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Abstract

Reticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled
as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic
networks while also accounting for other processes, such as incomplete lineage sorting (ILS). However,
these methods can only handle a small number of loci from a handful of genomes.
In this paper, we introduce a novel two-step method for scalable inference of phylogenetic networks from
the sequence alignments of multiple, unlinked loci. The method infers networks on subproblems and then
merges them into a network on the full set of taxa. To reduce the number of trinets to infer, we formulate a
Hitting Set version of the problem of finding a small number of subsets, and implement a simple heuristic
to solve it. We studied their performance, in terms of both running time and accuracy, on simulated as
well as on biological data sets. The two-step method accurately infers phylogenetic networks at a scale
that is infeasible with existing methods. The results are a significant and promising step towards accurate,
large-scale phylogenetic network inference.
We implemented the algorithms in the publicly available software package PhyloNet
(https://bioinfocs.rice.edu/PhyloNet).
Contact: nakhleh@rice.edu

1 Introduction
Phylogenetic networks model non-treelike evolutionary histories, such as
those arising when hybridization occurs, and take the shape of a rooted,
directed, acyclic graph. Phylogenetic network inference in the genomic
era is most often carried out from data obtained from multiple unlinked
loci across the genomes of species of interest. To account for the fact that
processes such as incomplete lineage sorting (ILS) could co-occur with
hybridization, the multispecies network coalescent (MSNC) model was
introduced (Yu et al., 2012, 2014) to turn phylogenetic networks into a
generative model of gene genealogies, and, subsequently, a wide array of
methods for statistical inference of phylogenetic networks under MSNC
were introduced (Yu et al., 2014; Yu and Nakhleh, 2015; Wen et al., 2016;
Wen and Nakhleh, 2018; Zhang et al., 2018; Zhu et al., 2018; Zhu and
Nakhleh, 2018).

Initial evaluations of all these methods on simulated and biological
data showed very promising results in terms of the accuracy of the
inferences. However, these methods suffer from several major performance
bottlenecks. Methods that evaluate the full likelihood (all of the
aforementioned methods, except for the pseudo-likelihood method of
Yu and Nakhleh (2015)) suffer from the prohibitive computational
requirements of likelihood calculations (Zhu and Nakhleh, 2018; Elworth
et al., 2018). Currently, computing network likelihood is feasible only for
fewer than 10 species and a very small number of reticulations. Second, all
the aforementioned methods traverse the space of phylogenetic networks

that is much larger than the space of phylogenetic trees, whose size is
already exponential in the number of taxa. While the pseudo-likelihood
method of Yu and Nakhleh (2015) circumvents the likelihood calculations,
albeit in an approximate manner, it does not overcome the problem of
exploring the space of the phylogenetic networks. Third, for Bayesian
methods, exploring the trans-dimensional space of phylogenetic networks
(the number of reticulations changes during the exploration) leads to poor
mixing.

In this paper, we propose a method for large-scale phylogenetic
network inference that ameliorates all three challenges. The method
divides the set of taxa into small, overlapping subsets, builds accurate
subnetworks on the subsets, and finally agglomerates the subnetworks
into a network on the full set of taxa. By focusing on three-taxon subsets
in this paper, the likelihood calculations become very fast, exploring the
space of all phylogenetic networks on large numbers of taxa is completely
sidestepped. Also, mixing is improved because more iterations of the
RJMCMC sampler can be run on three-taxon networks, especially since
different subsets can be analyzed independently in parallel. Furthermore,
to avoid building all

(n
3

)
trinets, we provide a Hitting Set formulation

of a problem for reducing the number of trinets based on gene trees, and
demonstrate that the number of trinets can be reduced significantly without
much effect on accuracy.

We implemented our algorithms in PhyloNet (Wen et al., 2018) and
studied their accuracy and efficiency. When making use of error-free
trinets, we show that the algorithm infers the correct network in all cases,
whether making use of all trinets or a significantly reduced subset. When
making use of inferred trinets, the algorithm has very good accuracy, where
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in many cases the correct network is inferred and in all others, a network
with small error rate is inferred. This demonstrates the importance of
inferring the trinets accurately. Equally important, the method allows for
inferring large-scale networks whose inference is infeasible using existing
statistical methods.

The closest works to our proposed method here are those of Huber et al.
(2017); Hejase et al. (2018). In (Huber et al., 2017), the authors devised
an algorithm that is restricted to combining binet and trinet topologies (no
divergence times) into level-1 networks (A phylogenetic network is level-
1 if no two cycles in its underlying undirected graphs share a node). The
work of Hejase et al. (2018) proposed another divide-and-conquer method
to infer subnetworks and combine them. However their method makes
use of the subnetwork topologies and requires specifying the number of
reticulations a priori.

The divide-and-conquer method we present here is not only designed
to be scalable and make possible the inference of large phylogenetic
networks, it also makes use of divergence times so that the estimated
network has a time scale. It therefore represents substantial improvement
over the previous likelihood-based methods limited in scalability and
previous heuristic or summary methods limited in their utility.

2 Background
A phylogenetic network Ψ on set X of taxa is a rooted, directed, acyclic
graph (DAG) in which every internal node, except for the root, has in-
degree 1 and out-degree 2 (tree node) or in-degree 2 and out-degree 1
(reticulation node). The root has in-degree 0 and out-degree 2, and each
leaf has in-degree 1 and out-degree 0. Edges incident into reticulation
nodes are the reticulation edges of the network, and all other edges are
its tree edges. The leaves of the network are bijectively labeled by the
elements of X .

For a full probabilistic model, the edges of the network are also
associated with continuous parameters as follows. For a given phylogenetic
network Ψ, we denote by V (Ψ), E(Ψ), and X (Ψ) the network’s nodes,
edges, and leaf labels, respectively. Each edge b = (u, v) in E(Ψ) has
a length which is defined by the difference of heights of u and v, which
are denoted by h(u) and h(v). Each pair of reticulation edges e and e′

incident into the same reticulation node have inheritance probabilities γe
and γe′ associated with them, which are two non-negative numbers that
satisfy γe + γe′ = 1. Roughly speaking, γe denotes the proportion of
the genome (in the hybrid population denoted by the relevant reticulation
node) that was inherited along edge e, and γe′ denotes the proportion
of the genome that was inherited along edge e′. The network’s topology,
branch lengths, and inheritance probabilities fully define the multispecies
network coalescent (MSNC) and allows for deriving gene tree probability
distributions under ILS and hybridization (Yu et al., 2012, 2014).

For x ∈ X , we denote byAΨ(x) andARΨ(x) the sets of nodes and
reticulation nodes, respectively, on all paths from the leaf labeled by x, or
node x, to the root of Ψ (ARΨ(x) ⊆ AΨ(x)). Additionally, we denote
R(Ψ) to be the set of reticulation nodes in Ψ, with r(Ψ) = |R(Ψ)|.

Inference under the MSNC Model. The data in phylogenomic inferences
involves m independent loci (genomic regions) consisting of S =

{S1, . . . , Sm}, whereSi is the sequence data for locus i. Most commonly,
Si could be an alignment of sequences from each of the species under
consideration, or Si is data from a single bi-allelic marker (a vector of 0’s
and 1’s), such as a single nucleotide polymorphism (SNP).

The model consists of Ψ, the phylogenetic network (topology and
its continuous parameters such as divergence times), and vector Γ of the
inheritance probabilities. The likelihood of the model is given by

p(S|Ψ,Γ) =

m∏
i=1

∫
G
p(Si|g)p(g|Ψ,Γ)dg,

where the integration is taken over all possible gene trees, p(Si|g) is
the probability of the sequence alignment Si given a particular gene
tree g (Felsenstein, 1981), and p(g|Ψ,Γ) is the density of the gene tree
(topologies and branch lengths) given the model parameters (Yu et al.,
2014). The posterior p(Ψ,Γ|S) of the model is proportional to

p(S|Ψ,Γ)p(Ψ)p(Γ) = p(Ψ)p(Γ)

m∏
i=1

∫
G
p(Si|g)p(g|Ψ,Γ)dg,

where p(Ψ) and p(Γ) are the priors on the phylogenetic network (and its
parameters) and the inheritance probabilities, respectively.

As discussed above, statistical inference methods under this model
suffer from the computational complexity of computing the likelihood,
and the challenges with exploring the astronomical and jagged space of
phylogenetic networks. Next we describe our method that ameliorates
the problem to infer a large network via a two-step approach in which
subnetworks are first inferred on smaller data sets of taxa and then the
subnetworks are combined to produce the full network.

3 Methods
Our divide-and-conquer approach to large-scale phylogenetic network
inference on set X of taxa takes the following steps:

1. determine a collection of overlapping subsets X1, . . . ,Xk of taxa;
2. for each set Xi of taxa, infer an accurate phylogenetic network Ψi

(topology, divergence times, and inheritance probabilities) from the
sequence data of Xi;

3. Combine the k subnetworks Ψ1, . . . ,Ψk into a phylogenetic network
on the full set X of taxa.

A key issue here is that the sets Xi are small enough so that accurate
inference methods, such as (Wen and Nakhleh, 2018), can efficiently and
accurately estimate Ψi. In this work, we first show the performance when
we consider all

(|X |
3

)
3-taxon subsets, and then propose a technique for

reducing this number.
For Y ⊆ X , we denote by Ψ|Y the phylogenetic network restricted

to only the leaves labeled by elements of Y . We formulate Step (3) in our
proposed approach as follows:

• Input: Subnetworks Ψ1, . . . ,Ψk on overlapping sets X1, . . . ,Xk

of taxa.
• Output: Phylogenetic network Ψ with the fewest nodes and edges

such that Ψ|Xi
= Ψi for i = 1, . . . , k.

We now describe an iterative algorithm for this problem of combining
subnetworks into a full network. The algorithm proceeds in three steps:
(1) reconciling and summarizing the node heights across the subnetworks;
(2) selecting a starting backbone network (a 3-taxon network in our case)
and an order to add taxon-labeled leaves to it; and, (3) iteratively attaching
new leaves (n−3 of them) according to the computed order until a network
on the full set of taxa is obtained.

3.1 Reconciling and summarizing the subnetworks

Although two nodes in different subnetworks can correspond to the same
node in the true network, a degree of uncertainty is associated with the
inferred parameters (mainly their heights) of the two nodes and so they will
not exactly match. Those inexact heights will mislead a naïve algorithm
that treats differences in heights as strictly pertaining to different nodes,
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therefore we need to reconcile the parameter estimates in each subnetwork
first.

We construct a set N of disjoint sets of nodes (each node in each
subnetwork has its height). Initially,

N = {{v}|v ∈ V (Ψj), 1 ≤ j ≤ k};

that is, N is a set of singletons, one for each node in each of the
subnetworks. For every pair (Ψi,Ψj ) of subnetworks, if |X (Ψi) ∩
X (Ψj)| > 1, we obtain Ψ′i and Ψ′j by restricting Ψi and Ψj to
X (Ψi) ∩ X (Ψj), respectively. By such a restriction, we have two
injective mappings from the nodes of Ψ′i and Ψ′j to their corresponding
nodes in Ψi and Ψj , respectively: mi : V (Ψ′i) → V (Ψi) and
mj : V (Ψ′j) → V (Ψj). If Ψ′i and Ψ′j are identical in topology, let
m′ : V (Ψ′i) → V (Ψ′j) be a bijection between their node-sets. Then for
every node v′i ∈ V (Ψ′i), we find the two disjoint sets in N containing
mi(v

′
i) and mj(m′(v′i)), and replace these two sets with their union. If

Ψ′i and Ψ′j are not identical, we ignore them. In the end, for every node
in every disjoint set in N , we assign the average height of nodes in the
same set.

To summarize the height of each node in each subnetwork, here we
introduce the “extended height matrix," or EHM. An EHM MΨ of a
network Ψ with n leaves is an n × n matrix, where element MΨ(x, y),
for taxa x, y ∈ X (Ψ), is a sorted list of heights of tree nodes in the
binet obtained by restricting Ψ to {x, y}. We combine MΨ1

, . . . ,MΨk

into an EHM M for the full network as follows. For x, y ∈ X , we
set M (x, y) to be the longest list among MΨ1

(x, y), . . . ,MΨk
(x, y).

If there are multiple longest lists, the list with smallest lexicographic
rank is chosen. For example, if two longest lists (0.1, 0.2, 0.4, 0.9) and
(0.1, 0.2, 0.3, 1.0) exist, the latter is chosen. We also define the “pairwise
distance sum," or PDS, for a subnetwork to be the sum of the height of the
most recent common ancestor of every pair of taxa in the subnetwork.

3.2 Generating a starting network and an order for leaf
addition

Here we describe how (1) a starting backbone network is selected, and (2)
an order for adding all taxa to it is generated. We assume that a designated
taxon z has been identified a priori to be a member of outgroup with at
most 2 members. As this taxon, by definition, is farthest from all ingroup
taxa, our task boils down to selecting one of the subnetworks that have z as
a taxon (when all

(n
3

)
trinets are built, there are

(n
2

)
trinets that have z as a

leaf label). We now describe how to choose one of those as the backbone
network.

Let Ψi be a subnetwork whose leaves are labeled by the outgroup
taxon z, and two other taxa x and y. We define s(Ψi) to be 1 if
either x or y is under a reticulation node in any of the k subnetworks;
otherwise, s(Ψi) = 0. Furthermore, for two subnetworks Ψi and Ψj , we
define d(Ψi,Ψj) to be the topological difference (Nakhleh, 2010) of their
corresponding restrictions to the set X (Ψi) ∩ X (Ψj) of leaves when
|X (Ψi) ∩X (Ψj)| > 1, otherwise, d(Ψi,Ψj) = 0. We then take as
the backbone network the subnetwork

argminΨi
= s(Ψi) +

∑
1≤j≤k,i6=j

d(Ψi,Ψj),

where Ψi iterates over all subnetworks that have z as a leaf label, and k
is the number of subnetworks. If there are multiple subnetworks with the
same criterion, the subnetwork with largest PDS is chosen.

Before we add new taxa into the starting backbone, we need to generate
an order for attaching new taxa according to the topologies of subnetworks
to maximize the correct placement of reticulation nodes. Given two taxa
x, y ∈ X and a collection Ψ1, . . . ,Ψk of subnetworks, we say that x

precedes y, denoted by x � y, if ARΨi
(x) 6= ∅ and |ARΨi

(x)| ≤
|ARΨi

(y)| for some Ψi. We build a directed graph whose nodes are the
taxa set X , and edge (x, y) is in the graph if and only if x � y. Then
we perform a topological sorting on the directed graph to get an order
of attaching missing taxa. Note that there may be cycles in the directed
graph; in such a case, when the topological sorting cannot proceed due to a
cycle, we break the cycle by removing node x (and its incident edges) that
appears under a reticulation node in the largest number of subnetworks.
The final result is an order of the elements of X (minus the three taxa
that label the leaves of the backbone network). We create a list of distinct
nodes (leaves), each labeled by one taxon, sorted according to the order
obtained. The taxa are added to the initial backbone network one at a time
according to the computed order. We now describe how each single taxon
is added.

3.3 Iterative attachment of new taxa

Given the backbone network and the remaining set of taxon-labeled leaves
(with their order), we describe how to attach a new taxon to the iteratively
growing backbone network. We define the attachment of taxon x that
labels a leaf in subnetwork Ψi, denoted by atΨi

(x), as the set itΨi
(x)∪

rtΨi
(x), where

itΨi
(x) = (AΨi

(x) \ ∪y(6=x)∈X (Ψi)
AΨi

(y)) ∪ {x},

and rtΨi
(x) are parent nodes not in itΨi

(x) of all nodes in itΨi
(x). The

edges of the attachment, denoted by E(atΨi
(x)), is the set of all edges

of Ψi that connect two nodes in the attachment.
We add (leaf labeled by) taxon x to the current backbone ΨB as

follows. We first compute atΨi
(x) for all k subnetworks Ψi. Assuming

there are ` subnetworks that have x as a leaf label, we cluster the `
attachments by their sizes (all attachments with the same number of
nodes in rt belong to one cluster), and then choose the single attachment
per cluster in which the parent node of the leaf labeled by x has the
smallest height of all attachments in that cluster. In our implementation,
we considered only attachments that have up to 5 nodes in rt. LetH(x) be
the set of all resulting attachments (in our implementation,H(x) contains
at most 6 attachments). For each attachment at(x) = (it(x) ∪ rt(x)) ∈
H(x), we create a set of new backbone networks as follows:

1. For each leaf x′ ∈ X (ΨB), we generate height-taxon pairs, or HT
pairs, according to the overall EHM M . The height of the pair is an
element of M (x, x′), and the taxon of the pair is x′.

2. Resolve HT pairs by finding the set P of positions on the path
from x′ (taxon in the pairs) to the root of ΨB where the height of
each element in P is the height in the pairs. Map the elements of
rt(x) to the positions in P in multiple ways. Remove from all the
resulting backbone networks any nodes of in-degree 0 except for the
original root of the ΨB . (Pseudo-code of this step is given in the
Supplementary Material.)

3. Remove networks with same topology.

The outcome of this procedure, when applied to all attachments in H(x),
is a set of candidate backbone networks B(x). We then choose from set
B(x) the network Ψ′ whose score is minimum. The score of Ψ′ is defined
as follows with respect to each subnetwork Ψ1, . . . ,Ψk:

D(Ψ′,Ψi) =

{
d(Ψ′,Ψi) if r(Ψ′) ≤ r(Ψi)

minΨ′′ d(Ψ′,Ψ′′) otherwise
,

where d is the topological distance of Nakhleh (2010) applied to two
networks restricted to their shared leaf-set, and Ψ′′ is taken over all
subnetworks of Ψ′|X (Ψi)∩X (Ψ′) that have r(Ψi) reticulation nodes.
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We choose Ψ∗B from set B(x) as the new backbone network on set
X (ΨB) ∪ {x} of leaves the network Ψ′ that minimizes

(r(Ψ′))2 +
∑

1≤i≤k

D(Ψ′,Ψi).

Finally, we reconcile the heights of nodes in Ψ∗B according to subnetworks,
by generating a mapping from nodes in Ψ∗B to a set of nodes in the
subnetworks, then assign the average of height in each set to the nodes.
For inheritance probabilities, we do the same thing for edges in Ψ∗B .

3.4 Asymptotic time complexity

Here we provide a loose analysis of asymptotic time complexity of our
merger algorithm if all input subnetworks are trinets. Let the total number
of taxa be n, and let the total number of reticulations in the true network
be r. Then it takes at most O((n + r)2) to compute the topological
difference (Nakhleh, 2010) for two networks which are subnetworks of
the true network. Suppose the number of input trinets is k. The major time
consumption is from the enumeration and evaluation of candidates while
attaching new taxa to the growing backbone network.

Suppose we have |rt(x)| ≤ m for all attachment in H(x). For one
attachment, there will be at most O(m! × 3m(n + r)m) new backbone
networks. In our implementation, we setm to 5, which makes the number
of candidates O((n + r)5). Note that there are far fewer candidates, as
demonstrated by our simulation study. A loose upper bound on the time
complexity for computing the score for a candidate is O(3rk(n+ r)2).

The total asymptotic time complexity of our merger algorithm is
O((n+ r)5)×O(3rk(n+ r)2)×O(k) = O(3rk2(n+ r)7).

3.5 Reducing the number of subproblems

The first step of our method requires inferring a phylogenetic network for
every combination of 3 taxa, and this causes the computational complexity
of subnetwork inference to be O(n3) given n total taxa. If there are 100
taxa, the number of subnetworks to infer will be

(100
3

)
= 161, 700, which

is an overwhelmingly large number for researchers who do not have access
to the largest supercomputers. Therefore, it is important to reduce the
number of subnetworks by precomputing which subnetworks are actually
needed.

Let g be a rooted, binary phylogenetic tree leaf-labeled by set X of
taxa. For a node u in g, we denote byL(u) the setX′ ⊆ X that labels the
leaves of g that are under node u. Consider an internal edge e = (u, v)

in g (that is, an edge that is not incident with a leaf). Let v1 and v2 be
the two children of v, and let u1 be the child of u that is not v. We say
that edge e is defined by the set {L(v1), L(v2), L(u1)} (that is, it is a
set of three sets of leaf labels). Finally, we say that a triplet of leaf labels
{x1, x2, x3} ⊆ X covers edge e if

(x1 ∈ L(v1) ∧ x2 ∈ L(v2) ∧ x3 ∈ L(u1)).

The algorithm we propose for reducing the number of subproblems to
solve on a data set of m loci is as follows:

1. Let G be a set ofm estimated gene trees, and denote by E (G ) the set
of all internal edges in the gene trees in G .

2. Compute a smallest set ∆ = {{x1, x2, x3} : {x1, x2, x3} ⊆ X }
such that each edge e ∈ E (G ) is covered by at least one element of
∆.

3. Infer |∆| trinets, one for each element of ∆.

We show how computing set ∆ can be posed as an instance of the Hitting
Set Problem, which allows one to make use of many existing algorithmic
developments for this problem. The Hitting Set Problem is defined as
follows:

Input: A collection C of subsets of S.
Output: Smallest subset S′ ⊆ S that intersects every set in C.

To pose our problem of finding a smallest set of 3-taxon subproblems as
an instance of the Hitting Set Problem, we define:

• S is the set of all
(|X |

3

)
three-taxon subsets of X .

• Let edge e ∈ E (G ) be defined by the the set {A,B,C} of three sets
of taxa, as described in the main text. We create setCe = {{a, b, c} :

a ∈ A, b ∈ B, c ∈ C}. Then,

C = ∪e∈E (G ){Ce}.

Finding a smallest subset S′ ⊆ S amounts to finding the smallest set of
3-taxon sets on which to infer trinets.

For certain networks (that are automatically identified by the
algorithm), the smallest set ∆ of trinets needs to be enriched with additional
trinets that are identified in multiple rounds, a step that we discuss and
describe in the Supplementary Material, along with the heuristic we
implemented for solving the aforementioned problem.

4 Results and Discussion
The way we ran our method is as follows: For each subproblem,
MCMC_SEQ (Wen and Nakhleh, 2018) was run and a sample of
subnetworks was collected from the posterior. We then selected one
subnetwork randomly from the samples of each subset, and applied our
merger algorithm. This step was repeated 100 times, and resulted in 100
candidate networks on the full set of taxa. We selected the final network
as follows. if a network topology appeared in 50 or more of the 100
networks, it was selected as the final result; otherwise, we identify the
most common topology for each of the subnetwork distributions from
MCMC_SEQ. Then, we select the network which maximizes the number
of subnetworks, contained in that network, which match those topologies.
The parameters of the final network are averaged from the networks with
same topology.

Since our algorithm for combining subnetworks into a network on the
full set of taxa is a heuristic with no established theoretical guarantees, we
first set out to study its accuracy on a large number of networks. We then
studied the performance of our full approach on simulated multi-locus data
sets, and finally analyzed a biological data set.

4.1 Accuracy of the merger algorithm

We generated 10,000 16-taxon networks using a birth-hybridization model,
and for each network, an outgroup was added to create a 17-taxon network.
We restricted each of the 10,000 17-taxa networks to every combination of
3 taxa to produce

(17
3

)
= 680 trinets that were used as input to our merger

algorithm that combines the trinets into a network on the full set of taxa.
We then inspected the accuracy of the resulting networks. Fig. 1 shows
the number of data sets on which the merger algorithm inferred the correct
network with 10,000 17-taxon networks. As Fig. 1 shows, in total, 9,838
out of 10,000 inferred networks are identical to their corresponding true
networks. When the true network had 0 or 1 reticulations, the algorithm
always returned the correct network. Furthermore, the few cases where
an incorrect network was returned mostly correspond to large numbers of
reticulations (even in those cases, the computed network was very similar
to the true one).

To examine the performance of the merger algorithm with and without
reduced number of subproblems for large networks, we generated 100 41-
taxon networks and 81-taxon networks using a birth-hybridization model
(each network had a designated outgroup that did not involve hybridization
with any other taxa). We simulated 1,000 gene trees within the branches
of each network, using the program ms (Hudson, 2002), and generated
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Fig. 1. Correctness of inferred networks from correct trinets, categorized by the number of
reticulations in the true networks. The numbers of data sets on which the inferred network
is identical to or different from the true one are shown in blue and orange, respectively.

the full set of all true trinets as well as subset obtained by our algorithm
for reducing the number of trinets. We used each set of trinets as input
to our merger algorithm. We inspected the accuracy in terms of whether
the inferred network is identical to the true network. The results, as well
as other characteristics of the data, are shown in Table 1. When the full
set of trinets was used as input, all trinets were inferred in parallel in
a single batch. When the reduced set of trinets was used as input, the
first batch always consists of the set of reduced trinets being inferred in
parallel. However, as we discussed above, in some cases, multiple rounds
of enrichment of the reduced set of trinets are performed. Each such round
corresponds to an addition batch where all new trinets in that round are
inferred in parallel.

Table 1. Results of merger algorithm for large networks. Full and Reduced
correspond to the full set of trinets and the reduced set of trinets, and n is the number
of leaves in the network. Each batch consists of multiple trinet inferences that are all
run in parallel. ‘Candidates enumerated’ is the number of new backbone networks
that are proposed and examined by the algorithm during the full network construction.
Accuracy is measured as the percentage of data sets in which the constructed network
is identical to the true network. The average running time in seconds is the time it
took to construct the full network from the set of trinets.

n Quantity Full Reduced

41
Number of trinets 10660 151 ∼ 386

Number of batches 1 1 ∼ 6

Candidates enumerated 39 ∼ 225 39 ∼ 228

Accuracy 98% 83%

Average running time (s) 50.93 3.57

81
Number of trinets 85320 347 ∼ 772

Number of batches 1 2 ∼ 9

Candidates enumerated 80 ∼ 155 80 ∼ 150

Accuracy 100% 88%

Average running time (s) 1077.16 10.90

The table shows several important points. The algorithm achieves
almost perfect accuracy on the 41-taxon networks, and perfect accuracy on
the 81-taxon networks, when the full set of trinets is used. Our heuristic for
reducing the number of trinets achieves two orders of magnitude reduction
in the number of trinets, resulting in one or two orders of magnitude
reduction in the running time. The accuracy decreases when the reduced
set of trinets is used, since some information on the full network is lost by

this reduction. We identify the problem of obtaining a better reduced set
of trinets as a direction for future research.

One reason the algorithm performs better on the larger networks
(81-taxon networks) is that for a fixed number of reticulations, those
reticulations would be sparser on a network with 81 taxa than on a network
with 41 taxa, making the inference of the former less challenging. Fig.
2 breaks the accuracy results of our algorithm on the 41- and 81-taxon
networks by the number of reticulations in these networks.
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Fig. 2. Correctness of inferred networks from correct trinets, categorized by the
number of reticulations in the true networks. (a) Results from 100 41-taxon networks.
(b) Results from 100 81-taxon networks. Blue: the number of cases where the inferred
network is identical to the true one when using either the full or reduced set of trinets.
Orange: the number of cases where the inferred network is identical to the true one only
when the full, but not reduced, set of trinets is used. Grey: the number of cases where the
inferred network is different from the true one, regardless of whether the full or reduced set
of trinets was used.
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4.2 Accuracy on simulated multi-locus data sets

We now set out to study the performance of our approach on simulated
multi-locus sequence data, where the method is applied to the sequence
data directly. Given that computational complexity of Bayesian inference
of trinets (Wen and Nakhleh, 2018), we focus our attention here on a
subset of 24 phylogenetic networks that we sampled to reflect varying
complexity levels. As discussed in (Zhu et al., 2016; Elworth et al.,
2018), the complexity of phylogenetic networks arises not only from the
number of leaves or number of reticulation nodes, but also in how the
reticulation nodes are structured in the network.To allow for a careful
assessment of the accuracy of our approach, we define a simple complexity
measure of networks as follows. We define the complexity of Ψ as∑

r∈R(Ψ) |L(r)|+ |L(p1(r))|+ |L(p2(r))|+ |X | · |ARΨ(r)|, where
L(u) is the set of leaves under node u, and p1(u) and p2(u) are the two
parents of reticulation node u.

We selected the 24 networks from the 10,000 as follows. All simulated
networks with 0 to 5 reticulation nodes were sorted by their complexities.
For each of the six numbers of reticulation nodes, we selected four
networks: the one with the minimum complexity, the one with the
maximum complexity, and the two networks at tertiles. The 24 networks
were divided into three groups of 8 “easy" networks (E), 8 “medium-
difficulty" networks (M), and 8 “hard" networks (H), and are shown in the
Supplementary Material. We used these 24 networks as the ground truth
and simulated multi-locus sequence from these 24 networks.

For each of the 24 networks, we generated the full set of all true trinets
as well as subset obtained by our algorithm for reducing the number of
trinets. Then, for each set of trinets (full or reduced), we perturbed the
heights of the nodes in each trinet randomly by 0.1% and repeated this
100 times to obtain 100 “ideal" MCMC-like samples of trinets. We then
used the trinet sets as inputs to our merger algorithm and inspected the
resulting networks. The algorithm obtained the correct networks in all
24 cases regardless of whether the full or reduced set of trinet “samples"
were used. While this result is perfect, Bayesian MCMC in practice is
not guaranteed to yield as accurate a sample as the one we used here.
Therefore, we next set out to study the performance of the method when
we use sequence data of the multiple loci.

For each of the 24 networks, we simulated 100 gene trees, with
two individuals per species, for 100 loci using the program ms (Hudson,
2002), and generated sequence alignments of length 1,000 for each locus
using Seq-gen (Rambaut and Grassly, 1997) under GTR model. In other
words, each locus consists of 34 aligned sequences. For each data set,
we inferred subnetworks using MCMC-SEQ (Wen and Nakhleh, 2018)
as implemented in PhyloNet (Wen et al., 2018) with 2 × 106 iterations,
1×106 burn-in iterations, and one sample collected per 5×103 iterations.
To obtain the first state for the method, we inferred gene trees for the
individual loci using IQ-TREE (Nguyen et al., 2014), optimized their
branch lengths using local search, and the resulting gene trees were used
as the starting gene trees in the MCMC chain.

For each data set, the running time to infer all trinets is shown in Fig.
3(a). This analysis was performed on NOTS (Night Owls Time-Sharing
Service), which is a batch scheduled High-Throughput Computing (HTC)
cluster. The average cost to infer all trinets for a data set was 1636.82
CPU-hours, which means it takes about an hour to infer a trinet with a
dual-core machine. Since the inferences of trinet are independent of each
other, this task is embarrassingly parallel. Fig. 3(b) shows the accuracy
of the inferred trinets. The figure shows that the more complex the true
network, the harder it is to infer their subnetworks.

We then used the inferred trinets as input to our merger algorithm. The
merger algorithm ran on a Macbook Pro with 2.9 GHz Intel Core i5. We
used both the full and reduced sets of inferred trinets. The reduced sets
contains between 61 and 132 trinets, which is a major reduction (especially
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Fig. 3. Running times and accuracy for the inferred trinets. (a) The total running
time in CPU-hours to infer all trinets for each data set. (b) Accuracy of the inferred
trinets. The number of data sets where the inferred trinet is correct (blue), the inferred
trinet is inside the true network (orange), and all other cases (grey), are shown.

when considering the running time, as shown in Fig. 3(a)) over the full
set, which contains 680 subnetworks. Most data sets only need one batch
of inference, 3 data sets need 2 batches, and 1 data set needs 3 batches.
The time that our algorithm took to merge the trinets into a full network
(repeated 100 times) ranged between 148 and 1538 seconds when the full
set of trinets was used, and between 44 and 141 seconds when the reduced
set of trinets was used. This shows the additional efficiency gained by
reducing the number of trinets.

Finally, we fed the full and reduced sets of trinets to our merger
algorithm and compared the inferred networks to the true ones. In
measuring the difference between a true network Ψt and and an inferred
network Ψi, we quantified false positive and false negative rates as follows.
We find the backbone Ψ′i of Ψi and backbone Ψ′t of Ψt whose topological
differences (Nakhleh, 2010) are smallest and have the largest number of
reticulation nodes among all such pairs of backbones. If the topological
difference is 0, the inferred network has a backbone inside the true network.
We compute the true positives as the number of nodes remaining in
Ψ′t, minus the topological difference of Ψ′i and Ψ′t. We compute the
false positives as the number of nodes deleted from Ψi to Ψ′i, plus the
topological difference of Ψ′i and Ψ′t. The false negative rate is computed by
normalizing the true positives by the number of nodes in Ψt and subtracting
it from 1, and the false positive rate is computed by normalizing the false
positives by the number of nodes in Ψi.

The inferred network was identical to the true network in 12 out of
24 data sets when full set of trinets were used. When the reduced set of
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trinets was used, 9 inferred networks were identical to their corresponding
true networks. We plot the false positives and false negatives for the data
sets where the inferred network is not identical to the true one in Fig. 4(a).
As the results show, not much accuracy is lost when using the reduced
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Fig. 4. Accuracy of the inferred networks, and comparison to maximum pseudo-
likelihood. (a) The false positives and false negatives for the data sets where the
inferred network is not identical to the true network. Squares correspond to hard
networks, crosses correspond to medium-difficulty networks and triangles correspond
to easy networks. Blue, red and green correspond to results based on the full
and reduced sets of trinets, and maximum pseudo-likelihood, respectively. (b) The
accuracy of our method on the full set of trinets (left set of bars) and on the reduced set
of trinets (middle set of bars), and the accuracy of maximum pseudo-likelihood (right
set of bars). Blue corresponds to the data sets where the inferred network is identical
to the true network; orange corresponds to the data sets where the inferred network
contains a backbone network that is present in the true network; grey corresponds to
all other cases.

set of trinets. In particular, for four data sets, the false negative rate when
using the full set of trinets is higher than its counterpart when using the
reduced set. On the other hand, more networks inferred from the reduced
set have slightly higher false positive rates. It is important to note here
that these results combined with the fact that all 24 inferred networks are
completely accurate when using error-free trinets shows that the error in
the final networks is mainly due to inaccuracy of the trinets, rather than
the merger algorithm.

Finally, we compare the accuracy of the method to the only other
statistical inference method that can scale to these data sets, namely
maximum pseudo-likelihood (Yu and Nakhleh, 2015). As the method of
Yu and Nakhleh (2015) requires gene trees as input, we ran it on the gene
trees inferred by IQ-TREE, with the maximum number of reticulations set
to 5 and the number of runs set to 20. Fig. 4(b) shows the results of this
comparison. These results clearly show that our approach here outperforms
maximum pseudo-likelihood, and there could be several explanations for
this. First, maximum pseudo-likelihood is not good at estimating the
correct number of reticulations, so it could be that the networks obtained
by the method have unnecessary reticulation nodes. Second, maximum
pseudo-likelihood searches the network space and could get stuck in local
maxima, whereas our proposed approach here avoids such a search. It is
important to also comment on the decreased accuracy of our approach
when using a reduced set of trinets. As the set of trinets is much smaller
than the full set, the method becomes more sensitive to inaccuracy in the
inferred trinets, since when using the full set of trinets, signal from multiple
trinets could mask the estimation error. All these results combined show
that our proposed approach can produce very accurate results, especially
when the individual trinets are accurately estimated.

4.3 Inference on an empirical data set

We analyzed a data set of multi-locus sequence alignments of multiple
Australian rainbow skinks (Bragg et al., 2018), where 11 taxa with 22
individuals were selected from the full data set. At first we computed the
maximum pairwise distance of each locus using IQ-TREE (Nguyen et al.,
2014), and we excluded the loci with maximum pairwise distance larger
than 0.2, as that would imply impossible deep coalescence times. We then
randomly selected 100 loci and used their sequence alignments as the input.
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Lygisaurus_foliorum

Liburnascincus_mundivensis

Carlia_rhomboidalis

Carlia_longipes
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Carlia_amax

Pygmaeascincus_timlowi

Lampropholis_coggeri

Lampropholis_guichenoti
96.2%
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Fig. 5. The inferred network for the empirical data set. The reticulation, with inheritance
probabilities (blue), is shown by the dashed line.

The first step of our method is inferring subnetworks. So we restricted
the data set with 11 taxa to every combination of 3 taxa, then we added
Lampropholis guichenoti into every subproblem to root the subnetworks.
Therefore for every subproblem, 4-taxon networks were inferred and the
number of subproblems remains

(11
3

)
= 120. We ran MCMC-SEQ (Wen

and Nakhleh, 2018) for 6,000,000 iterations with 3,000,000 burn-in steps,
collecting a sample for every 5,000 iterations. We inferred gene trees using
IQ-TREE (Nguyen et al., 2014), and their branch lengths were optimized
individually using local search. The resulting gene trees were used as the
starting point of MCMC chain, and all gene tree topologies were fixed
during Bayesian sampling. This analysis was performed on NOTS (Night
Owls Time-Sharing Service). We used 2 CPU cores running at 2.6GHz,
and 8G RAM for each subproblem. It took 3,670 CPU-hours to infer all
subnetworks. Then we used the inferred subnetworks as the input to our
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merger algorithm to merge them on a Macbook Pro with 2.9 GHz Intel Core
i5. It took 53.1 seconds to merge the subnetworks and generate the final
result. The inferred network is shown in Fig.5. The ingroup result agrees
with the known analysis of this data set. The topological relationships of
the Carlia clade and the Lygisaurus clade are identical to Fig. 2 in (Bragg
et al., 2018).

For comparison, we also ran the maximum pseudo-likelihood method
of Yu and Nakhleh (2015) on this data set, using the inferred gene trees as
the input. The number of runs was set to 10. The number of reticulations
allowed was set to 0, 1 and 2. The inferred networks are shown in Fig. 6.
The inferred species tree was identical to the backbone tree in the inferred
network using our merger algorithm. However, that is no longer the case
when reticulations are added by the method.
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Fig. 6. The inferred networks for the empirical data set using maximum pseudo-likelihood.
Top: the inferred network when no reticulation was allowed. Middle: the inferred network
when 1 reticulation was allowed. Bottom: the inferred network when 2 reticulations were
allowed. The reticulations, with inheritance probabilities (blue), are shown by the dashed
lines.

5 Conclusions and Future Work
In this paper, we proposed a divide-and-conquer approach for large-scale
phylogenetic network inference. The approach makes use of inferred

subnetworks—topologies and divergence times—on overlapping subsets
of the taxa to obtain a phylogenetic network on the full data set. We
demonstrated the accuracy and efficiency of our approach on simulated
and biological data sets.

While we illustrated the performance of the algorithm on subproblems
of size 3 (three taxa), the merger algorithm we introduced works on
subnetworks with any number of taxa. There is a tradeoff between the
size of the subproblems, the running time, and the accuracy. If the number
of taxa in the full data set is n, then the full set of subnetworks on k leaves
consists of

(n
k

)
= O(nk). For example, for n = 100 and k = 5, the

algorithm would have to infer on the order of 1010 5-subnetworks. Not
only is this number large by itself, but the inference of each 5-subnetwork
is much more demanding computationally than that of trinets.

Two bottlenecks of the method are the number of subproblems to
analyze, and the time it takes to infer a subnetwork on each subproblem
using compute-heavy approaches such as Bayesian inference. To address
the former, we introduced a formulation for reducing the number of
subproblems to solve and demonstrated its effect on the efficiency and
accuracy of the obtained results. However, our solution is a heuristic, and
via our reduction of the problem to the Hitting Set Problem, one future
direction is to explore the efficiency and accuracy of Hitting Set algorithms.
For the latter bottleneck, and while subnetworks can be inferred in parallel
on the subproblems, it is important to develop new techniques for accurate
estimation of small networks—topologies and divergence times, as these
are both used in our approach. Last but not least, while the efficiency of
the merger algorithm could be improved, our analyses above show that the
two aforementioned bottlenecks are the more important targets for further
improvement.

Finally, it is worth mentioning that our merger algorithm makes no
assumption on what evolutionary processes were accounted for in the
subnetwork inference. In this sense, our merger algorithm can be applied
to merge subnetworks inferred under a variety of models (e.g., ILS, gene
duplication and loss, and hybridization), as long as the subnetworks’
topologies and divergence times are accurately estimated.
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