, p2, . . . , pN ·m}, where m is the number com-
ponents in the graph. For the sake of simplicity (and without loss of generality), we
assume that the graph has only one component in the following.
We propose a heuristic greedy algorithm for selecting a set of paths that aims at

covering as many loci as possible. This algorithm assumes that the input sequence

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

CAAATAAG G C TTG G AAATTTTCTGGAGTTCTAT T ATAT T CCAACTCTCTG

A T A AA

(a)

(b)

(c)

(d)

CAAATAAG G CCTAT T

A T . A .

....TAAG G

A

........

.

Figure 3. (a) Sequence graph with nodes displayed as boxes and edges indicated by blue arrows.
The remaining three panels show the result of our path selection algorithm for different numbers
of paths: (b) N = 2, (c) N = 4, and (d) N = 8. Selected paths are represented by red lines and
k-covered loci for k = 10 are shown by dots.

graph is a directed acyclic graph (DAG). Although we do not pursue this further in this
paper, the ideas we present could be extended to cyclic graphs, for instance by locally
“unrolling” the graph into a DAG as done by VG (Garrison et al., 2018).
Our algorithm starts from an empty set P , and proceeds by incrementally adding

paths to the set until it contains the desired number of paths. The basic idea is simple:
To select an additional path, we walk the graph from the head to the tail node and
greedily try to cover sub-paths that we have not covered before. That is, we want to
extend a new path p such that it contains a little piece that is not yet covered by any
other path selected thus far. To do this, we examine a local window around the present
end of our new path p and refer to this window as the frontier sub-path (Figure 2). But
how far should we look back, i.e. how many nodes should be included in this frontier
sub-path? To determine this, we use a heuristic that reflects how many paths might
possibly exist in this local neighborhood: We call a path i-coverable, if the product of
the out-degrees of the nodes in that path is at most i. Assume that we have selected i
paths so far and p is the (i+ 1)-th path that we are presently selecting. We consider the
shortest frontier sub-path of p that is i-coverable. Assume that v is the last node in p.
To decide which node to append to p (i.e. choosing between u and w in Figure 2), we
consider the paths selected so far and determine their coverage (see Definition 3) of the
frontier sub-path extended by each node adjacent to v. We then choose the node with
the lowest coverage, where ties are broken randomly.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Pseudocode for the path selection algorithm is given in Algorithm 1. We have visual-
ized the outcome of this path selection algorithm for different numbers of paths in Fig-
ure 3 by using Sequence Tube Maps (https://github.com/vgteam/sequenceTubeMap).
This greedy choice ultimately enumerates all paths in the graph for large values of N ,
while prioritizing them such that the first m paths aim to cover as many k-paths as
possible in the graph. For simple graph topologies, such as the ones shown in Figure 3,
this strategy maximizes the number of covered k-paths.

From Paths to Patches

The set of selected paths P can contain redundancies. That is, there can be sub-paths
shared between multiple paths in P . This redundancy not only affects the memory
footprint of our index, it also slows down the process of locating the occurrences in
the graph. We therefore modify the selection procedure to generate compressed path
sequences that avoid duplicate sub-paths. To this end, we define a parameter T , named
context length. The idea is to produce the same paths as before but to “cut out” any
redundant sub-paths while ensuring that all sub-paths of size T remain represented.
Therefore, we add paths one-by-one and, before adding each path, determine which of
its length-T sub-paths are not yet contained in any other path and refer to these sub-
paths as novel. We remove all parts of the path that do not overlap with such a novel
sub-path, and hence retain a set of disconnected patches of the path. This procedure
ensures that all queries for strings of length at most T will remain unaffected. As a
result, we usually obtain few genome-wide paths along with many smaller paths, the
patches, cover variation sites.

Indexing

To build an index, we concatenate the set of these patches to form one sequence SP

wherein the patches pi and pi+1 are separated by a sentinel $i and SP is terminated by
$M−1, with $i /∈ ΣDNA for 0 ≤ i < M . Then, we construct an FM index of SP (Ferragina
and Manzini, 2005), which we refer to as path index. The path index is accompanied
by a two auxiliary data structures that allow us to later locate the nodes (and offsets
within the nodes) for seed hits on these paths, which we will refer to as the Locate
operation in Algorithm 2. This is facilitated by a data structure to support rank/select
queries and a self-delimited integer vector encoded by Elias delta for storing the node
IDs. The constructed path index can be used effectively to query any string shorter than
the context length T . Note that smaller values of T usually lead to a smaller path index.
In practice, we set T to the length of the seed hits we want to query. For the path index
and the auxiliary data structures, we rely on the implementations available as part of
the sdsl-lite library (Gog et al., 2014).

3.2 Chunk Index
One of the central ideas to enable full-sensitivity seed finding consists in processing the
input read set R in chunks R1, R2, . . . , RC ⊂ R and finding all seeds within a chunk

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://github.com/vgteam/sequenceTubeMap
https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

simultaneously. To achieve this, we build an index over all seeds we want to query
for the present read chunk Rc, that is, we index the seed set Qk,d(Rc) as introduced
in Definition 1 (Figure 1 right/red). The underlying index structure could be a suffix
tree, enhanced suffix array, or an FM index as long as top-down traversal operations are
supported. After some preliminary experimentation, we decided to employ suffix trees
constructed in a write-only top-down (wotd) manner (Giegerich and Kurtz, 1995),
since we observed best performance in practice and can tolerate the larger memory
footprint compared to an FM index. Wotd trees are lazy suffix trees that are constructed
during traversal and only evaluate parts of the tree that are actually traversed. Our key
motivation for proceeding in chunks—rather than indexing the full read set—is rooted
in the idea that the index over a chunk can fit in the processor cache (e.g. in L3 cache)
and hence can answer queries swiftly in practice.

3.3 Traversing Graph, Path Index, and Chunk Index
Given a set of reads R, a seed length k and a seed distance d, our goal is to find all seed
hits in a sequence graph G = (V,E, λ), that is, to solve Problem 2. For this purpose, we
propose a novel strategy that proceeds in two phases. First, we perform a simultaneous
traversal of path index and chunk index, yielding all seed hits represented in the selected
paths. Second, we perform a simultaneous traversal of all uncovered graph loci and
the chunk index, yielded seed hits missed by the path index, typically in variant-dense
regions of the graph.
Even though represented by quite different data structures, sequence graph, path

index and chunk index support a common set of abstract traversal operations. In the
following, we describe our method in terms of such abstract operations and refer the
reader to excellent text books on the details of these data structures (Ohlebusch, 2013;
Mäkinen et al., 2015) as well as to mature implementations in libraries such as Seqan
(Döring et al., 2008; Reinert et al., 2017) and SDSL (Gog et al., 2014).
More concretely, all three data structures (graph, path index, and chunk index) can

be traversed using the following three operations:

• InitTraversal returns an initial traversal location `,

• Advance(`, σ) starts from traversal location `, consumes character σ, outputs the
resulting location `′ or ∅ in case reading σ from location ` is not possible,

• Extensions(`) returns the set of possible characters σ for which Advance(`, σ) 6=
∅.

In case of the suffix tree for the chunk index, a traversal location is described by a
suffix tree node and an offset inside the node label, InitTraversal returns the root
node and Advance walks down the tree along the corresponding labels. For an FM
index (which we use as path index), a traversal location is usually characterized by an
interval in the Burrows-Wheeler transform, but just like for a suffix tree, traversal can
be implemented such that Advance returns a non-empty location as long as the spelled
string is a substring of the indexed text. For the graph, a traversal can start from any

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 Finding seed hits on paths by simultaneous traversal of path index and
chunk index
Require: chunk index CI, path index PI, length k

1: function FindSeedsOnPaths(CI, PI, k)
2: `CI ← CI.InitTraversal()
3: `PI ← PI.InitTraversal()
4: states← empty queue
5: states.Push((`CI, `PI, 0))
6: while states is not empty do
7: (`CI, `PI, k

′)← states.Pop
8: if k′ + 1 < k then
9: Σext ← CI.Extensions(`CI) ∩ PI.Extensions(`PI)

10: for σ in Σext do
11: `′CI ← CI.Advance(`CI, σ)
12: `′PI ← PI.Advance(`PI, σ)
13: states.Push((`′CI, `

′
PI, k

′ + 1))
14: else
15: report PI.Locate(`PI)× CI.Locate(`CI)

locus and InitTraversal therefore needs to be supplied with a graph locus (which
consists of node v and offset o, as described above). Advance then walks along the
graph in accordance with the node labels.

Phase 1: Finding Seeds on Paths

To find seeds represented on the selected paths, we can simply query the path index.
While, in principle, one could query each seed separately, we prefer to query all seeds
in a chunk of reads at once through the simultaneous traversal of chunk index and path
index (Algorithm 2 and Figure 1, Box 1). In this way, we benefit from the same chunk
index that is also used in Phase 2 described below. Algorithm 2 assumes that the path
index supports the additional operation Locate, which translates a traversal location
in the path index into a set of corresponding locations in the graph (see Section 3.1).

Phase 2: Finding Seeds off Paths

Since the path index can occasionally miss k-paths, we handle variant-dense parts of the
graph in a second phase. During the selection of paths, we keep track of loci that are
not covered by paths and store the set L of these uncovered loci. For each chunk, we
examine all these uncovered loci and, starting from these loci, simultaneously traverse
the graph and the chunk index (Algorithm 3 and Figure 1, Box 2). In this way, the seeds
that are contained in the chunk of reads guide the traversal of the graph. This allows us
to avoid enumerating all k-paths at the uncovered loci, which would be infeasible. For
traversing an uncovered graph locus, the number of Advance operations is bounded by

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 3 Finding seed hits off paths by simultaneous traversal of graph and chunk
index
Require: chunk index CI, graph G = (V,E, λ), set of uncovered locations L, length k

1: function FindSeedsOffPaths(CI, G, L k)
2: for `G in L do
3: `← `G
4: `CI ← CI.InitTraversal()
5: states← empty queue
6: states.Push((`CI, `G, 0))
7: while states is not empty do
8: (`CI, `G, k

′)← states.Pop
9: if k′ + 1 < k then

10: Σext ← CI.Extensions(`CI) ∩G.Extensions(`G)
11: for σ in Σext do
12: `′G ← G.Advance(`G, σ)
13: `′CI ← CI.Advance(`CI, σ)
14: states.Push((`′CI, `

′
G, k

′ + 1))
15: else
16: report {`} × CI.Locate(`CI)

the size of the chunk sequence, i.e. C ·m; where C is the number of reads in the chunk,
and m is the average reads length. Thus, the total time complexity of finding seeds off
paths is O(|L| · C ·m · Σ), where L is the set of uncovered loci.

4 Experimental Results
4.1 Implementation
PSI has been implemented in C++. It gets the reads set in FASTQ and the graph in vg
format as inputs, and finds occurrences of all seeds with given length k and distance d.
The output is provided in GAM format which represents seed alignments to the graph.
Both vg and GAM are file formats introduced by the VG toolkit to represent sequence
graph and sequence alignment, respectively (Garrison et al., 2018). In order to maintain
interoperability between tools in this domain, we reuse these file formats. For internal
usage, the graph is represented by xg, the succinct graph data structure of VG, which
allows to access node sequences and connectivities efficiently. We use the sdsl-lite
library (Gog et al., 2014) for succinct and compressed data structures: bit vector with
efficient rank and select operations, compressed integer vector using Elias delta coding,
and FM index. The wotd-tree we use is provided by the SeqAn2 library (Reinert et al.,
2017).

All running times are measured on a system with a 3GHz Intel Xeon E7-8857 processor
running Debian 9.4 with Linux kernel 4.9.91. We used libvg version 1.7.0 and sdsl-lite
version 2.1.1 for the benchmarks. Seed finding is done using a single thread.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.2 Data Sets
We benchmark our algorithm using both synthetic and real graphs. In both cases, we
start from a linear reference genome and a set of small variants and use VG version
1.7.0 (Garrison et al., 2018) to construct a corresponding graph (using vg construct
command). This process results in a DAG with one bubble for each implanted variant.

Simulated Graphs. To systematically explore parameter settings and to benchmark
the performance across a wide range of graphs with different complexities, we created a
simulated data set. This data set is constructed from the complete genome of N. Delto-
cephalinicola, a bacterial species with a short genome of around 112 kbp (Bennett et al.,
2016). Starting from this linear genome, single nucleotide variants (SNVs) are implanted
uniformly at random throughout the genome with three different mutation rates (0.01,
0.1, 0.3) to obtain three graphs ranging from moderate variant density (0.01) to an
extreme variant density (0.3).

1000 Genomes Graphs. The real data set consists of graphs constructed from the au-
tosomes of the human reference genome (hs37d5) and small variants reported by Phase 3
of the 1000 Genome Project (Auton et al., 2015). We created two versions of this graph,
one constructed from all small variants, and a second one that only includes variants
with an allele frequency above 1%. Statistics for the resulting graphs are reported in
Table 1.

Read Simulation. To benchmark our seed finding method, we simulated one million
reads of length 150 bp with error rate 1% for each graph. The reads were simulated
from random haplotypes, created by a random walk through the respective graph. The
number of haplotypes used for read simulation corresponds to the ploidy of underlying
genome: one haplotype for the simulated graph (bacteria) and two haplotypes for the
1000 Genomes graphs (human). During seed finding, we query all non-overlapping seeds
of length 30 bp.

4.3 Performance on Simulated Graphs
We used the controlled environments provided by the simulated graphs to comprehen-
sively explore the properties of our path index when confronted with graphs of varying
variant densities.

Table 1. Human genome variation graph statistics.

Nodes Edges Loci SNPs Indels Multiallelic sites

AF>1% 40M 54M 2895M 13M 1M 167K
All 236M 323M 2 963M 81M 3M 447K

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

(c)
Paths

(b)
Paths

(a)
Paths

S
iz

e
(M

B
)

Full PatchedType: Context: 6432

Figure 4. Compressed (patched) path index
size in MB vs. different number of paths with
context length 30 compared to uncompressed
(full) one for simulated data set with mutation
rates: (a) 0.01, (b) 0.1, and (c) 0.3.

(c)
Paths

(b)
Paths

(a)
Paths

T
im

e
(s

)

Pick Index Save

Figure 5. Time spent on different phases
of path indexing for simulated data set with
mutation rates: (a) 0.01, (b) 0.1, and (c) 0.3.

(c)
Paths

(b)
Paths

(a)
Paths

C
ou
nt
s

NodeLoci

Figure 6. Number of uncovered loci/nodes
by indexes with different number of paths for
simulated data set with mutation rates: (a)
0.01, (b) 0.1, and (c) 0.3.

(a)
Number of SNPs

(c)
Number of SNPs

(b)
Number of SNPs

K
-m

er
s

Figure 7. Histogram of SNPs frequency in
30-mers for simulated data set with mutation
rates: (a) 0.01, (b) 0.1, and (c) 0.3.

Index size. First, we examined the influence of the number of paths N on the path
index size. When turning off the path compression, that is, indexing all paths in full
without removing redundant parts, then the index size increases linearly in the number
of paths (Figure 4, red curves). As shown by the cyan curves, the compression/patching
considerably decreases the size of the index, particularly for simple graphs. In complex
graphs, paths share fewer identical substrings that can be dropped. Another factor that
affects the compression rate is the context length T . Higher value of T result in longer
patches which leads to a bigger index. Figure 4 includes results for two context lengths
32 and 64. Recall that the context length imposes an upper limit for query pattern
length, where 32 constitutes a typical value for seed finding in Illumina short reads.

Indexing time. Figure 5 shows the time spent on different phases of creating the path
index, namely on path selection (“pick”) on creating the FM index (“index”) and on
writing the index to disk (“save”). As Figure 5 shows, the times spent on the indexing
phase are dominated by the path selection phase, while the time for saving is negligible.
The growth of the runtime of the path selection is slightly super-linear in practice.

Path coverage. The efficiency of the path selection algorithm in terms of covering
k-mers (for k = 30, referred to as “loci”) and graph nodes is plotted in Figure 6. The

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

number of uncovered loci is shown for different sizes of the path set P . These curves show
a behavior that is consistent with the distribution of the number of SNPs covered by
each k-mers (Figure 7). For the intermediate SNP density of 0.1 (middle), for example,
we expect a 30-mer to cover 3 SNPs on average, which translates into 23 = 8 paths
needed to cover all “versions” of this 30-mer.

(c)
Chunk size

(b)
Chunk size

(a)
Chunk size

Q
ue

ry
 ti

m
e

(μ
s)

Paths: 16 32 64 128

Figure 8. Average query time per k-mer occur-
rence for different numbers of paths and chunk
sizes (given in the number of reads/chunk) on
simulated data set with mutation rates: (a) 0.01,
(b) 0.1, and (c) 0.3.

Seed Finding. We now employ the hy-
brid index using both the stages of query-
ing the path index and traversing the
graph to recover seeds that are missed
by the path index. We measure the to-
tal runtime of both phases. To make the
numbers comparable to the human data,
where the same seed can sometimes occur
many times, we divide the total runtime
by the number of occurrences found to ob-
tain the average runtime per seed query.
Figure 8 shows the resulting seed query
times for the three graphs as a function of
number of selected paths and the chunk
size. In line with our expectation, the query time decreases when adding more paths
and when increasing the chunk size. For more variant-rich graphs, the queries become
slower.

4.4 Performance on 1000 Genomes Graphs
Experiments on the large 1000 Genomes graphs reveal that the path index behaves simi-
larly favorable as for the small simulated graphs. Figure 9 shows different measurements
for the graph with all variants with allele frequency of 1% and above. We observe that
our path compression (patching) routine is very effective in limiting the size of the in-
dex. Even when indexing patches corresponding to 256 paths through the full human
genome, we observe path index sizes below 7GB (Figure 9a). While we see the same
super-linear growth in runtime as for the simulated graphs, the construction of the path
index is easily feasible, with less than 10 hours for 128 paths and less than 30 hours for
256 paths (Figure 9b). Again, the number of uncovered k-mers is quickly driven down
by adding more paths (Figure 9c).
In Figure 10, we examine the dependency of the k-mer query performance on the

chunk size, which reveals that finding seeds in chunks of 100 000 reads is most favorable.
The performance becomes worse when using even larger chunks, which we attribute to
cache effects.
Finally, we compare the performance to GCSA2, a state-of-the-art method for indexing

graphs developed by Sirén (2017) and used in VG (Garrison et al., 2018). The results
are displayed in Table 2. For the graph with variants of AF > 1%, we obtain an index
less than half the size (6.3GB) of that produced by GCSA2 (15GB), while we only need

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nodes

Loci

Save

Index

Pick 1
0

7
.5

∙106

5
2
.5

C
ou

nt
s

T
im

e
(h

)

S
iz

e
(G

B
)

(c)
Paths

(b)
Paths

(a)
Paths

Figure 9. Human genome path index bench-
mark for different number of paths: (a) path
index size, (b) indexing time, and (c) number
of uncovered loci/nodes

Paths: 16 32 64 128 256

(b)
Chunk size

Q
ue

ry
 ti

m
e

(μ
s)

(a)
Chunk size

Figure 10. Average query time per k-mer
for different number of paths and chunk sizes
(given in the number of reads/chunk) on the
human genome data set: (a) allele frequency
above 1%, (b) all variants.

slightly longer to construct it (28h vs. 22h). Our path index (“PSI/Path-only”) covers
more k-mers (99.24% vs. 99.09%) and allows for faster queries, 4.8µs per occurrence
where GCSA2 needs 6.28µs per occurrence—a speedup of 30.8%. When additionally
using the graph traversal (“PSI/Hybrid”) to rescue the uncovered k-mers, our query
time is virtually the same as GCSA2 while reaching full sensitivity, which is not feasible
with GSCA2.
The graph with all variants contains drastically more k-mers (8.9 · 1010) than the

graph with variants of AF > 1% (6.7 · 109). In this setting, the pruning steps required
to build the GCSA2 index (which we run as described in the GCSA2 documentation)
lead to a drastic loss in the number of indexed k-mers: the GCSA2 index only captures
15.54% of all k-mers in the graph. Even though the lost k-mers are concentrated in
the complex regions of the graph, we argue that making such regions accessible is one
important objectives of switching from linear reference genomes to graphs in the first
place. Using PSI/Hybrid, we reach full sensitivity for this graph with a comparable
query time (21.05µs for PSI/Hybrid and 20.03µs for GCSA2).

Table 2. Seed finding performance on the 1000 Genomes graphs.

Index Indexing Covered Query
size time k-mers time

A
F>

1% PSI/Path-only 6.3 GB 28 h 6 721M (99.24%) 4.82 µs/occ
PSI/Hybrid 6.3 GB 28 h 6 773M (100%) 6.20 µs/occ
GCSA2 order-128 15 GB 22 h* 6 712M (99.09%) 6.28 µs/occ

A
ll

PSI/Path-only 64 GB 56 h 8.12 µs/occ
PSI/Hybrid 64 GB 56 h 89 207M (100%) 21.05 µs/occ
GCSA2 order-128 34 GB 30 h* 13 863M (15.54%) 20.03 µs/occ

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 Discussion
We have introduced an approach to index sequence graphs that scales to human genomes
while delivering full sensitivity. Our path selection procedure coupled with an FM index
results in a competitive index structure, even when used in isolation without the graph
traversal phase. By traversing the graph and the chunk index simultaneously, we take
advantage of the fact that the set of k-mers in the reads is more restricted than the
one represented in the graph. In other words, we let the reads guide the traversal of
the graph and, in this way, circumvent the combinatorial explosion of k-mers in the
graph. For the first time, this techniques enables scalable full-sensitivity seed finding in
variation graphs.

Here, we focused on introducing a new algorithmic technique for finding seeds in
variation graphs. Our results show that full-sensitivity seed finding is indeed possible
in polynomial time and that it can be done efficiently in practice. We plan to use
this method to build a full read mapper by combining it with our recent algorithm for
bit-parallel sequence-to-graph alignment (Rautiainen et al., 2019).
Recently, Sirén et al. (2018) have proposed to augment sequence graphs with paths

that represent haplotypes found in a population, to then restrict the indexing to those
haplotypes. This idea could naturally be combined with our method by replacing the
path selection step accordingly, which we plan to explore in future research. Beyond that,
Pritt et al. (2018) have argued that it might be beneficial to restrict the set of variants
used for graph construction to a well-selected subset for two reasons: to avoid introducing
unnecessary ambiguity and to simplify indexing. By providing a full-sensitivity index,
we have removed the necessity for the latter, creating the opportunity for comprehensive
evaluations on the trade-off between added ambiguity and reduced read mapping bias.

6 Acknowledgement
We thank Mikko Rautiainen for pointing out the polynomial time complexity of finding
seeds off paths.

References
Church DM, Schneider VA, Steinberg K et al. Extending reference assembly models.
Genome Biology, 2015;16(1):13.

Paten B, Novak AM, Eizenga JM et al. Genome graphs and the evolution of genome
inference. Genome Research, 2017;27(5):665–676.

Garrison E, Sirén J, Novak AM et al. Variation graph toolkit improves read mapping by
representing genetic variation in the reference. Nature Biotechnology, 2018;36(9):875–
879.

Rakocevic G, Semenyuk V, Lee WP et al. Fast and accurate genomic analyses using
genome graphs. Nature Genetics, 2019;51(2):354–362.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dilthey A, Cox C, Iqbal Z et al. Improved genome inference in the MHC using a
population reference graph. Nature Genetics, 2015;47(6):682–688.

Auton A, Abecasis GR, Altshuler DM et al. A global reference for human genetic
variation. Nature, 2015;526(7571):68–74.

Chaisson MJP, Huddleston J, Dennis MY et al. Resolving the complexity of the human
genome using single-molecule sequencing. Nature, 2015;517(7536):608–611.

Chaisson MJP, Sanders AD, Zhao X et al. Multi-platform discovery of haplotype-resolved
structural variation in human genomes. bioRxiv, 2017;.

Audano PA, Sulovari A, Graves-Lindsay TA et al. Characterizing the Major Structural
Variant Alleles of the Human Genome. Cell, 2019;176(3):663–675.e19.

Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 2018;19(1):118–135.

Eggertsson HP, Jonsson H, Kristmundsdottir S et al. Graphtyper enables population-
scale genotyping using pangenome graphs. Nature Genetics, 2017;49(11):1654–1660.

Dilthey AT, Gourraud PA, Mentzer AJ et al. High-Accuracy HLA Type Inference from
Whole-Genome Sequencing Data Using Population Reference Graphs. PLOS Compu-
tational Biology, 2016;12(10):1–16.

Li H and Homer N. A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in Bioinformatics, 2010;11(5):473–483.

Reinert K, Langmead B, Weese D et al. Alignment of Next-Generation Sequencing
Reads. Annual Review of Genomics and Human Genetics, 2015;16(1):133–151.

Myers EW and Miller W. Approximate matching of regular expressions. Bulletin of
mathematical biology, 1989;51(1):5–37. PMID: 2706401.

Navarro G. Improved approximate pattern matching on hypertext. Theoretical Computer
Science, 2000;237(1-2):455–463.

Rautiainen M, Mäkinen V, and Marschall T. Bit-parallel sequence-to-graph alignment.
Bioinformatics, 2019;.

Mäkinen V, Navarro G, Sirén J et al. Storage and retrieval of highly repetitive sequence
collections. Journal of Computational Biology, 2010;17(3):281–308.

Gagie T and Puglisi SJ. Searching and indexing genomic databases via kernelization.
Bioinformatics and Computational Biology, 2015;3:12.

Schneeberger K, Hagmann J, Ossowski S et al. Simultaneous alignment of short reads
against multiple genomes. Genome Biology, 2009;10(9):R98.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Danek A, Deorowicz S, and Grabowski S. Indexes of Large Genome Collections on a
PC. PLoS ONE, 2014;9(10):e109384.

Limasset A, Cazaux B, Rivals E et al. Read mapping on de Bruijn graphs. BMC
Bioinformatics, 2016;17(1).

Petrov SN, Uroshlev LA, Kasyanov AS et al. An Efficient Algorithm for Mapping
of Reads to a Genome Graph Using an Index Based on Hash Tables and Dynamic
Programming. Biophysics, 2018;63(3):311–317.

Ferragina P, Luccio F, Manzini G et al. Compressing and indexing labeled trees, with
applications. Journal of the ACM, 2009;57(1):1–33.

Ferragina P and Manzini G. Indexing compressed text. Journal of the ACM, 2005;
52(4):552–581.

Bowe A, Onodera T, Sadakane K et al. Succinct de Bruijn Graphs. In: Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 225–235. 2012;.

Rødland E. Compact representation of k-mer de bruijn graphs for genome read assembly.
BMC Bioinformatics, 2013;14(1):313.

Sirén J, Välimäki N, and Mäkinen V. Indexing Graphs for Path Queries with Applica-
tions in Genome Research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2014;11(2):375–388.

Sirén J. Indexing Variation Graphs. In: 2017 Proceedings of the Ninteenth Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, Society for Industrial
and Applied Mathematics, 2017; pp. 13–27.

Gog S, Beller T, Moffat A et al. From Theory to Practice: Plug and Play with Succinct
Data Structures. In: Experimental Algorithms, Springer International Publishing, pp.
326–337. 2014;.

Giegerich R and Kurtz S. A comparison of imperative and purely functional suffix tree
constructions. Science of Computer Programming, 1995;25(2-3):187–218.

Ohlebusch E. Bioinformatics Algorithms. Oldenbusch Verlag, 2013.

Mäkinen V, Belazzougui D, Cunial F et al. Genome-Scale Algorithm Design. Cambridge
University Press, 2015.

Döring A, Weese D, Rausch T et al. SeqAn An efficient, generic C++ library for sequence
analysis. BMC Bioinformatics, 2008;9(1):11.

Reinert K, Dadi TH, Ehrhardt M et al. The SeqAn C++ template library for effi-
cient sequence analysis: a resource for programmers. Journal of Biotechnology, 2017;
261:157–168.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bennett GM, Abbà S, Kube M et al. Complete Genome Sequences of the Obligate
Symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from
the Pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae).
Genome Announcements, 2016;4(1).

Sirén J, Garrison E, Novak AM et al. Haplotype-aware graph indexes. In: L Parida and
E Ukkonen (editors), Proceedings of WABI. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik GmbH, Wadern/Saarbruecken, Germany, 2018; pp. 4:1–4:13.

Pritt J, Chen NC, and Langmead B. FORGe: prioritizing variants for graph genomes.
bioRxiv, 2018;.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/587717doi: bioRxiv preprint

https://doi.org/10.1101/587717
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Contributions

	Background
	Notation
	Sequence Graphs

	Methods
	Path Index
	Chunk Index
	Traversing Graph, Path Index, and Chunk Index

	Experimental Results
	Implementation
	Data Sets
	Performance on Simulated Graphs
	Performance on 1000 Genomes Graphs

	Discussion
	Acknowledgement

